E Ev ij ij ij e 1 v 1 2v 1 v
其中
e ii
6
塑性阶段,应力满足屈服函数 根据增量理论有
f ij 0 ,在此条件下,
1 1 d x dsx ds x , d xy d xy d xy 2G G 1 1 d y ds y ds y , d yz d yz d yz 2G G 1 1 d z dsz ds z , d zx d zx d zx 2G G
或者
ij, j Fbi 0
(i, j x, y, z )
3
几何方程
应变位移关系导出的应变协调方程
2 x y
2
u u v x , xy x y x v v w y , yz y z y w w u z , zx z x z
上式称为拉梅-纳维方程
16
e 2 u Fbx 0 x e 2 v Fby 0 y e 2 w Fbz 0 z
方程组是基本方程的综合(包括平衡方程、几何方程及 本构方程)、方程组含有三个未知函数。此外,边界条 件也要用位移表示,当给定位移边界条件时,问题自然 简单。如给定应力边界条件,则需将边界条件加以变换, 改用位移表示。
14
弹性力学问题的基本解法 解的惟一性
位移法--位移作为基本未知量,必须将泛定方程改用位移来
u v ve u x 2G , xy G x 1 2v y x v v w ve y 2G y 1 2v , yz G z y ve w w u z 2G , zx G z 1 2v x z 代入平衡方程