第6章 假设检验与方差分析
- 格式:ppt
- 大小:1.44 MB
- 文档页数:77
统计分析中的假设检验与方差分析统计分析是一种科学的方法,通过对数据进行收集、整理、分析和解释,帮助我们了解现象背后的规律和关系。
在统计分析中,假设检验和方差分析是两个重要的概念和工具。
本文将介绍这两个概念的基本原理和应用。
一、假设检验假设检验是统计学中的一种常用方法,用于判断样本数据是否能够反映总体的特征。
在假设检验中,我们首先提出一个原假设(H0)和一个备择假设(H1),然后通过对样本数据的分析,判断是否拒绝原假设。
在假设检验中,我们需要进行以下几个步骤:1. 确定原假设和备择假设:原假设通常是我们要证伪的观点,备择假设则是我们要支持的观点。
例如,我们想要检验某个新药物是否有效,原假设可以是“该药物无效”,备择假设可以是“该药物有效”。
2. 选择显著性水平:显著性水平(α)是我们在进行假设检验时所允许的错误概率。
通常情况下,我们选择的显著性水平为0.05或0.01。
如果计算得到的p值小于显著性水平,则我们拒绝原假设。
3. 计算检验统计量:检验统计量是根据样本数据计算得到的一个数值,用于判断样本数据是否支持备择假设。
常见的检验统计量包括t值、F值等。
4. 判断拒绝或接受原假设:根据计算得到的检验统计量和显著性水平,我们可以判断是否拒绝原假设。
如果p值小于显著性水平,则我们拒绝原假设,否则我们接受原假设。
假设检验在实际应用中具有广泛的应用,例如医学研究、市场调查、工程设计等。
通过假设检验,我们可以对研究结果进行客观的评估和判断,从而做出更准确的决策。
二、方差分析方差分析是一种用于比较多个样本均值是否存在显著差异的统计方法。
在方差分析中,我们将总体分为若干个独立的组,然后通过计算组间方差和组内方差的比值,来判断不同组之间的均值是否存在显著差异。
方差分析的基本原理是利用方差的性质来比较样本均值之间的差异。
具体步骤如下:1. 确定独立变量和因变量:独立变量是我们要比较的不同组别,而因变量是我们要研究的特征或指标。
概率与统计中的假设检验和方差分析统计学是研究数据收集、分析和解释的科学。
在统计学的研究中,假设检验和方差分析是两个重要的工具。
本文将对这两个概念进行详细介绍,并探讨它们在实际问题中的应用。
一、假设检验假设检验是指根据样本数据对总体参数提出的关于总体的假设进行检验的过程。
假设检验主要包括以下几个步骤:1. 提出原假设(H0)和备选假设(H1):原假设是对总体参数的某种陈述,备选假设是对原假设的否定。
例如,假设检验中常见的原假设是总体参数等于某个特定值,备选假设是总体参数不等于该特定值。
2. 选择检验统计量:检验统计量是根据样本数据计算的统计量,用于衡量观察到的样本结果与原假设之间的差异。
3. 确定显著性水平(α):显著性水平是在假设检验中指定的判断标准,通常取0.05或0.01。
当P值(观察到的统计量发生的概率)小于显著性水平时,拒绝原假设,否则接受原假设。
4. 进行假设检验:根据选择的检验统计量,计算其观察值,并与理论上的检验统计量分布进行比较,得出拒绝或接受原假设的结论。
假设检验在实际中的应用非常广泛,比如医学研究中对新药物疗效的检验、市场调研中对产品平均销量的检验等。
二、方差分析方差分析是一种用于比较多个总体均值差异是否显著的统计方法。
方差分析的基本思想是将总体的差异分解成不同成分,通过比较成分之间的差异来判断总体均值是否存在差异。
方差分析主要包括以下几个步骤:1. 提出假设:假设要比较的多个总体没有显著差异(H0),备选假设为多个总体之间存在显著差异(H1)。
2. 计算变异程度:将总体的差异分解成组间变异和组内变异两部分。
组间变异是指各个样本均值与总体均值之间的差异,组内变异是指同一样本内各个观测值与样本均值之间的差异。
