必修4三角函数:弧度制
- 格式:ppt
- 大小:755.50 KB
- 文档页数:26
人教A版必修4第一章三角函数1.1任意角和弧度制第二课时弧度制《弧度制》教学设计深入挖掘数学学科的核心价值,树立以发展学生数学学科核心素养为导向的教学意识,将数学学科核心素养的培养贯穿于教学活动的全过程——这是我教学设计的根本宗旨。
本节课我教学的重点就是弧度制概念,设计的一大亮点就是由一道探究题目,展开本节课的全部教学内容。
一.教学内容解析弧度制在本章的位置:本节知识结构:《弧度制》是人教A版必修4第一章第一节第二课时的知识内容,教学重点是弧度制的概念。
本节内容起着承上启下的作用,在弧度制下,任意角的集合和实数集建立起一一对应的关系,为三角函数奠定基础。
首先,理解1弧度的角及弧度制的定义;掌握角度和弧度的换算公式;理解任意角的集合和实数集之间一一对应的关系;理解并掌握弧度制下的弧长公式、扇形面积公式,并能灵活运用。
其次,以本节数学知识作为载体,为渗透类比的思想、转化化归的思想、归纳推理的思想、以及数形结合的思想,还有提高数学推理论证能力、几何直观能力、数据处理与数值计算能力都提供了很好的契机。
另外,探究新概念时,树立敢于质疑,善于思考,严谨求实的科学精神;系统的去思考概念产生的必要性,合理性,优越性,概念的内涵和外延;同时,培养学生自主学习习惯,增强同学间相互交流,取长补短,形成良好课堂学习氛围,达到学生主动、全面、健康发展。
三.学生学情分析其一学生熟知角度制,其二学生能体会不同的单位制会给解决问题带来方便,其三学生已经学习了任意角的概念,这是本节课的知识基础。
能力上,学生经过高中半个多学期的数学思维训练,已经具有一定的学习能力和探索意识,本节课要学习和探究的内容都在学生的最近发展区内。
弧度制的概念教学是重点也是难点,力求讲清概念的内涵和外延,分析概念生成的必要性、合理性、优越性。
四.教学策略分析本节课采用问题驱动式教学,学生探究与教师讲授相结合,结合多媒体辅助教学,围绕这样的问题链展开:引发学生探究性思维活动,使学生在思考、讨论、交流中经历每个知识点的产生和发展过程。
第一章三角函数1.1任意角和弧度制1.1.1任意角1.B.2.C.3.C.4.-1485°=-5³360°+315°.5.{-240°,120°}.6.{α|α=k²360°-490°,k∈Z};230°;-130°;三.7.2α的终边在第一、二象限或y轴的正半轴上,α2的终边在第二、四象限.集合表示略.8.(1)M={α|α=k²360°-1840°,k∈Z}.(2)∵α∈M,且-360°≤α≤360°,∴-360°≤k²360°-1840°≤360°.∴1480°≤k²360°≤2200°,379≤k≤559.∵k∈Z,∴k=5,6,故α=-40°,或α=320°.9.与45°角的终边关于x轴对称的角的集合为{α|α=k²360°-45°,k∈Z},关于y轴对称的角的集合为{α|α=k²360°+135°,k∈Z},关于原点对称的角的集合为{α|α=k²360°+225°,k∈Z},关于y=-x对称的角的集合为{α|α=k²360°+225°,k∈Z}.10.(1){α|30°+k²180°≤α≤90°+k²180°,k∈Z}.(2){α|k²360°-45°≤α≤k²360°+45°,k∈Z}.11.∵当大链轮转过一周时,转过了48个齿,这时小链轮也必须同步转过48个齿,为4820=2.4(周),即小链轮转过2.4周.∴小链轮转过的角度为360°³2 4=864°.1.1.2弧度制1.B.2.D.3.D.4.αα=kπ+π4,k∈Z.5.-5π4.6.111km.7.π9,7π9,13π9.8.2π15,2π5,2π3,4π5.9.设扇形的圆心角是θrad,∵扇形的弧长是r θ,∴扇形的周长是2r+rθ,依题意,得2r+rθ=πr,∴θ=π-2,∴扇形的面积为S=12r2θ=12(π-2)r2.10.设扇形的半径为R,其内切圆的半径为r,由已知得l=π2R,R=2lπ.又∵2r+r=R,∴r=R2+1=(2-1)R=2(2-1)πl,∴内切圆的面积为S=πr2=4(3-22)πl2.11.设圆心为O,则R=5,d=3,OP=R2-d2=4,ω=5rad/s,l=|α|R,α=ωt=25rad,l=4³25=100(cm).1.2任意角的三角函数1.2.1任意角的三角函数(一)1.B.2.B.3.C.4.k.5.