三角函数任意角与弧度制
- 格式:doc
- 大小:362.50 KB
- 文档页数:16
三角函数任意角和弧度制一、知识梳理一.终边相同的角、象限角终边相同的角为{}|360k k Z βββα∈=+∈,二.弧度制 弧度制的定义长度等于半径长的圆弧所对的圆心角叫做1弧度角,记作1rad ,或1弧度,或1(单位可以省略不写).2.角度与弧度的换算弧度与角度互换公式: 180rad π︒= 三:三角函数的定义设α是一个任意角,它的终边与单位圆交于点(,)P x y ,则r =:(1)三角函数的值与点P 在终边上的位置无关,仅与角的大小有关.我们只需计算点到原点的距离r =那么sin α=cos α=,tan y xα=.四:三角函数在各象限的符号二、例题精讲考点一 终边相同的角的集合例1 在与10030°角终边相同的角中,求满足下列条件的角。
(1)最大的负角;(2)360°~720°内的角。
例2 已知α、β的终边有下列关系,分别求α、β间的关系式。
(1)α、β的终边关于原点对称;(2)α、β的终边关于x 轴对称; (3)α、β的终边关于y 轴对称。
变式训练1 已知α=-1910°。
(1)把α写成360k β+⋅︒(k ∈Z ,0°≤β<360°)的形式,指出它是第几象限的角。
(2)求θ,使θ与α的终边相同,且-720°≤θ≤0°。
变式训练21.(2015春 广东东莞月考)若角α和角β的终边关于x 轴对称,则角α可以用角β表示为( )正切、余切余弦、正割正弦、余割正弦 余弦正切A .2kπ+β(k ∈Z )B .2kπ-β(k ∈Z )C .kπ+β(k ∈Z )D .kπ-β(k ∈Z ) 2.(1)一个角为30°,其终边按逆时针方向旋转三周后的角度是多少?(2)时钟走了3小时20分,则分针所经过的角的度数为多少?时针所转过的角的度数是多少?考点二 角nα所在象限的研究 例3 若α是第二象限角,试分别确定2α,2α,3α的终边所在的位置。
第四章 三角函数、解三角形 第1讲 任意角和弧度制、三角函数的概念1.角的概念(1)定义:角可以看成一条射线绕着它的□1端点旋转所成的图形. (2)分类⎩⎪⎨⎪⎧按旋转方向不同分为□2正角、□3负角、□4零角.按终边位置不同分为□5象限角和轴线角.(3)相反角:我们把射线OA 绕端点O 按不同方向旋转相同的量所成的两个角叫做互为相反角.角α的相反角记为□6-α.(4)终边相同的角:所有与角α终边相同的角,连同角α在内,可构成一个集合S ={β|β=α+k ·360°,k ∈Z }. 2.弧度制的定义和公式 (1)定义把长度等于□7半径长的圆弧所对的圆心角叫做1弧度的角,弧度单位用符号rad 表示. (2)公式3.任意角的三角函数(1)设α是一个任意角,α∈R ,它的终边OP 与单位圆相交于点P (x ,y ), 则sin α=□9y ,cos α=□10x ,tan α=y x (x ≠0). (2)任意角的三角函数的定义(推广):设P (x ,y )是角α终边上异于原点的任意一点,其到原点O 的距离为r ,则sin α=y r ,cos α=x r ,tan α=yx (x ≠0).4.三角函数在各象限的符号规律常用结论►(1)三角函数在各象限的符号规律:一全正,二正弦,三正切,四余弦. (2)象限角(3)轴线角1.判断(正确的打“√”,错误的打“×”) (1)小于90°的角是锐角.( )(2)锐角是第一象限角,第一象限角也都是锐角.( ) (3)角α的三角函数值与其终边上点P 的位置无关.( ) (4)若α为第一象限角,则sin α+cos α>1.( ) 2.(教材改编)67°30′化为弧度是( ) A .3π8B .38C .673π1 800D .6731 8003.(教材改编)已知α是第一象限角,那么α2是( )A .第一象限角B .第二象限角C .第一或第二象限角D .第一或第三象限角4.(教材改编)已知角θ的终边经过点P (-12,5),则sin θ+cos θ= .关键能力 互动探究 命题点1 任意角及其表示例1 (1)集合⎩⎨⎧⎭⎬⎫α|k π+π4≤α≤k π+π2,k ∈Z 中的角所表示的范围(阴影部分)是( C )(2)(2024·河北唐山质检)在[-720°,0°]范围内所有与45°终边相同的角为 . 命题点睛►(1)表示区间角的三个步骤①先按逆时针方向找到区域的起始和终止边界;②再按由小到大的顺序分别标出起始和终止边界对应的-360°~360°范围内的角α和β,写出最简区间{x |α<x <β},其中β-α<360°;③最后令起始、终止边界的对应角α,β加上360°的整数倍,即得区间角的集合. (2)象限角的两种判断方法①图象法:在平面直角坐标系中,作出已知角并根据象限角的定义直接判断已知角是第几象限角;②转化法:先将已知角化为k ·360°+α(0°≤α<360°,k ∈Z )的形式,即找出与已知角终边相同的角α,再由角α的终边所在的象限判断已知角是第几象限角.