弹塑性力学-第五章
- 格式:ppt
- 大小:675.00 KB
- 文档页数:1
第五章 弹塑性模型理论5.1 概述弹塑性理论可以分为两种,塑性增量理论和塑性全量理论。
塑性增量理论又称塑性流动理论,塑性全量理论又称塑性形变理论。
在塑性增量理论中,将物体在弹塑性变形阶段的应变ij ε分为两部分:弹性应变e ij ε和塑性应变p ij ε。
塑性应变增量ij d ε的表达式为e p ij ij ij d d d εεε=+ (5.1.1)式中,弹性应变增量d e ij ε可以用广义虎克定律计算,塑性应变增量d p ij ε可以根据塑性增量理论计算。
塑性增量理论主要包括三部分:(1) 屈服面理论;(2) 流动规则理论;(3) 加工硬化(或软化)理论。
在塑性形变理论中是按全量来分析问题的。
它在盈利状态和相应的应变状态之间建立一一对应的关系。
塑性形变理论实质上是把弹塑性变形过程看成是非线性弹性变形过程。
严格说,在弹塑性变形理论的应用是有条件的。
严格讲,只有在等比例加载条件下,应用塑性变形理论可以得到精确解。
所谓等比例加载是指在加载过程中,各应力分量是按同一比例增加的。
严格的等比例加载是很难满足的,在土工问题中可以说是不可能的。
在简单加载条件下应用塑性形变理论分析有时也可以取得较好效果。
近些年来建立的土体弹塑性模型大部分是根据塑性增量理论建立的。
本章主要介绍塑性增量理论,在最后一节简要介绍塑性形变理论。
5.2 屈服面得概念首先讨论理想弹塑性材料。
理想弹塑性材料受力到什么程度才开始发生塑性变形呢?在简单拉伸时,问题是很明显的。
当应力等于屈服应力σs 时,塑性变形开始产生。
σs 值是可以在拉伸试验应力-应变曲线上找到的。
然而在复杂应力状态时,问题就不是这样简单了。
一点的应力状态由六个应力分量确定。
在复杂应力状态下,显然不能任意选取某一个应力分量的数值作为判断材料是否进入塑性状态的标准。
因此需要在应力空间或应变空间来考虑这一问题。
在土塑性力学中,常用的应力空间有三维主应力空间、p 、q (或σm ,σ1-σ3)应力平面、以及132σσ+,132σσ-应力平面等。
附录Ⅱ习题解答提示与参考答案第二章应力理论2-1 ζn=ζ1l2+ζ2m2,;式中l、m、n为斜截面外法线的方向余弦。
2-2 p=111.5A;ζn=26A;ηn=108.5A2-3 提示:平面Ax+By+C z+D=0的外法线的方向余弦为:(式中i=1,2,3或A,B,C)答案:2-4 略2-5 (a)ζ1=738.5;ζ2=600;ζ3=-338.5;ηmax=538.5;应力单位为MPa。
(b)ζ1=700;ζ2=600;ζ3=-600;ηmax=650;应力单位为MPa。
2-6 ζ1=3.732η0;ζ2=-0.268η0;α=15º。
2-7 (材料力学解) 应力单位为MPa。
(弹塑性力学解) 应力单位为MPa。
2-8 ζ1=107.3a;ζ2=44.1a;ζ3=-91.4a;ζ1主方向:(±0.314,0.900,0.305);ζ2主方向:(±0.948,±0.282,±0.146);ζ3主方向:(0.048,±0.337,0.940)。
2-9;ζ2=0;ζ3=-ζ1。
2-10、2-11 略2-12 (1)略;(2)ζ8=ζm=5.333MPa;η8=8.654MPa。
2-13 p8=59.5;ζ8=25.0a;η8=54.1a。
2-14上式中S为静矩。
材料力学解不满足平衡微分方程和边界条件。
2-15,Q为梁横截面上的剪力。
提示:利用平衡微分方程求解。
2-16 ζ1=17.083×103Pa;ζ2=4.917×103Pa;ζ3=0,∂=40º16′。
2-17 略2-18 2。
2-19 提示:将三个主方向的三组方向余弦分别两两一组代人式(2-12)证之。
2-20 。
2-21 在AA′上:ζx=-γy,ηxy=0;在AB上:ηxy=0,ζy=-γh;在BB′上:l1=cosα,l2=-sinα,l3=0;则应力分量满足关系式:2-22 。