π6,56π.6.x|x≠2kπ+32π,k∈Z.7.-25.8.2kπ+π2,2kπ+π,k∈Z.9.α为第二象限角.10.y=-3|x|=-3x(x≥0),3x(x<0),若角α的终边为y=3x(x<0),即α是第三象限角,则sinα=-31010,tanα=3;若角α的终边为y=-3x(x≥0),即α是第四象限角,则sinα=-31010,tanα=-3.11.f(x)=-(x-1)2+4(0≤x≤3).当x=1时,f(x)max=f(1)=4,即m=4;当x=3时,f(x)min=f(3)=0,即n=0.∴角α的终边经过点P(4,-1),r=17,sinα+cosα=-117+417=31717.1.2.1任意角的三角函数(二)1.B.2.C.3.B.4.334.5.2.6.1.7.0.8.x|2kπ+π≤x<2kπ+32π,或x=2kπ,k∈Z.9.(1)sin100°²cos240°<0.(2)tan-11π4-cos-11π4>0.(3)sin5+tan5<0.10.(1)sin25π6=sin4π+π6=sinπ6=12.(2)cos-15π4=cos-4π+π4=cosπ4=22.(3)tan13π3=tan4π+π3=tanπ3=3.11.(1)∵cosα>0,∴α的终边在第一或第四象限,或在x轴的非负半轴上;∵tanα<0,∴α的终边在第四象限.故角α的集合为α2kπ-π2<α<2kπ,k∈Z.(2)∵2kπ-π2<α<2kπ,k∈Z,∴kπ-π4<α2<kπ,k∈Z .当k=2n(n∈Z)时,2nπ-π4<α2<2nπ,n∈Z,sinα2<0,cosα2>0,tanα2<0;当k=2n+1(n∈Z)时,2nπ+3π4<α2<2nπ+π,n∈Z,sinα2>0,cosα2<0,tanα2<0. 1.2.2同角三角函数的基本关系1.B.2.A.3.B.4.-22.5.43.6.232.7.4-22.8.α2kπ+π2<α<2kπ+3π2,或α=kπ,k∈Z.9.0.10.15.11.3+12.1.3三角函数的诱导公式(一)1.C.2.A.3.B.4.-1-a2a.5.12.6.-cos2α.7.-tanα.8.-2sinθ.9.32.10.-22+13.11.3.1.3三角函数的诱导公式(二)1.C.2.A.3.C.4.2+22.5.-33.6.13.7.-73.8.-35.9.1.10.1+a4.11.2+3.1.4三角函数的图象与性质1.4.1正弦函数、余弦函数的图象1.B.2.C.3.B.4.3;-3.5.2.6.关于x轴对称.7.(1)取(0,0),π2,1,(π,2),3π2,1,(2π,0)这五点作图.(2)取-π2,0,0,12,π2,0,π,-12,3π2,0这五点作图.8.五点法作出y=1+sinx的简图,在同一坐标系中画出直线y=32,交点有2个.9.(1)(2kπ,(2k+1)π)(k∈Z).(2)2kπ+π2,2kπ+32π(k∈Z).10.y=|sinx|=sinx(2kπ≤x≤π+2kπ,k∈Z),-sinx(π+2kπ<x<2π+2kπ,k∈Z),图象略.y=sin|x|=sinx(x≥0),-sinx(x<0),图象略.11.当x>0时,x>sinx;当x=0时,x=sinx;当x<0时,x<sinx,∴sinx=x只有一解.1.4.2正弦函数、余弦函数的性质(一)1.C.2.A.3.D.4.4π.5.12,±1.6.0或8.提示:先由sin2θ+cos2θ=1,解得m=0,或m=8.7.(1)4.(2)25π.8.(1)π.(2)π.9.32,2.10.(1)sin215π<sin425π.(2)sin15<cos5.11.342.1.4.2正弦函数、余弦函数的性质(二)1.B.2.B.3.C.4.<.5.2π.6.3,4,5,6.7.函数的最大值为43,最小值为-2.8.-5.9.偶函数.10.f(x)=log21-sin2x=log2|cosx|.(1)定义域:xx≠kπ+π2,k∈Z.(2)值域:(-∞,0]. (3)增区间:kπ-π2,kπ(k∈Z),减区间:kπ,kπ+π2(k∈Z).(4)偶函数.(5)π.11.当x<0时,-x>0,∴f(-x)=(-x)2-sin(-x)=x2+sinx.又∵f(x)是奇函数,∴f(-x)=-f(x).