针对训练1.(多选)下列命题正确的是( )A .终边落在x 轴的非负半轴的角的集合为{α|α=2k π,k ∈Z }B .终边落在y 轴上的角的集合为{α|α=90°+k π,k ∈Z }C .第三象限角的集合为⎩⎨⎧⎭⎬⎫α|π+2k π≤α≤3π2+2k π,k ∈ZD .在-900°≤x <0°范围内所有与30°角终边相同的角为-690°和 -330°2.终边在直线y =3x 上,且在[-2π,2π)内的角α的集合为⎩⎨⎧⎭⎬⎫-5π3,-2π3,π3,4π3.命题点2 弧度制及其应用例2 已知扇形的圆心角是α,半径为R ,弧长为l . (1)若α=π3,R =10 cm ,求扇形的弧长l ;(2)若扇形的周长是20 cm ,当扇形的圆心角α为多少弧度时,这个扇形的面积最大? (3)若α=π3,R =2 cm ,求扇形的弧所在的弓形的面积.命题点睛►应用弧度制解决问题时的注意点(1)利用扇形的弧长和面积公式解题时,要注意角的单位必须是弧度. (2)求扇形面积最大值的问题时,常转化为二次函数的最值问题.(3)在解决弧长问题和扇形面积问题时,要合理地利用圆心角所在的三角形. 针对训练(多选)中国传统折扇文化有着极其深厚的底蕴,一般情况下,折扇可看作是从一个圆面中剪下的扇形制作而成,设扇形(如图)的面积为S 1,圆心角为α1,扇形所在圆面中剩余部分的面积为S 2,圆心角为α2,当S 1与S 2的比值为5-12≈0.618(黄金分割比)时,折扇看上去较为美观,那么( )A .α1≈127.5°B .α1≈137.5°C .α2=(5-1)πD .α1α2=5-12命题点3 三角函数的定义及其应用角度1 三角函数的定义例3 (1)已知角α的终边与单位圆交于点P ⎝⎛⎭⎫35,m 5,则sin α的值是( ) A .±45B .±35C .34D .-34(2)如果点P 在角23π的终边上,且|OP |=2,则点P 的坐标是( )A .(1,3)B .(-1,3)C .(-3,1)D .(-3,-1) 角度2 三角函数的符号例4 (1)点P (sin 100°,cos 100°)在( ) A .第一象限内 B .第二象限内 C .第三象限内D .第四象限内 (2)已知sin θ<0,tan θ<0,则角θ的终边位于( ) A .第一象限 B .第二象限 C .第三象限D .第四象限命题点睛►1.三角函数定义的应用(1)找到给定角的终边上一个点的坐标,及这点到原点的距离,直接利用三角函数的定义,确定这个角的三角函数值.(2)已知角的某一个三角函数值,可以通过三角函数的定义列出含参数的方程,求参数的值.2.要判断三角函数的符号,关键是要搞清三角函数中的角是第几象限角,再确定三角函数在各象限的符号.如果不能确定角所在象限,那么就要进行分类讨论求解.针对训练1.(2023·黑龙江哈尔滨期中)已知角α的终边经过点P (-3,4),则sin α-cos α-11+tan α的值为( )A .-65B .1C .2D .32.已知角θ的顶点与原点重合,始边与x 轴非负半轴重合,若A (-1,y )是角θ终边上一点,且sin θ=-31010,则y =( )A .3B .-3C .1D .-13.(2024·福建福州质检)若α是第二象限角,则下列不等式正确的是( ) A .cos (-α)>0 B .tan α2>0C .sin 2α>0D .sin (-α)>0 课时作业 [基础巩固练]1.下列与角9π4的终边相同的角的表达式中正确的是( )A .2k π+45°(k ∈Z )B .k ·360°+9π4(k ∈Z )C .k ·360°-315°(k ∈Z )D .k π+5π4(k ∈Z )2.在平面直角坐标系xOy 中,角α以Ox 为始边,其终边经过点P (1,2),则sin α=( ) A .255B .55 C .2D .123.点A (sin 1 240°,cos 1 240°)在直角坐标平面上位于( ) A .第一象限 B .第二象限 C .第三象限D .第四象限4.(2023·天津河东一模)在面积为4的扇形中,其周长最小时半径的值为( ) A .4 B .22 C .2D .15.(2024·河南郑州质检)已知α是第二象限角,则点(cos (sin α),sin (cos α))所在的象限是( ) A .第一象限 B .第二象限 C .第三象限D .第四象限6.给出下列命题:①第二象限角大于第一象限角;②三角形的内角一定是第一象限角或第二象限角;③无论是用角度制还是用弧度制度量一个角,它们与扇形的半径的大小无关;④若sin α=sin β,则α与β的终边相同;⑤若cos θ<0,则θ是第二象限角或第三象限角.