弹塑性力学 第08章柱形杆的扭转
- 格式:pdf
- 大小:955.94 KB
- 文档页数:66
第八章能量原理及其应用第八章能量原理及其应用弹塑性力学问题实质上是边值问题,即求解满足一定边界条件的偏微分方程组。
然而只有对一些特殊的结构在特定加载条件下才能找到精确解,而对于一般的力学问题,如空间问题,泛定方程为含有 15 个未知量的 6 个偏微分方程,在给定边界条件时.求解是极其困难的,而且往往足小对能的。
因此,为了解决具体的工程结构力学问题,目前都广泛应用数值方法,如有限元法、无限元法、边界元法、无网格化法及样条元法等等。
这些解法的依据都是能量原理。
本章将讨论利用能量原理和极值原理求解弹塑性力学问题的近似解法。
本章共讨论五个能量原理。
首先是虚位移原理,由虚位移原理推导出最小势能原理,其次介绍虚应力原理,和由虚应力原理推导出最小余能原理。
另外,还简单介绍最大耗散能原理。
本章还讲述了根据上述的能量原理建立的有关弹性力学问题的数值解法。
8.1 基本概念1.1物体变形的热力学过程由第四章知,物体在外界因素影响下的变形过程,严格来说都是一个热力学过程。
因此研究物体的状态,不仅要知道物体的变形状态,而且还要知道物体中每一点的温度。
如果物体在变形过程中,各点的温度与其周围介质的温度保持平衡,则称这一过程为等温过程;若在变形过程中,物体的温度没有改变,即既没有热量损失也没有热量增加,则称这一过程为绝热过程。
物体的瞬态高频振动,高速变形过程都可视为绝热过程。
令物体在变形过程中的动能为 E,应变能为 U,则在微小的 t 时间间隔内,物体从一种状态过渡到另一种状态时,根据热力学第一定律,总能量的变化为EUWQ(a)其中, W 为作用于物体上的体力和面力所完成的功;Q 是物体由其周围介质所吸收 ( 或向外发散 ) 的热量,并以等量的功度量。
假定弹性变形过程是绝热的,则对于静力平衡问题有E 0,Q 0(b)将式 (b) 代入式 (a) ,则有U W(8.1-1)第八章能量原理及其应用1.2 应变能由第四章的式 (4.1-5b) 知,在线弹性情况下,单位体积的应变能为U 0ijijdij1(8.1-2)2ij ik对于一维应力状态,在xx 平面内,则U 0 实际上就是应力应变曲线与x轴和xx '所围成的面积 ( 图 8.1) ,即'U 0X(8.1-3)x dx其中 x ' 是物体变形过程某一指定时刻的应变,应 图 8.1 应变能与应变余能变能 U 0 表示物体在变形过程中所储存的能量。
第九章柱体的扭转9.1 扭转问题的位移解法学习思路:本节讨论自由扭转问题的位移解法。
首先建立自由扭转的位移假设:一是刚截面假设;二是扭转的翘曲位移与轴线方向坐标无关。
通过上述假设,将柱体的扭转位移用横截面的翘曲表示,因此使得问题的基本未知量简化成为翘曲函数Φ (x,y)。
基本未知量翘曲函数Φ (x,y)。
确定后,通过基本方程,将应力分量、应变分量用翘曲函数表示。
位移表示的平衡微分方程要求翘曲函数满足调和方程。
因此只要选取的翘曲函数是调和函数,自然满足自由扭转问题的基本方程。
自由扭转问题的边界条件,可以分为两个部分:侧面边界条件和端面边界条件。
对于自由扭转,侧面边界不受力。
根据这一条件,可以转化为翘曲函数与横截面边界的关系。
端面采用合力边界条件,就是端面应力的合力为扭矩T。
这一边界条件,采用翘曲函数表达相当复杂。
学习要点:1. 扭转位移假设;2. 扭转翘曲函数满足的基本方程;3. 扭转边界条件;4. 扭转端面边界条件;当柱体受外力矩作用发生扭转时,对于非圆截面杆件,其横截面将产生翘曲。
如果横截面翘曲变形不受限制,称为自由扭转;如果横截面翘曲变形受到限制,就是约束扭转。
本章讨论的柱体扭转问题为自由扭转。
对于柱体的自由扭转,假设柱体的位移约束为固定左端面任意一点和相应的两个微分线素,使得柱体不产生刚体位移。
柱体右端面作用一力偶T,侧面不受力。
设柱体左端面形心为坐标原点,柱体轴线为z轴建立坐标系。
柱体扭转时发生变形,设坐标为z 的横截面的扭转角为α,则柱体单位长的相对扭转角为。
而横截面的扭转角α = ϕ z。
对于柱体的自由扭转,首先考察柱体的表面变形。
观察可以发现,柱体表面横向线虽然翘曲,但是各个横向线的翘曲是基本相同的,而且横向线的轮廓线形状基本不变。
根据上述观察结论,对柱体部位移作以下的假设:1.刚截面假设。
柱体扭转当横截面翘曲时,它在Oxy平面上的投影形状保持不变,横截面作为整体绕z 轴转动,如图所示。