第二章波函数[详细讲解]
- 格式:ppt
- 大小:452.00 KB
- 文档页数:57
第二章 波函数和薛定谔方程本章重点1. 微粒的状态由波函数完全描写(正确理解ψ的意义和性质).2. 状态随时间的变化遵从薛定谔方程(掌握,会用).3. 几个应用例子,说明了量子力学处理问题的方法和结果的特征(逐步理解).§2.1波函数的统计解释引入:在经典力学中,用坐标和动量描述质点的运动状态。
在量子力学中,我们也要找到描述微观粒子的量,由于量子力学与经典力学根本不同,在量子力学中,微观粒子既要描述粒子性又要描述其波动性。
那么这一章我们首先来找用什么量来描述微观粒子。
重点: 微粒的状态由波函数完全描写 难点: 波函数ψ的意义和性质的理解 一、状态的描述1. 经典力学中质点的状态由)(,v p r描写 经典力学中用)(,v p r两基本量来描写质点的状态。
〈1〉每个时刻t 该二量都有完全确定的数值,且随t 变化;在任一时刻,我们都能测到质点确定的动量和坐标,并且他们是连续变化的。
〈2〉质点的其它力学量,如L E r V E k,总),(,等全是p r ,的函数—p r,决定体系的一切性质。
〈3〉质点状态的变化(运动)遵从牛顿定律:F dtrd m =22,当F 已知时,如果初始时刻)(,000v p r已知,则积分得:00)(v dt m F t v t+=⎰ , 00)(p dt F t p t +=⎰ , 00)()(r dt t v t r t+=⎰,即任何时刻的)(),(t p t r完全确定.〈4〉)(t r描写质点运动的轨道。
2.微粒的状态由波函数),(t rψ来完全描写<1> 微粒除了粒子性,还有波动性,这就决定了它不可能同时具有确定的r 和p,自由粒子由平面单色波描写,()(Et r p i Ae-⋅=ψ,以后我们会看到)这时p 有确定值,而r完全不确定。
微粒无同时确定的p r,,也就不可能有确定的轨道。
<2> 为了描写粒子的状态,量子力学中用一个反映其波粒二象性的波函数),(t rψ来描写。
第二章波函数和薛定谔方程2.1 波函数的统计解释与态叠加原理1、波函数的统计解释上一章已说到,为了表示粒子的波粒二象性,可以用复数形式的平面波束描写自由粒子。
自由粒子是不受力场作用的,它的能量与动量都是常量。
如果粒子受到随时间及位置等变化的力场的作用,它的能量和动量就不再是常量,或者不再都是常量。
这时,粒子就不能用平面波来描写,设这时描写粒子的波是某一个函数,这个函数就称为波函数。
它描写粒子所处的状态,所以也称为态函数,它通常是一个复数。
究竟怎样理解波函数和它所描写的粒子之间的关系呢?对于这个问题,曾经有过各种不同的看法。
例如,将波看作是由它所描写的粒子构成的,这种看法是不对的。
我们知道,衍射现象是由波的干涉而产生的,如果波果真是由它所描写的粒子构成,则粒子流的衍射现象应当是由于构成波的这些粒子相互作用而形成的。
但事实证明,在粒子流的衍射实验中,照片上所显示出来的衍射图形与入射粒子流的强度无关,如果减少入射粒子流强度,即使粒子是一个一个地被衍射,虽然一开始照片上的点子看起来是毫无规则的,但当足够长的时间后,如果落在照片上的粒子数基本上保持不变,则所得到的衍射图形是相同的。
这说明每一个粒子被衍射的现象与其他粒子无关,衍射图形不是由粒子之间的相互作用而产生的。
除了上面的看法外,还有其他一些企图解释波函数的尝试,但都因与实验事实不符而被否定。
为人们所普遍接受的对波函数的解释,是由玻恩(Born)首先提出的统计解释:波函数在空间某一点的强度(振幅绝对值的平方)和在该点找到粒子的几率成比例。
按照这种解释,描写粒子的波及是几率波。
按照波函数的几率解释,很容易理解衍射实验:每一个粒子都具有波性,所以每一个粒子都被衍射。
但如果粒子数很少,则统计性质显示不出来,所以在照片上的点子看起来好象是毫无规则的;如果粒子数目足够大,则在波的强度最大的地方,粒子投射在这里的几率也最大,便出现衍射极大,在波的强度最小的地方,粒子投射在这里的几率也最小,便出现衍射极小。
波函数解释知识点波函数解释是量子力学中重要的一个概念,它用来描述微观粒子的运动状态及其性质。
本文将介绍波函数解释的相关知识点,包括波函数的定义、波函数的物理意义、波函数的性质以及波函数的应用等。
一、波函数的定义在量子力学中,波函数用符号ψ表示,它是描述微观粒子的一种数学函数。
波函数的定义依赖于粒子所处的具体情况,比如自由粒子、束缚粒子或多粒子系统等。
波函数通常是空间坐标和时间的函数,即ψ(r,r),其中r表示位置矢量,r表示时间。
二、波函数的物理意义波函数的物理意义可以通过波函数的模的平方来描述。
波函数的模的平方|ψ(r,r)|²表示在某一时刻粒子出现在空间体积元rr内的概率。
即r(r,r)rr=|ψ(r,r)|²rr表示在空间体积元rr内发现粒子的概率。
波函数的物理意义可以通过测量得到,例如电子的位置、动量等。
三、波函数的性质1. 波函数的归一化:波函数必须满足归一化条件,即对整个空间积分结果为1。