其中正确命题的序号是( )A .②④⑤B .③⑤C .③D .①③⑤7.(多选)已知角α的顶点为坐标原点,始边为x 轴的非负半轴,终边上有一点P (1,2sin α),且|α|<π2,则角α的可能取值为( )A .-π3B .0C .π6D .π38.已知角α的终边经过点(2a -1,4),且cos α=-35,则实数a 的值是( )A .-2B .-1C .2D .1 9.若角α的终边与函数5x +12y =0(x <0)的图象重合,则2cos α+sin α= . 10.用弧度制表示终边落在如图所示的阴影部分内(含边界)的角θ的集合是11.α为第二象限角,且⎪⎪⎪⎪cos α2=-cos α2,则α2在第 象限. 12.(2024·山东德州质检)已知扇形的圆心角为23π,面积为3π,则该扇形的周长为 .[能力提升练]13.(多选)在平面直角坐标系xOy 中,角α以Ox 为始边,终边经过点P (-1,m )(m >0),则下列各式的值一定为负的是( )A .sin α+cos αB .sin α-cos αC .sin αcos αD .sin αtan α14.(2023·山西长治模拟)水滴是刘慈欣的科幻小说《三体Ⅱ·黑暗森林》中提到的由三体文明使用强互作用力材料(SIM)所制成的宇宙探测器,因为其外形与水滴相似,所以被人类称为水滴.如图所示,水滴由线段AB ,AC 和圆的优弧BC 围成,其中AB ,AC 恰好与圆弧相切.若圆弧所在圆的半径为1,点A 到圆弧所在圆的圆心的距离为2,则该封闭图形的面积为( A )A .3+2π3B .23+2π3C .23+π3D .3+π315.(2023·黑龙江牡丹江三模)在平面直角坐标系xOy 中,已知点A ⎝⎛⎭⎫35,45,将线段OA 绕原点顺时针旋转π3得到线段OB ,则点B 1016.若点P (sin α-cos α,tan α)在第一象限,则在[0,2π)内α的取值范围是⎝⎛⎭⎫π4,π2∪⎝⎛⎭⎫π,5π4.。
三角函数任意角和弧度制知识点第一章三角函数任意角和弧度制知识点任意角知识点一、任意角b终边总结:任意角构成要素为顶点、始边、终边、旋转方向、旋转量大小。
α知识点二、直角坐标系则中角的分类始边o1、象限角与轴线角aβ2、终边相同的角与角α终边相同的角β子集为__________________c终边轴线角的表示:终边落到x轴非负半轴角的子集为_____________;终边落到x轴非正半轴角的子集为_______;终边落到x轴角的子集为____________________。
终边落在y轴非负半轴角的集合为_____________;终边落在y轴非正半轴角的集合为_______;终边落在y轴角的集合为____________________。
终边落在坐标轴角的集合为__________________。
象限角的则表示第一象限的角的子集为_________________第二象限的角的子集为_____________。
第三象限的角的集合为_________________;第四象限的角的集合为____________。
例题1、推论以下各角分别就是第几象限角:670°,480°,-150°,45°,405°,120°,-240°,210°,570°,310°,-50°,-315°例题2、以下角中与330°角终边相同的角是()a、30°b、-30°c、630°d-630°题型一、象限角的认定例1、已知角的顶点与直角坐标系的原点重合,始边与x轴的非负半轴重合,指出他们是第几象限角,并指出在0°~360°范围内与其终边相同的角。
(1)420°(2)-75°(3)855°(4)1785°(5)-1785°(6)2021°(7)-2021°(8)1450°(9)361°(10)-361°例2、已知α是第二象限角,则180°-α是第_____象限角。
第一讲 任意角和弧度制及三角函数一、任意角1、 正角、负角、零角、象限角的概念.2、 与角α终边相同的角的集合: *β|β=α+2kπ,k ∈Z +二、弧度制1、 把长度等于半径长的弧所对的圆心角叫做1弧度的角.2、rl =α.3、弧长公式:R Rn l απ==180. 4、扇形面积公式:lR R n S 213602==π.三、任意角的三角函数1、 设α是一个任意角,它的终边与单位圆交于点()y x P ,,那么:xyx y ===αααtan ,cos ,sin 2、 设点(),A x y为角α终边上任意一点,那么:(设r =sin α=y r , cos x r α=,tan y x α=,cot xyα=各象限的符号:sin α cos α tan α3、 sin α,αcos ,αtan 在四个象限的符号和三角函数线的画法.