∴f(x)=-f(-x)=-x2-sinx.1.4.3正切函数的性质与图象1.D.2.C.3.A.4.5π.5.tan1>tan3>tan2.6.kπ2-π4,0(k∈Z).7.2kπ+6π5<x<2kπ+3π2,k∈Z .8.定义域为kπ2-π4,kπ2+π4,k∈Z,值域为R,周期是T=π2,图象略.9.(1)x=π4.(2)x=π4或54π.10.y|y≥34.11.T=2π,∴f99π5=f-π5+20π=f-π5,又f(x)-1是奇函数,∴f-π5-1=-fπ5-1 f-π5=2-fπ5=-5,∴原式=-5.1.5函数y=Asin(ωx+φ)的图象(一)1.A.2.A.3.B.4.3.5.-π2.6.向左平移π4个单位.7.y=sinx+2的图象可以看作是将y=sinx图象向上平移2个单位得到,y=sinx-1的图象可以看作是将y=sinx图象向下平移1个单位而得到.8.±5.9.∵y=sin3x-π3=sin3x-π9,∴可将y=sin3x的图象向右平移π9个单位得到.10.y=sin2x+π4的图象向左平移π2个单位,得到y=sin2x+π2+π4,故函数表达式为y=sin2x+5π4.11.y=-2sinx-π3,向左平移m(m>0)个单位,得y=-2sin(x+m)-π3,由于它关于y轴对称,则当x=0时,取得最值±2,此时m-π3=kπ±π2,k∈Z,∴m的最小正值是5π6.1.5函数y=Asin(ωx+φ)的图象(二)1.D.2.A.3.C.4.y=sin4x.5.-2a;-310a+2ka(k∈Z);-2a.6.y=3sin6x+116π.7.方法1y=sinx横坐标缩短到原来的12y=sin2x向左平移π6个单位y=sin2x+π6=y=sin2x+π3.方法2y=sinx向左平移π3个单位y=sinx+π3横坐标缩短到原来的12y=sin2x+π3.8.(1)略.(2)T=4π,A=3,φ=-π4.9.(1)ω=2,φ=π6.(2)x=12kπ+π6(k∈Z),12kπ-112π,0(k∈Z).10.(1)f(x)的单调递增区间是3kπ-5π4,3kπ+π4(k∈Z).(2)使f(x)取最小值的x的集合是x|x=7π4+3kπ,k∈Z.11.(1)M=1,m=-1,T=10|k|π.(2)由T≤2,即10|k|π≤2得|k|≥5π,∴最小正整数k 为16.1.6三角函数模型的简单应用(一)1.C.2.C.3.C.4.2sinα.5.1s.6.k²360°+212 5°(k∈Z).7.扇形圆心角为2rad时,扇形有最大面积m216.8.θ=4π7或5π7.9.(1)设振幅为A,则2A=20cm,A=10cm.设周期为T,则T2=0.5,T=1s,f=1Hz.(2)振子在1T内通过的距离为4A,故在t=5s=5T内距离s=5³4A=20A=20³10=200cm=2(m).5s末物体处在点B,所以它相对平衡位置的位移为10cm.10.(1)T=2πs.(2)12π次.11.(1)d-710=sint-1.8517.5π.(2)约为5.6秒.1.6三角函数模型的简单应用(二)1.D.2.B.3.B.4.1-22.5.1124π.6.y=sin52πx+π4.7.95.8.12sin212,1sin12+2.9.设表示该曲线的三角函数为y=Asin(ωx+φ)+b.由已知平均数量为800,最高数量与最低数量差为200,数量变化周期为12个月,所以振幅A=2002=100,ω=2π12=π6,b=800,又7月1日种群数量达最高,∴π6³6+φ=π2.∴φ=-π2.∴种群数量关于时间t的函数解析式为y=800+100sinπ6(t-3).10.由已知数据,易知y=f(t)的周期T=12,所以ω=2πT=π6.由已知,振幅A=3,b=10,所以y=3sinπ6t+10.11.(1)图略.(2)y-12.47=cos2π(x-172)365,约为19.4h.单元练习1.C.2.B.3.C.4.D.5.C.6.C.7.B.8.C.9.D.10.C.11.5π12+2kπ,13π12+2kπ(k∈Z).12.4412.13.-3,-π2∪0,π2.14.1972π.15.