3. 计算F值:根据组间变异和组内变异的比值计算F值。
F值越大,说明组间差异相对于组内差异的贡献越大。
4. 判断显著性:将计算得到的F值与理论上的F分布进行比较,得出拒绝或接受原假设的结论。
1第6章⽅差分析1第6章⽅差分析⽅差分析是R. A. Fister 发明的,⽤于两个及两个以上样本均数差别的显著性检验. 由于各种因素的影响,研究所得的数据呈现波动状,造成波动的原因可分成两类,⼀是不可控的随机因素,另⼀是研究中施加的对结果形成影响的可控因素. ⽅差分析的基本思想是:通过分析研究中不同来源的变异对总变异的贡献⼤⼩,从⽽确定可控因素对研究结果影响⼒的⼤⼩.6.1 单因素⽅差分析我们把在实验中或在抽样时发⽣变化的“量”称为因素或因⼦. ⽅差分析的⽬的就是分析因⼦对实验或抽样的结果有⽆显著影响. 如果在实验中变化的因素只有⼀个,这时的⽅差分析称为单因素⽅差分析;在实验中变化的因素不只⼀个时,就称多因素⽅差分析. 双因素⽅差分析是多因素⽅差分析的最简单情形.因⼦在实验中的不同状态称作⽔平. 如果因⼦A 有r 个不同状态,就称它有r 个⽔平. 我们针对因素的不同⽔平或⽔平的组合,进⾏实验或抽取样本,以便了解因⼦的影响. 当⽅差分析的影响因⼦不唯⼀时,必要注意这些因⼦间的相互影响. 如果因⼦间存在相互影响,我们称之为“交互影响”;如果因⼦间是相互独⽴的,则称为⽆交互影响. 互影响有时也称为交互作⽤,是对实验结果产⽣作⽤的⼀个新因素,分析过程中有必要将它的影响作⽤也单独分离开来.6.1.1 单因素⽅差分析的模型假设设某单因素A 有r 种⽔平:1A ,2A ,…,r A ,在每种⽔平下的试验结果服从正态分布2(,)i N µσ(1,2,,i r = ). 在各⽔平下分别独⽴做了i n (1,2,,i r = )次试验,所得数据见表,其中ij x 表⽰表⽰第i 种⽔平下第j 个试验数据. 判断因素A 对试验结果是否有显著影响. 这⾥我们假定各种⽔平下的试验结果有相同的标准差σ. 单因素⽅差分析问题可以归结为以下的假设检验: 012:r H µµµ=== 1:H 12,,,r µµµ 不全相等表6-1 单因⼦试验表6.1.2 单因素⽅差分析的原理如何检验统计假设0H ?⼀般情况下,1µ,2µ,,r µ不全相同将反映在ij x (1,2,,;i r = 1,2,,)i j n = 取值的⼤⼩不同上,这时离差211()in r ij i j S x x ===?∑∑也⽐较⼤. 其中111in r ij i j x x n ===∑∑,1ri i n n ==∑. 但是我们还不能只从S ⽐较⼤就断定1µ,2µ,,r µ不全相同,因为在1µ,2µ,,r µ全相同时,由于试验中的随机误差影响,S 也可能取⽐较⼤的值. 为了区别这两种情况,先把离差S 作⼀个分解. 令 11in i ijj ix xn ==∑2112112211111122111()()()()2()()()()ii ii iin rT ij i j n rij i i i j n n n rr r ij i i ij i i i j i j i j n rrij i i i i j i S x x x x x x x x x x x x x x x x n x x ==============?=?+?=?+?+??=?+?∑∑∑∑∑∑∑∑∑∑∑∑∑ (5. 1)记上式分解的第⼀项为e S ,第⼆项为A S . 211()i n r e ij i i j S x x ===?∑∑ , 1(rA i i i S n x x ==?∑有T A e S S S =+即总离差T S 等于组内误差e S 与组间离差A S 之和.下⾯分析e S : 对任⼀指定的1i r ≤≤,21()in ij i j x x =?