正弦线:MP; 余弦线:OM; 正切线:AT四、角度制与弧度制的互化及特殊角的三角函数值,23600π= ,1800π=1rad =180°π≈57.30°=57°18ˊ. 1°=π180≈0.01745(rad )Xy+O— —+xyO — + — +y O— + + —x五、同角三角函数的基本关系式 1、 平方关系:1cos sin22=+αα.2、 商数关系:αααcos sin tan =. 3、 倒数关系:tan cot 1αα=1.(2016•上海模拟)若sinα>0,且tanα<0,则角α的终边位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限2.(2016•广西模拟)60°角的弧度数是( ) A .B .C .D .3.(2016•岳阳校级三模)已知扇形的周长是6cm,面积是2cm2,则扇形的中心角的弧度数是()A.1 B.4 C.1或4 D.2或44.(2016•安徽模拟)《九章算术》是我国古代内容极为丰富的数学名著,卷一《方田》[三三]:“今有宛田,下周三十步,径十六步.问为田几何?”译成现代汉语其意思为:有一块扇形的田,弧长30步,其所在圆的直径是16步,问这块田的面积是多少(平方步)?()A.120 B.240 C.360 D.4805.(2016•抚顺一模)设sinα=,α∈(,π),则tanα的值为()A.B.﹣C.D.﹣6.(2016•邢台校级模拟)角θ的终边过点(a﹣2,a+2),且cosθ≤0,sinθ>0,则a的取值范围为()A.(﹣2,2)B.[﹣2,2)C.(﹣2,2] D.[﹣2,2]7.(2016•眉山模拟)设a=sin46°,b=cos46°,c=tan46°.则()A.c>a>b B.a>b>c C.b>c>a D.c>b>a,),则cosα的值为()8.(2016•温州三模)已知角α的终边与单位圆交于点P(﹣35A.B.﹣C.D.﹣9.(2016春•上海校级期末)与30°角终边相同的角α=.10.(2016春•嘉兴期末)已知角α的终边与x轴正半轴的夹角为30°,则α=(用弧度制表示).11.(2016•湖南一模)已知P,Q是圆心在坐标原点O的单位圆上的两点,分别位于第一象限和第四象限,且P点的纵坐标为,Q点的横坐标为,则cos∠POQ=.12.(2016•浙江模拟)设α是第二象限角,P(x,4)为其终边上一点,且,则x=,tanα=.13.(2016春•浦东新区期中)如图,扇形的半径为r cm,周长为20cm,问扇形的圆心角α等于多少弧度时,这个扇形的面积最大,并求出扇形面积的最大值.14.(2016春•陕西校级月考)(1)判断下列各角是第几象限角:①606°②﹣950°(2)写出与﹣457°角终边相同的角的集合,并指出它是第几象限角.1.(2016春•澄城县期末)下列角中终边与330°相同的角是( ) A .30° B .﹣30°C .630°D .﹣630°2.(2016春•延边州校级期末)在0到2π范围内,与角终边相同的角是( ) A .B .C .D .3.(2016春•西藏期末)与角﹣463°终边相同的角为( ) A .K•360°+463°,K ∈Z B .K•360°+103°,K ∈Z C .K•360°+257°,K ∈ZD .K•360°﹣257°,K ∈Z4.(2016春•抚顺期末)已知sinθ•tanθ<0,那么角θ是( ) A .第一或第二象限角 B .第二或第三象限角 C .第三或第四象限角D .第一或第四象限角5.(2016•朔州模拟)若点(sin ,cos )在角α的终边上,则sinα的值为( ) A .B .C .D .6.(2016•湖南校级模拟)已知角α的顶点与原点重合,始边与x 轴的正半轴重合,终边经过点P (﹣3,m ),且sinα=﹣,则tanα等于( ) A .﹣B .C .D .﹣7.(2016•浙江模拟)若点P (﹣3,4)在角α的终边上,则cosα=( )A.B.C.D.8.(2016•广东模拟)已知α是第二象限的角,其终边上的一点为,且,则tanα=()A.B.C.D.9.(2016春•晋江市校级期末)已知扇形的周长为8cm,圆心角为2弧度,则该扇形的面积为cm2.10.(2016春•潍坊期末)已知扇形的半径为2,面积为π,则该扇形的圆心角为.11.(2016•广西模拟)已知sinx=,且x是第一象限角,则cosx=.12.(2016•南昌校级二模)已知θ为第四象限角,sinθ+3cosθ=1,则tanθ=.13.(2016•长沙模拟)已知sinα=,α∈(0,).(1)求tanα的值;(2)求cos(α+)的值.14.(2016春•上饶校级期中)已知角α的终边经过一点P(5a,﹣12a)(a>0),求2sinα+cosα的值.