原式=(1+sinα)21-sin2α-(1-sinα)21-sin2α=1+sinα|cosα|-1-sinα|cosα|=2sinα|cosα|. ∵α为第三象限角,|cosα|=-cosα,∴原式=-2tanα.16.1+sinα+cosα+2sinαcosα1+sinα+cosα=sin2α+cos2α+2sinαcosα+sinα+cosα1+sinα+cosα=(sinα+cosα)2+sinα+cosα1+sinα+cosα=(sinα+cosα)·(1+sinα+cosα)1+sinα+cosα=sinα+cosα. 17.f(x)=(sin2x+cos2x)2-sin2xcos2x2-2sinxcosx-12sinxcosx+14cos2x=1-sin2xcos2x2(1-sinxcosx)-12sinxcosx+14cos2x=12+12sinxcosx-12sinxcosx+14cos2x=12+14cos2x.∴T=2π2=π,而-1≤cos2x≤1,∴f(x)max=34,f(x)min=14.18.∵Aπ3,12在递减段上,∴2π3+φ∈2kπ+π2,2kπ+3π2.∴2π3+φ=5π6,φ=π6.19.(1)周期T=π,f(x)的最大值为2+2,此时x∈x|x=kπ+π8,k∈Z;f(x)的最小值为2-2,此时x ∈x|x=kπ-38π,k∈Z;函数的单调递增区间为kπ-3π8,kπ+π8,k∈Z.(2)先将y=sinx(x∈R)的图象向左平移π4个单位,而后将所得图象上各点的横坐标缩小为原来的12,纵坐标扩大成原来的2倍,最后将所得图象向上平移2个单位.20.(1)1π.(2)5π或15.7s.(3)略.。
弧度制说课稿范本(通用5篇)在工作和生活中,少不了要写各种各样的文档,不论是写制度、写总结、写计划还是写其它的材料,能写出一篇好的文档,体现了一个人的文笔,也体现着一个人的能力,下面是我汇编整理的《弧度制说课稿范本(通用5篇)》,希望能够帮到你!弧度制说课稿1一、教材的地位和作用弧度制是学习高中数学三角函数的基础,学习好弧度制可以更好地学习后面关于三角函数、解三角形等内容、本节课是人教版普通高中课程标准实验教科书A版必修四第一章《三角函数》中第一节的第二课时内容,主要学习的是弧度制、它是本章的重要基础知识,主要体现在一下几个方面:第一,在教材结构上,本节为后面内容的学习做好了铺垫、之前的学习已经让学生了解了任意角和角度制,而对弧度制的概念却一无所知,然而在研究三角函数的时候大多都是用弧度制,只要学生学好了这一节,就能更好地学习后面的知识、第二,在教学内容上,弧度制是一个全新的研究角的单位,利用类比的方法让学生理解数学研究的互通性、教学目标1、知识与技能:(1)理解并掌握弧度制的定义;(2)掌握并运用弧度制表示的弧长公式、扇形面积公式;(3)熟练地进行角度制与弧度制的换算;(4)理解角的集合与实数集R之间建立的一一对应关系;(5)使学生通过弧度制的学习,理解并认识到角度制与弧度制都是对角度量的方法,二者是辨证统一的,而不是孤立、割裂的关系、2、过程与方法:创设情境,引入弧度制度量角的大小,通过探究理解并掌握弧度制的定义,领会定义的合理性、根据弧度制的定义推导并运用弧长公式和扇形面积公式、以具体的实例学习角度制与弧度制的互化,能正确使用计算器、3、情感态度和价值观:通过本节的学习,使同学们掌握另一种度量角的单位制———弧度制,理解并认识到角度制与弧度制都是对角度量的方法,二者是辨证统一的,而不是孤立、割裂的关系、角的概念推广以后,在弧度制下,角的集合与实数集R之间建立了一一对应关系:即每一个角都有唯一的一个实数(即这个角的弧度数)与它对应;反过来,每一个实数也都有唯一的一个角(即弧度数等于这个实数的角)与它对应,为下一节学习三角函数做好准备、(三)重点与难点重点:理解并掌握弧度制定义;熟练地进行角度制与弧度制的互化换算;弧长和面积公式及应用、难点:理解弧度制定义,弧度制的运用、由于之前学生对于用角度制来度量角的大小的方法已经根深蒂固,学生很难接受一个新的度量方法,所以我认为对弧度制定义的理解和弧度制的运用时教学的难点二、说教法为了使学生更主动地参加到课堂教学中,激发学生主动学习弧度制的内容,充分调动学生学习的主动性、积极性,这是本节课的教学原则、根据这样的原则及所要完成的教学目标,我采用如下的教学方法和教学手段:1、教学方法:我采用的是引导发现法、探索讨论法、(1)引导发现法:举出实例,多个标量的不同的度量方法,引导学生思考,可能角也有别的度量方法、(2)探索讨论法:介绍弧度制后,和学生一起讨论,探讨弧度制与角度制的关系,以及弧长公式和面积公式的推导方法、2、教学手段:大部分文字概念的部分用ppt和几何画板展现出来,而探究探讨的部分,我会用粉笔在黑板上作