∑是⽔平i A 下试验数据的离差,是由随机因素造成的. e S 是所有⽔平下离差的和,因⽽也是由随机因素造成的.形成A S 除了随机因素外,如果1µ,2µ,,r µ不全相同,这个差异也要从A S 反映出来,⼀般A S 取⽐较⼤的值. 因此,将A S 和e S ⽐较,如果A S 不太⼤,我们只能认为A S 是由试验的随机误差形成的,从⽽接受0H ;如果A S 太⼤,我们便有理由怀疑A S 完全是由试验的随机误差形成的,认为1µ,2µ,,r µ不全相同,从⽽拒绝0H . 我们将⽤形如A e S c S ??>的判别区域,c 由预先给定的信度α确定. 给定α后,需要计算统计量AeS S 在0H 为真时的分布. 可以证明,在0H 为真时,(1,)1A e S n p F p n p p S ~. 即1AeS n p p S ??服从参数为1p ?和n p ?的F 分布. 只需从F 分布表,查(1,)F p n p α??,使((1,))P F p n p αηα>??=. 其中(1,)F p n p η??~.最后得到的检验⽅法是: 若(1,)1AeS n p F p n p p S α??>,就拒绝0H ,否则接受0H图6-1. (4,10)F 时的F 曲线和0.05α=时的临界值6.1.3 单因素⽅差分析表对上⼀⼩节的分析进⾏总结,得到单因素⽅差分析表6-2. 表6-2 单因素⽅差分析表3若0.01(1,)F F r n r α>??,称因素A 对试验结果有⾮常显著的影响,⽤“* *”号表⽰;若0.050.01(1,)(1,)F r n r F F r n r α??<6.2 利⽤SPSS 进⾏单因素⽅差分析6.2.1 SPSS ⽅差分析对数据的要求应⽤⽅差分析对数据进⾏统计推断之前应注意样本分布的正态性,即偏态分布样本不宜⽤⽅差分析. 对偏态分布的样本应考虑⽤对数变换、平⽅根变换、倒数变换、平⽅根反正弦变换等变量变换⽅法变为正态或接近正态分布的数据后再进⾏⽅差分析.在⽅差分析的F 检验中,是以各个实验组内总体⽅差齐性(⽅差相等)为前提的,因此,按理应该在⽅差分析之前,要对各个实验组内的总体⽅差先进⾏齐性检验. 如果各个实验组内总体⽅差为齐性,⽽且经过F 检验所得多个样本所属总体平均数差异显著,这时才可以将多个样本所属总体平均数的差异归因于各种实验处理的不同所致;如果各个总体⽅差不齐,那么经过F 检验所得多个样本所属总体平均数差异显著的结果,可能有⼀部分归因于各个实验组内总体⽅差不同所致.但是,⽅差齐性检验也可以在F 检验结果为多个样本所属总体平均数差异显著的情况下进⾏,因为F 检验之后,如果多个样本所属总体平均数差异不显著,就不必再进⾏⽅差齐性检验.在使⽤SPSS 进⾏⽅差分析时,要求因⼦变量值为整数,⽽因变量应为定量变量(区间测量级别). SPSS 对于偏离正态的样本数据也是稳健的. 各组数据应来⾃⽅差相等的总体.6.2.2 SPSS ⽅差分析过程⽤SPSS 进⾏⽅差分析时,选项如图 .图 6-2 SPSS ⽅差分析的选项这些选项的含义如下:描述性:计算每组中每个因变量的个案数、均值、标准差、均值的标准误、最⼩值、最⼤值和95%的置信区间.固定和随机效果:显⽰固定效应模型的标准差、标准误和95%置信区间,以及随机效应模型的标准误差、95%置信区间和成分间⽅差估计.⽅差同质性检验:计算Levene 统计量以检验组间⽅差是否相等. 该检验独⽴于正态分布的假设.Brown-Forsythe :指采⽤Brown-Forsythe 分布的统计量进⾏的各组均值是否相等的检验.Brown-Forsythe分布也近似于F分布,但采⽤Brown-Forsythe检验对⽅差齐性没有要求,所以当因变量的分布不满⾜⽅差齐性的要求时,采⽤Brown-Forsythe检验⽐F检验更稳妥。