第二讲 三角函数的诱导公式三角函数的诱导公式:2k παα±把的三角函数化为的三角函数,概括为: “奇变偶不变,符号看象限”Z k ∈1.sin2012°=( ) A .sin32° B .﹣sin32° C .sin58°D .﹣sin58°2.=( )A .﹣sinxB .sinxC .cosxD .﹣cosx3.(2016•长沙模拟)化简(1﹣cos30°)(1+cos30°)得到的结果是( ) A . B .C .0D .14.(2016•舟山校级模拟)若=,则tanθ=( )A .1B .﹣1C .3D .﹣35.已知α为三角形的一个内角.且tan(π﹣α)=.则角α的值为()A.B.C.D.6.(2016•重庆校级模拟)已知α为第二象限角,且,则tan(π+α)的值是()A.B.C.D.7.(2016春•内蒙古校级期末)sin300°=()A.B.C.D.8.(2016•马鞍山)计算:cos210°=()A.B.C.D.9.(2016•山东模拟)已知tanα=3,则=.10.(2016•内江模拟)已知sinx=,x∈(,),则tanx=.11.(2013•北京校级模拟)求sin21°+sin22°+sin23°+…+sin288°+sin289°的值.12.(2016•资阳模拟)=.13.(2016春•湘潭期末)已知x的终边经过点P(1,).(1)求角x的正弦、余弦值;(2)求sin(π﹣x)﹣sin(+x)的值.14.(2016春•周口期末)已知角α终边上一点P(﹣4,3 ),求.1.(2016•湖南校级模拟)已知sinα=﹣,且α∈(﹣,0),则tan (2π﹣α)的值为( ) A .﹣ B .C .±D .2.(2016•吉林校级模拟)已知A+B=π,B ∈(,π),且sinB=,则tanA=( )A .B .C .2D .3.(2016春•金昌校级期末)若=,则tanα等于( )A .﹣3B .﹣C .3D .4.(2016春•日喀则市校级期末)已知tanα=2,则的值是( )A .B .3C .﹣D .﹣35.(2016春•邯郸校级期末)已知sin (π+α)=,且α是第四象限角,则cos (α﹣2π)的值是( )A .﹣B .C .±D .6.(2016春•高安市校级期中)已知,,则sin (α+π)等于( )A .B .C .D .7.(2016•离石区一模)若点(a,16)在函数y=2x的图象上,则tan的值为()A.B.C.﹣D.﹣8.(2016•安徽一模)已知函数f(x)=,则f()=()A.﹣B.﹣C.D.9.(2016•江西模拟)已知α是第二象限的角,tanα=﹣,则sin(90°+α)=.10.(2016•四川)sin750°=.11.(2016•陕西校级模拟)设cos(﹣80°)=k,那么tan100°=.12.(2016•岳阳校级模拟)已知A、B、C为△ABC的三内角,若,则A=.13.(2016春•衡阳校级期末)已知tanx=2,求的值.14.(2016春•上饶校级期中)已知角α终边上一点P(﹣3,4),求:(1)sinα和cosα的值(2)的值.。
三角函数一、任意角、弧度制及任意角的三角函数1.任意角(1)角的概念的推广①按旋转方向不同分为正角、负角、零角.⎧⎪⎨⎪⎩正角:按逆时针方向旋转形成的角任意角负角:按顺时针方向旋转形成的角零角:不作任何旋转形成的角②按终边位置不同分为象限角和轴线角.角α的顶点与原点重合,角的始边与x 轴的非负半轴重合,终边落在第几象限,则称α为第几象限角.第一象限角的集合为{}36036090,k k k αα⋅<<⋅+∈Z第二象限角的集合为{}36090360180,k k k α⋅+<⋅+∈Z第三象限角的集合为{}360180360270,k k k αα⋅+<<⋅+∈Z 第四象限角的集合为{}360270360360,k k k αα⋅+<<⋅+∈Z 终边在x 轴上的角的集合为{}180,k k αα=⋅∈Z终边在y 轴上的角的集合为{}18090,k k αα=⋅+∈Z 终边在坐标轴上的角的集合为{}90,k k αα=⋅∈Z(2)终边与角α相同的角可写成α+k ·360°(k ∈Z ).终边与角α相同的角的集合为{}360,k k ββα=⋅+∈Z (3)弧度制①1弧度的角:把长度等于半径长的弧所对的圆心角叫做1弧度的角. ②弧度与角度的换算:360°=2π弧度;180°=π弧度.③半径为r 的圆的圆心角α所对弧的长为l ,则角α的弧度数的绝对值是lrα= ④若扇形的圆心角为()αα为弧度制,半径为r ,弧长为l ,周长为C ,面积为S ,则l r α=,2C r l =+,21122S lr r α==.2.