出指导、三、说学法新课标的理念倡导“以学生为主体”,强调“以学生发展为核心”、因此本节课给学生提供以下4种机会:1、提供观察、思考的机会:用亲切的语言鼓励学生观察并用学生自己的语言进行归纳、2、提供操作、尝试、合作的机会:鼓励学生大胆利用资源,发现问题,讨论问题,解决问题、3、提供表达、交流的机会:鼓励学生敢想敢说,设置问题促使学生愿想愿说、4、提供成功的机会:通过学生自己推导、动手探究,肯定学生探究过程,积极引导学生,赞赏学生提出的问题,让学生在课堂中能更多地体验成功的乐趣、四、说教学程序设计1、引出弧度制在讲到弧度制之前,先讲几个可以用多种度量制度量的例子,说明一个量可以用不同的度量制来度量,度量制不同,度量的数值不同,度量制间可以转化、引出角的另一种度量方式——弧度制、设计意图从以前学习的例子类比,让学生了解数学研究的互通性,激发学生的学习欲、2、认识弧度制提出问题:一定大小的圆心角?所对应的弧长与半径的比值是怎样的数值,它与半径大小有关吗?在学生思考之后再和学生一起探究,利用?与圆周角的比例求出弧长,再求出比值,发现一定大小的圆心角?所对应的弧长与半径的比值是唯一确定的,与半径大小无关,即圆心角?所对应的弧长与半径的比值只与角的大小有关,与半径大小无关、所以得出结论,我们可以用这个量来度量角的大小、设计意图让学生在探究的过程中认识弧度制,不仅可以加强学生的探索欲,集中上课注意力,还能提高学生主动思考的能力、3、弧度制的定义提出弧度制的定义,即把等于半径长的圆弧所对应的圆心角叫做1弧度的角,用几何画板在圆里展示出一弧度的角,然后再展示两弧度的角和三弧度的角、再提出问题:若弧是一个半圆,则其圆心角的弧度数是多少?若弧是一个整圆,其圆心角的弧度数是多少?设计意图让学生在心中对弧度制有个明确的定义,这里面引出本节课的主要内容弧度制,又承上启下,总结前面对这种新的度量的认识,又为后面探究弧度制做好了铺垫、4、角度制和弧度制的关系探究弧度制与角度值的换算,在几何画板中画出坐标轴上半径为r 的圆,再对特殊弧长的圆心角分别是多少作出表格,其中包括往不同方向旋转所得的角、再让学生思考弧度为l的圆弧所对应的圆心角的用角度制如何表示,用弧度制又该如何表示、得出角度制和弧度制互相转化的公式??l,并得出一度的角用弧度制度量得到的是多少,一弧度的角用角度r制得到的又是多少,再对前面的表格进行检查验算、然后我会再出几个弧度制和角度制相互转换的题目并列出表格,让学生思考一些常见角在弧度制下的值、指出在今后的学习中弧度制的单位rad可以不用写,只要写弧度数就可以了,在几何画板中展示出,在弧度制下,每一个角都有唯一的实数与之对应,反过来每个实数都有一个角与之对应、设计意图通过列表,让学生认识到弧度制和角度制之间的是存在一种关系的,通过类比,发现弧度制与角度制就想“克”与“斤”一样,他们之间有一个量的转化,并激发学生探索了解这个量到底是什么,探究之后通过整理,让学生了解这之间的换算关系,并通过简单的题目和列表,让学生脑海中的这种换算关系得到升华、5、数学应用证明课本中例3的三个题目,先让学生思考,并让学生思考用与书上不同的方法进行证明、再让学生用计算器计算例4、设计意图例3中三个公式在第一节中都是非常重要的,它是弧度制学习中的重要产物,学生在证明几个题目后会发现利用弧度制,求扇形面积和弧长可以更加简单和方便,这样不仅可以激发学生的学习热情还可以让升华整节课的内容、弧度制说课稿2各位老师:大家好,今天我说课的课题是《弧度制说课稿》下面我将从(1)教材(2)教法(3)学法(4)教学过程(5)教学反思。
三角函数一、随意角、弧度制及随意角的三角函数1.随意角(1)角的观点的推行①按旋转方向不一样分为正角、负角、零角.正角 : 按逆时针方向旋转形成的角随意角 负角: 按顺时针方向旋转形成的角零角 : 不作任何旋转形成的角②按终边地点不一样分为象限角和轴线角.角 的极点与原点重合,角的始边与 x 轴的非负半轴重合,终边落在第几象限,则称 为第几象限角.第一象限角的会合为 k 360ok 360o 90o , k第二象限角的会合为 k 360o 90o k 360o 180o , k第三象限角的会合为 k 360o 180o k 360o 270o , k第四象限角的会合为k 360o 270ok 360o360o , k终边在 x 轴上的角的会合为 k 180o , k终边在 y 轴上的角的会合为 k 180o 90o , k终边在座标轴上的角的会合为k 90o ,k(2)终边与角 α同样的角可写成 α+ k ·360 °(k ∈ Z).