即∫|ψ(r,r)|²rr=1,这表示粒子必定存在于空间中。
2. 波函数的连续性:波函数及其一阶导数在空间中连续,避免出现不连续点。
3. 波函数的可微性:波函数应该是可微的,以满足薛定谔方程的求解条件。
4. 波函数的奇偶性:对于具有中心对称性的体系,波函数可能是奇函数或偶函数。
四、波函数的应用1. 粒子的定态波函数:波函数的解可以得到粒子的能级、能量及角动量等相关信息,对于束缚系统,波函数的节点和能级的关系也十分重要。
2. 粒子的散射:通过波函数的解,可以计算散射截面、反射系数等散射性质,从而揭示粒子之间相互作用的性质。
3. 粒子的叠加态:多个波函数的线性叠加可以得到粒子的叠加态,这可以用来描述多粒子系统中的统计性质。
4. 量子力学中的难题:波函数的解决了一些传统力学难以解释的问题,如双缝干涉实验等。
总结:波函数解释是量子力学的核心概念之一,它描述了微观粒子的运动状态和性质。
第二章 状态波函数和薛定谔方程本章引入描述量子体系状态的波函数,给出波函数的几率波解释和态的叠加原理两个量子力学的基本假设,在此基础上建立非相对论量子力学的基本方程——薛定谔(Schr ödinger)方程,并通过几个具体实例介绍定态薛定谔方程的解法。
§2.1 波函数的几率波解释1.波函数由第一章的讨论可知,微观粒子的波粒二象性是对粒子运动的一种统计性的反映。
数学上,把这种具有统计性的物质波(粒子波)用一个物理量ψ来描述,称为波函数。
它是位置),,(z y x 和时间t 的复值函数,表示为ψ或),,,(t z y x ψ。
微观体系的状态总可以用一个波函数(,)t ψr 来完全描述,即从这个波函数可以得出体系的所有性质,且(,t)ψr 和C t ψ(r,)(C 为比例常数)描写同一量子状态。
引入波函数来描写微观粒子的运动状态是量子力学的基本假设之一。
2.波函数的几率波解释在历史上,人们对波函数的解释曾有过不同的看法。
有人认为波是由它所描写的粒子组成的;也有人认为粒子是无限多波长不同的平面波叠加而成的波包。
除以上两种观点外,还有其它一些不同的看法。
但是,这些看法都与实验事实相矛盾,而被物理学家们普遍接受的解释是玻恩(Born)提出的统计解释,即几率波解释。
为了说明玻恩的解释,我们首先来考察电子的双缝衍射试验。
在电子的双缝衍射实验中,电子枪发射强电子束时,荧光屏上马上显示出明暗相间的双缝衍射条纹,这是电子的波动性的表现。
当电子枪发射弱电子束时,屏上接收的只是一个一个的亮点(电子),这体现了电子的微粒性。
若对弱电子束的衍射作长时间的曝光,则得到的衍射花样与强电子束的衍射花样完全相同。
实验表明,在出现亮条纹的地方,亮点较密集,电子投射的数目较多,即电子投射几率较大;而在比较暗的地方,达到的电子数目较少,即电子投射的几率较小。
电子在衍射实验中所揭示的波动性质,可看成是大量电子在同一个实验中的统计结果,也可以认为是单个电子在多次相同实验中显示的统计结果。
第2章波函数和薛定谔方程既然辐射和粒子都具有波动性和微粒性,那么,如何理解这两属性呢?它们如何统一起来? 经典物理观点必须被修改。
主要表现:a. 波-粒两象性P (粒子) ν λ (波)ω=ν= h E (Planck 假设)Einstein 关系k P = (P h =λ,λπ=2k ) (de Broglie 假设) de Broglie 关系 ∴ 具有确定动量的自由粒子被一平面波所描述)Et r P (i )t r k (i AAe-⋅ω-⋅==ψb. 物理量取值不一定是连续的辐射体辐射的能量取值 ν=nh E ,2,1,0n = 氢原子的能量202n 8n a eE πε⋅-=cm 10529.0em 4a 82e 200-⋅=πε=由于平常粒子的波长1010-<λÅ,所以观察不到干涉, 衍射现象。
微观粒子,如电子1≈λÅ,因此在原子线度下可能显示出波动性。
而在宏观测量尺度下,几乎也不显示波动性。
将粒子所具有的微粒性和波动性统一起来,这在经典物理学中看来是不可能的,因经典粒子 经典波√原子性(整体性) ⨯实在物理量的空间分布 ⨯轨道 √干涉,衍射这两者是不相容的。
描述微观粒子既不能用经典粒子,也不能用经典波,当然也不能用经典粒子和经典波来描述。
§1 波函数的统计解释一、波函数的引入描述自由粒子可用平面波波函数)(Et r p ipAe -⋅=ψ来描述。
如果粒子处于随时间和位置变化的力场中运动,这样的微观粒子的运动状态也可以用较复杂的波(,)r t ψ完全描述。
二、波函数的解释1、经典物理学中粒子与波的有关概念经典概念中粒子意味着: 1.有一定质量、电荷等“颗粒性”的属性;2.有确定的运动轨道,每一时刻有一定位置和速度。
经典概念中波意味着:1. 某种实在的物理量的空间分布作周期性的变化; 2.干涉、衍射现象,即相干叠加性。
2、对波粒二象性的两种错误的看法 (1). 波由粒子组成波是由粒子组成的,把波看成是由大量粒子相互作用而在空间形成的一种疏密相间的周期分布。