任意角的三角函数定义设α是一个任意角,角α的终边上任意一点P (x ,y ),它与原点的距离为(r r =,那么角α的正弦、余弦、正切分别是:sin α=y r ,cos α=x r ,tan α=y x.(三角函数值在各象限的符号规律概括为:一全正、二正弦、三正切、四余弦)3.特殊角的三角函数值A.基础梳理1.同角三角函数的基本关系(1)平方关系:sin 2α+cos 2α=1;(在利用同角三角函数的平方关系时,若开方,要特别注意判断符号) (2)商数关系:sin αcos α=tan α. (3)倒数关系:1cot tan =⋅αα 2.诱导公式公式一:sin(α+2k π)=sin α,cos(α+2k π)=cos_α,απαtan )2tan(=+k 其中k ∈Z . 公式二:sin(π+α)=-sin_α,cos(π+α)=-cos_α,tan(π+α)=tan α. 公式三:sin(π-α)=sin α,cos(π-α)=-cos_α,()tan tan παα-=-. 公式四:sin(-α)=-sin_α,cos(-α)=cos_α,()tan tan αα-=-. 公式五:sin ⎝⎛⎭⎫π2-α=cos_α,cos ⎝⎛⎭⎫π2-α=sin α. 公式六:sin ⎝⎛⎭⎫π2+α=cos_α,cos ⎝⎛⎭⎫π2+α=-sin_α. 诱导公式可概括为k ·π2±α的各三角函数值的化简公式.口诀:奇变偶不变,符号看象限.其中的奇、偶是指π2的奇数倍和偶数倍,变与不变是指函数名称的变化.若是奇数倍,则函数名称要变(正弦变余弦,余弦变正弦);若是偶数倍,则函数名称不变,符号看象限是指:把α看成锐角....时,根据k ·π2±α在哪个象限判断原.三角..函数值的符号,最后作为结果符号.B.方法与要点 一个口诀1、诱导公式的记忆口诀为:奇变偶不变,符号看象限.2、四种方法在求值与化简时,常用方法有:(1)弦切互化法:主要利用公式tan α=sin αcos α化成正、余弦.(2)和积转换法:利用(sin θ±cos θ)2=1±2sin θcos θ的关系进行变形、转化. (ααcos sin +、ααcos sin -、ααcos sin 三个式子知一可求二)(3)巧用“1”的变换:1=sin 2θ+cos 2θ= sin2π=tan π4 (4)齐次式化切法:已知k =αtan ,则nmk bak n m b a n m b a ++=++=++ααααααtan tan cos sin cos sin 三、三角函数的图像与性质学习目标:1会求三角函数的定义域、值域2会求三角函数的周期 :定义法,公式法,图像法(如x y sin =与x y cos =的周期是π)。
三角函数1.1任意角和弧度制1.任意角的概念(1)角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形。
(2)正角:按逆时针方向旋转形成的角。
(3)负角:按顺时针方向旋转形成的角。
(4)零角:一条射线没有作任何旋转,我们称它为零角。
(5)注意:①角度的范围不再限于0°~360°。
②角的概念是通过角的终边的运动来推广的,根据角的终边的旋转方向,得到正角、负角和零角,由此我们应当意识到角的终边位置的重要性。
③当角的始边相同,角相等则终边相同;终边相同,而角不一定相等。
④为了简单起见,在不引起混淆的前提下,“角α”或“∠α”可以简记为“α”。
⑤我们把角的概念推广到了任意角中,包括正角、负角和零角。
⑥要正确理解正角、负角和零角的概念,由定义可知,关键是抓住终边的旋转方向是逆时针、顺时针还是没有转动。
(6)①判定与任意角有关命题的真假的关键在于抓住角的四个“要素”:顶点、始边、终边和旋转方向。
②确定任意角的度数要抓住旋转方向及旋转圈数。
③引入正、负角的概念以后,角的加减运算类似于实数的加减运算。
2.象限角与轴线角(1)使角α的顶点与原点重合,始边与x轴正半轴重合,终边落在第几象限,则称角α为第几象限的角;终边落在坐标轴上的角α被称为轴线角。
(2)象限角的集合第一象限角的集合为{x|k²360°<x<k²360°+90°,k∈Z};第二象限角的集合为{x|k²360°+90°<x<k²360°+180°,k∈Z};第三象限角的集合为{x|k²360°+180°<x<k²360°+270°,k∈Z};第四象限角的集合为{x|k²360°+270°<x<k²360°+360°,k∈Z}。
第一章三角函数1.1 任意角和弧度制学习目标1、知道任意角的定义,知道正角、负角、零角与象限角的概念2、掌握终边相同角的表示方法,并能解决一些简单问题。