终边与角 同样的角的会合为k 360o, k(3)弧度制① 1 弧度的角:把长度等于半径长的弧所对的圆心角叫做1 弧度的角.②弧度与角度的换算: 360°= 2π弧度; 180°= π弧度.③ 半径为 r 的圆的圆心角所对弧的长为 l ,则角的弧度数的绝对值是lr④ 若扇形的圆心角为 为弧度制 ,半径为 r ,弧长为 l ,周长为 C ,面积为 S ,则 lr,C2r l ,S1 lr 1 r2 . 222 .随意角的三角函数定义设 α是一个随意角,角 α的终边上随意一点P(x , y),它与原点的距离为 r rx 2 y 2 ,那么角 α的正弦、余弦、rrx(三角函数值在各象限的符号规律归纳为:一全正、二正弦、三正切分别是: sin α= y , cos α= x , tan α= y.正切、四余弦)3.特别角的三角函数值角度030456090120135150180270360函数角 a 的弧度0π /6π/4π /3π /22π /33π /45π/6π3π /22πsina01/2√ 2/2√ 3/21√ 3/2√ 2/21/20-10 cosa1√ 3/2√ 2/21/20-1/2-√ 2/2-√ 3/2-101 tana0√ 3/31√ 3-√ 3-1-√ 3/300二、同角三角函数的基本关系与引诱公式A.基础梳理1.同角三角函数的基本关系(1)平方关系: sin2α+ cos2α= 1;(在利用同角三角函数的平方关系时,若开方,要特别注意判断符号)sin α(2)商数关系:=tanα.(3)倒数关系:tan cot 1cos α2.引诱公式公式一: sin( α+ 2kπ)=sin α, cos(α+ 2kπ)=cos_α,tan(2k )tan此中 k∈Z .公式二: sin( π+α)=- sin_α, cos( π+α)=- cos_α, tan( π+α)= tan α.公式三: sin( π-α)= sin α, cos( π-α)=- cos_α,tan tan.公式四: sin( -α)=- sin_α, cos(-α)= cos_α,tan tan .ππ公式五: sin -α= cos_α, cos-α= sin α.22ππ公式六: sin 2+α= cos_α, cos2+α=- sin_α.π口诀:奇变偶不变,符号看象限.此中的奇、偶是指π引诱公式可归纳为 k· ±α的各三角函数值的化简公式.的奇数22倍和偶数倍,变与不变是指函数名称的变化.假如奇数倍,则函数名称要变( 正弦变余弦,余弦变正弦 ) ;假如偶数倍,则函数名称不变,符号看象限是指:把πα当作锐角时,依据 k· ±α在哪个象限判断原三角函数值的符号,最后作为结....2...果符号.B. 方法与重点一个口诀1、引诱公式的记忆口诀为:奇变偶不变,符号看象限.2、四种方法在求值与化简时,常用方法有:sin α(1)弦切互化法:主要利用公式tan α=化成正、余弦.cos α(2)和积变换法:利用 (sin θ±cos θ)2=1 ±2sin θcos θ的关系进行变形、转变.( sin cos、sin cos、sin cos三个式子知一可求二)(3)巧用 “1”的变换: 1= sin 2θ+ cos 2θ= sinπ=tan 42(4)齐次式化切法:已知 tank ,则 a sinbcos a tan b ak bm sinn cos m tan n mk n三、三角函数的图像与性质学习目标:1 会求三角函数的定义域、值域2 会求三角函数的周期 :定义法,公式法,图像法(如y sin x 与 y cosx 的周期是)。
必修四第一章 三角函数解题技巧1 例说弧度制中的扇形问题与扇形有关的问题是弧度制中的难点,我们可以应用弧长公式l =|α|r 和扇形面积公式S =12|α|r 2解决一些实际问题,这类问题既充分体现了弧度制在运算上的优越性,又能帮助我们加深对弧度制概念的理解.下面通过几例帮助同学们分析、归纳弧度制下的扇形问题. 例1 已知扇形的圆心为60°,所在圆的半径为10,求扇形的弧长及扇形中该弧所在的弓形面积.例2 扇形的半径为R ,其圆心角α(0<α≤π)为多大时,扇形内切圆面积最大,其最大值是多少?例3 已知扇形的周长为30 cm ,当它的半径和圆心角各取什么值时,才能使扇形的面积最大?