【重点、难点】:1、将0°—360°范围的角推广到任意角,终边相同的角的集合;2、用集合来表示终边相同的角.【知识链接】:角的定义学习过程【探索——任意角的概念】阅读课本2-3页回答下面的问题:1、初中时候学习角是怎样定义的?2、在日常生活中,你能举出几个旋转角度大于360度的例子吗?3、按____________方向旋转形成的角叫做正角;按顺时针方向旋转形成的角叫做__________ ;如果____________________________,我们称它形成了一个零角;综上,我们把角的概念推广到__________,任意角包括_____________________。
4、①你的手表慢了5分钟,你将怎样把它调整准确?假如你的手表快了1.3小时,你应当怎样将它调整准确?当时间调整准确后,分针转过了多少度角?②体操运动中有转体两周,在这个动作中,运动员转体多少度?5、在平面直角坐标系中讨论角时,为了讨论问题的方便,我们____________________,角的始边与x轴的__________重合,那么,___________________,我们就说这个角是_______________;如果角的终边在坐标轴上,我们则认为______________________。
【思考1】60o 角、740o角、-135o角、-510o角,分别在哪一象限?【思考2】在直角坐标系中,给定一个角,就有唯一一条边与这个角相对应吗?反之,在直角坐标系中,给定一条终边,就有唯一一个角与之相对应吗?为什么?【探索——终边相同角的表示】阅读课本第4页上端内容,将课文补充完整,并回答下面的问题: 1、在直角坐标系中标出210°,-150°,570o 角的终边,你有什么发现?它们之间有何数量关系?2、所有与角α终边相同的角,连同角α在内,怎样用一个集合表示出来?即任一与角α终边相同的角,都可以表示成 _________________________________。
【合作探究——终边相同角的应用】1、阅读课本例题1至例题3,你有何不明白的地方?小组讨论解决。
例题1课本第5页,练习4例题2,写出终边在x 轴负半轴上的角的集合;写出终边在坐标轴上的角的集合。
例题3,课本练习5拓展练习1.若角α与β终边相同,则一定有( )A.α+β=180°B.α+β=0°C.α-β=k·360° (k ∈Z )D.α+β=k·360° (k ∈Z ) 2.集合A={α|α=k·90°-36°,k ∈Z },B={β|-180°<β<180°},则A∩B 等于( ) A.{-36°,54°} B.{-126°,144°} C.{-126°,-36°,54°,144°} D.{-126°,54°} 3.在直角坐标系中,若角α与角β的终边互相垂直,则角α与角β的关系是( ) A.β=α+90° B.β=α±90° C.β=α+90°+k·360°(k ∈Z ) D.β=α±90°+k·360°(k ∈Z ) 4.集合Z ={x |x=(2n+1)·180°,n ∈Z },Y={x |x=(4k±1)·180°,k ∈Z }之间的关系是( ) A.ZY B.Z Y C.Z =Y D.Z 与Y 之间的关系不确定5.已知角θ的终边与168°角的终边相同,则在(0°,360°)范围内终边与3角的终边相同的角是____. 6.若集合A={α|k·180°+30°<α<k·180°+90°,k ∈Z },集合B={β|k·360°+315°<β<k·360°+405°, k ∈Z },求A∩B.1.1.2 弧度制学习目标1、知道弧度的意义,掌握弧度与角度的换算公式2、掌握弧长计算公式与扇形面积公式,并能运用公式解决一些简单问题【重点、难点】弧度与角度的换算【知识链接】:终边相同角的表示、角度制学习过程【探索——弧度制的定义】阅读课本第6页,回答下面的问题:1、在角度制中,1度等于圆周角的__________2、把长度等于__________________所对的___________叫做__________,用符号_________表示,读作________,我们把这样度量角的单位制叫做弧度制。
【探索——弧度制与角度制的换算】1、阅读第6页探究,根据弧度制的定义,将表格补充完整,小组讨论解决,说说你发现的规律。
2、怎样理解“一定大小的圆心角α所对应的弧长与半径的比值是唯一确定的,与半径的大小无关。
”这句话?2、一般的,正角的弧度数是一个______;负角的弧度数是一个_______;零角的弧度数是_____。
如果半径为r的圆的圆心角α所对的弧长是l,那么,角α的弧度数的绝对值是?3、用角度制和弧度制度量任一非零角,单位不同,量数也_________。