最大面积是多少?针对练习:1.扇形的周长C 一定时,它的圆心角θ取何值才能使扇形面积S 最大?最大值是多少?2.在扇形AOB 中,∠AOB =90°,弧AB 的长为l ,求此扇形内切圆的面积.3.已知扇形AOB 的周长是6 cm ,该扇形的中心角是1弧度,求该扇形的面积.2 任意角三角函数问题错解辨析任意角三角函数是三角函数的基础,在学习这部分内容时,有的同学经常因为概念不清、考虑不周、观察代替推理等原因而错解题目,下面就解题中容易出现的错误进行分类讲解,供同学们参考.一、概念不清例1 已知角α的终边在直线y =2x 上,求sin α+cos α的值.二、观察代替推理例2 当α∈(0,π2)时,求证:sin α<tan α.三、估算能力差例3 若θ∈⎝⎛⎭⎫0,π2,则sin θ+cos θ的一个可能的值是( ) A.23B.27πC.4-22 D .13 同角三角函数关系巧应用同角三角函数的用途主要体现在三角函数的求值和恒等变形中各函数间的相互转化,下面结合常见的应用类型举例分析,体会其转化作用,展现同角三角函数关系巧应用.一、知一求二型例1 已知sin α=255,π2≤α≤π,则tan α=_________________________________.二、妙用“1”例2 证明:1-sin 6x -cos 6x 1-sin 4x -cos 4x =32.三、齐次式型求值例3 已知tan α=2,求值:(1)2sin α-3cos α4sin α-9cos α=________; (2)2sin 2α-3cos 2α=________.4 单调不“单调”,应用很“奇妙”三角函数的单调性是三角函数的重要性质之一,也是高考常考的内容.利用其可以方便地进行比较值的大小、求单调区间、求解最值和解不等式等.下面举例归纳该性质在解题中的具体应用,希望能对同学们的学习有所帮助.一、信心体验——比较大小例1 比较cos5π14,sin 2π7,-cos 8π7的大小.二、重拳出击——求解最值例2 已知f (x )=2sin(2x -π4),x ∈R .求函数f (x )在区间[π8,3π4]上的最小值和最大值.三、触类旁通——解不等式例3 若0≤α<2π,sin α>33cos α,求α的取值范围.5 善用数学思想——巧解题一、数形结合思想例1 在(0,2π)内,使sin x >cos x 成立的x 的取值范围是________.二、分类讨论思想例2 已知角α的终边在直线3x +4y =0上,求sin α,cos α,tan α的值.三、函数与方程的思想例3 函数f (x )=3cos x -sin 2x (π6≤x ≤π3)的最大值是________.四、转化与化归思想例4 比较下列每组数的大小.(1)tan 1,tan 2,tan 3;(2)tan(-13 π4)与tan(-17 π5).6 三角函数的性质总盘点三角函数的性质是高考考查的重点和热点内容之一,应用“巧而活”.要能够灵活地运用性质,必须在脑海中能及时地浮现出三角函数的图象.下面通过典型例题对三角函数的性质进行盘点,请同学们用心体会.一、定义域例1 函数y = cos x -12的定义域为________.二、值域与最值例2 函数y =cos(x +π3),x ∈(0,π3]的值域是________.三、单调性例3 已知函数f (x )=sin(π3-2x ),求:(1)函数f (x )的单调递减区间;(2)函数f (x )在[-π,0]上的单调递减区间.四、周期性与对称性例4 已知函数f (x )=sin(2ωx -π3)(ω>0)的最小正周期为π,则函数f (x )的图象的一条对称轴方程是( )A .x =π12B .x =π6C .x =5π12D .x =π3五、奇偶性例5 若函数f (x )=sin x +φ3(φ∈[0,2π))是偶函数,则φ等于( ) A.π2 B.2π3 C.3π2 D.5π37 数形结合百般好,形象直观烦琐少——构建正弦、余弦函数图象解题正弦、余弦函数的图象是本章的重点,也是高考的一个热点,它不仅能直观反映三角函数的性质,而且它还有着广泛的应用,若能根据问题的题设特点灵活构造图象,往往能直观、准确、快速解题.一、确定函数的值域例1 定义运算a ※b 为a ※b =⎩⎪⎨⎪⎧a ,a ≤b ,b ,a >b ,例如,1※2=1,则函数f (x )=sin x ※cos x 的值域为( )A .