例如:360o= rad180o= rad(根据该等式,你能推导出什么结论?)例题1 把(1)36o (2)-150o(3)1095o(4)22o30'(5)52o15'化成弧度,并写出与(1)(2)终边相同角的集合,注意做题格式例题2,把12π与34π-化成度例题3,用公式r l =α 证明扇形面积公式lR S 21=拓展练习1、将下列用弧度制表示的角化为2kπ+α(k ∈Z ,α∈[0,2π))的形式,并指出它们所在的象限: ①—415π; ② 332π2.一条弦的长度等于圆的半径,则这条弦所对的圆心角的弧度数是( ) A.3π B.6πC.1D.π 3.圆的半径变为原来的2倍,而弧长也增大到原来的2倍,则( ) A.扇形的面积不变 B.扇形的圆心角不变C.扇形的面积增大到原来的2倍D.扇形的圆心角增大到原来的2倍4.下列表示的为终边相同的角的是( )A.kπ+4π与2kπ+4π(k ∈Z ) B.2πk 与kπ+2π(k ∈Z )C.kπ-32π与kπ+3π(k ∈Z ) D.(2k+1)π与3kπ(k ∈Z ) 5.已知0<θ<2π,7θ角的终边与θ角的终边重合,则θ=________________.6.已知扇形的周长为6 cm,面积为2 cm 2,求扇形的中心角的弧度数.7.用弧度表示顶点在原点,始边重合于x轴的非负半轴,终边落在阴影部分内的角的集合(不包括边界,如图4所示).1.2.1 任意角的三角函数(第1课时)学习目标1、借助单位圆理解并掌握任意角的三角函数定义。
2、知道三角函数是以实数为自变量的函数,并从任意角的三角函数定义认识正弦、余弦、正切函数的定义域。
3、知道正弦、余弦、正切函数在各象限内的符号。
4、通过对任意角的三角函数定义的理解,掌握终边相同角的同一三角函数值相等。
【重点难点】:重点:任意角的正弦、余弦、正切的定义,终边相同的角的同一三角函数值相等。
难点:用角的终边上的点的坐标来刻画三角函数;三角函数符号;学习过程【探索——用坐标系中角的终边上点的坐标来表锐角三角函数】 问题①:在初中时我们学了锐角三角函数,你能回忆一下锐角三角函数的定义吗?问题②:根据下图,设线段OP 的长度为r ,你能用直角坐标系中角的终边上的点的坐标来表示锐角三角函数吗?sinα=cosα=tanα=特别的,当r=1时: sinα= cosα= tanα= 问题③:在引进弧度制是,我们知道,rl=α,当圆的半径为1时,α由谁决定? 问题④:什么是单位圆?问题⑤:上述P 点就是_________与___________的交点;因此,锐角三角函数可以用______________________表示。
同样的,我们可以利用单位圆定义___________【探索——任意角的三角函数】 根据右图,回答下面问题:(1)y 叫做 记作 即(2)x 叫做 记作 即 y当)(2Z k k ∈+=ππα时,α的终边在__________,此时___________无意义。
正弦、余弦、正切都是以_________为自变量,以_________________或坐标的比值为函数值的__________,我们把它们统称为____________。
例1、 求π67与43π-的正弦、余弦、正切值例2、已知α的终边经过点P (-6,8),求α的正弦、余弦和正切值。
例3、求证:当不等式组⎩⎨⎧<>0tan 0cos θθ成立时,角θ为第四象限角。
由三角函数的定义,我们可以知道:终边相同角的____________________________相等。
公式一:利用公式一,我们可以把求任意角的三角函数值,转化为求_____________角的三角函数值。
例题4 确定下列三角函数值的符号: (1)sin 156o (2) cos(-450o ) (3) 516cos π (4) )817tan(π- (5) )34sin(π-例5 求下列三角函数值: (1)sin390° (2)cos 619π(3)tan(-330°)例题6求下列函数的定义域:(1)y=sinx+cosx (2)y=sinx+tanx (3)y=x sin +tanx拓展练习 1.若4π<θ<2π,则sinθ,cosθ,tanθ的大小关系是( ) A.tanθ<cosθ<sinθ B.sinθ<tanθ<cosθ C.cosθ<tanθ<sinθ D.cosθ<sinθ<tanθ 2.若0<α<2π,则使sinα<23和cosα>21同时成立的α的取值范围是( )A.(3π-,3π) B.(0,3π) C.(35π,2π) D.(0,3π)∪(35π,2π)3.在(0,2π)内,使sinx>cosx 成立的x 的取值范围是_______.4.已知点B 、C 在x 轴的负半轴上,且BC=CO,角α的顶点重合于坐标原点O,始边重合于x 轴的正半轴,终边落在第二象限,点A 在角α的终边上,且有∠BAC=45°,∠CAO=90°,求sinα,cosα,tanα.1.2.1 任意角的三角函数(第2课时)学习目标1、认识正弦线、余弦线、正切线2、已知一个角能作出该角的正弦线、余弦线和正切线。