[-1,1]B.⎣⎡⎦⎤-22,1C.⎣⎡⎦⎤-1,22D.⎣⎡⎦⎤-1,-22二、确定零点个数例2 函数f (x )=⎝⎛⎭⎫12x -sin x 在区间[0,2π]上的零点个数为________.三、确定参数的值例3 已知f (x )=sin(ωx +π3)(ω>0),f ⎝⎛⎭⎫π6=f ⎝⎛⎭⎫π3,且f (x )在区间⎝⎛⎭⎫π6,π3上有最小值,无最大值,则ω=_________________________________________________.四、判断函数单调性例4 设函数f (x )=⎪⎪⎪⎪sin ⎝⎛⎭⎫x +π3(x ∈R ),则f (x )( ) A .在区间⎣⎡⎦⎤2π3,4π3上是增函数 B .在区间⎣⎡⎦⎤3π4,13π12上是增函数 C .在区间⎣⎡⎦⎤-π8,π4上是减函数 D .在区间⎣⎡⎦⎤π3,5π6上是减函数五、确定参数范围例5 当0≤x ≤1时,不等式sinπx 2≥kx 恒成立,则实数k 的取值范围是________.六、研究方程的实根例6 已知方程2sin(2x +π3)-1=a ,x ∈[-π6,13π12]有两解,求a 的取值范围.8 三角函数学习中的“小技巧、大突破”从近几年高考数学试卷统计情况看,三角函数是高考的六大板块之一,每年考一道大题和一道小题,而一道大题里面往往又隐含了若干个小问题.所以,高中生应该注意三角函数知识里面的容易被忽略的一些小问题、小技巧.一、“已知三角函数值求角”问题在学习过程中学生们通常存在这么几个困惑:1、给出一个三角函数值可能对应着多个或无数个角,不知道该先求哪个角?2、不能准确的写出已知要求的那个范围的角.下面以四个例题说明:例1 已知sin x =22且x ∈[-π2,π2],求x 的取值集合. 例2 已知sin x =-22且x ∈[-π2,π2],求x 的取值集合. 例3 已知sin x =-22且x ∈[0,2π],求x 的取值集合. 例4 已知sin x =-22,求x 的取值集合.二、“利用三角函数的单调性比较大小”问题在教学中通常要求学生把三角函数化成同名且自变量落在一个单调区间内即可,但是学生在实际操作过程中容易混淆单调区间,不如我们把此问题中的自变量利用诱导公式负角化为正角,正角统一都化为锐角,这样就更简洁、明朗了,因为正弦、余弦、正切函数都在区间(0,π2)内的单调性依次为:单调递增、单调递减、单调递增。
角的概念的推广一、考点突破1. 掌握用“旋转”定义角的概念,理解并掌握“正角”“负角”“象限角”“终边相同的角”的含义;2. 掌握所有与α角终边相同的角(包括α角)的表示方法;3. 体会运动变化观点,深刻理解推广后的角的概念。
二、重难点提示重点:掌握用“旋转”定义角的概念,并进而理解“正角”“负角”“象限角”“终边相同的角”的含义。
难点:终边相同的角、第几象限角的表示。
1. 角的概念的推广:一条射线由原来位置OA,绕着它的端点O 点,可以向两个方向旋转:按逆时针方向旋转所形成的角叫正角,按顺时针方向旋转所形成的角叫负角,未作任何旋转时,也看作一个角,叫零角。
这样就形成了任意大小的角。
2. 记法与运算: (1)记法:射线OA 绕O 点旋转到OB 所成的角记作∠AOB ; 射线OB 绕O 点旋转到OA 所成的角记作∠BOA ; (2)运算:各角和的旋转量等于各角旋转量的和:射线OA 绕点O 旋转到OB ,又从OB 旋转到OC ,得到∠AOC ,这个过程可表示成角的运算:∠AOC=∠AOB+∠BOC 。
3. 终边相同的角:与α终边相同的角的集合:},360|{Z k k ∈︒⨯+=αββ。
4. 象限角:角的顶点与坐标原点重合,始边与x 轴正半轴重合,此时终边在第几象限,则称这个角是第几象限角。
例题1 射线OA 绕点A 顺时针旋转80°到OB ,再逆时针旋转300°到OC ,再顺时针旋转100°到OD 位置,求AOD ∠的大小。
思路分析:利用正负角的概念结合角的运算求解。
答案:解:AOD ∠=AOB ∠+BOC ∠+COD ∠=︒=︒-+︒+︒-120)100(300)80(。
例题2 在 0~360之间,找出下列终边相同的角,并判定它们是第几象限角: (1)︒-150;(2)︒650;(3)'︒-15950。
思路分析:把负角逆时针旋转一周或者几周,即可得到 0~ 360之间的角,把超过 360 的角顺时针旋转一周或者几周,即可得到 0~ 360之间的角。