第十二章 数项级数习题课
- 格式:doc
- 大小:806.50 KB
- 文档页数:12
第十二章数项级数1级数问题的提出1. 证明:若微分方程xy " y ' xy0 有多项式解y a0a1 x a2 x2a n x n , 则必有 a i0 i n2.试确定系数a0 , a1 , , a n , , 使a n x n满足勒让德方程n 0(1 x2 ) y " 2 xy ' l (l 1)y0.2 数项级数的收敛性及其基本性质1.求下列级数的和:(1)1 ;4)(5 nn 1 (5n 1)(2) 1 ;n 1 4n2 1( 1)n 1(3) n 1 ;n 1 22n 1(4) n ;n 1 2(5) r n sin nx,| r |1;n 1(6) r n cos nx,| r |1.n 12.讨论下列级数的敛散性:(1)n ;n 1 2n 1(2)1 1( n n ); n 1 2 3(3) cos2n ;n 1 1(4) 1 ;2)(3nn 1 (3n 1)(5)1 .n(n 1)( n nn 1 1)3.证明定理 10.2.4.设级数u n 各项是正的,把级数的项经过组合而得到新级数U n , 即n 1 n 1U n 1 u k n 1 u k n 2 u k n 1 , n 0,1,2, ,其中 k0 0, k0 k1 k2 k n k n 1 .若U n收敛,证明原来的级数也收敛.n 13正项级数1.判别下列级数的收敛性:1 (1)n2 ;n 1 n(2)1;2 n 1 n 1 (2n 1)2(3) n n ;n 12n 1 (4) sin n;n 1 2(5)1(a 1);a n n 11(6)1;n 1n n n(7)( 1 )n ; n 1 2n 1(8)1;1)] nn 1[ln( n(9) 2 ( 1)n; n 12n (10)2nsin n ;n 13 (11)n n ;n 1n!(12)n ln nn;n 12(13)n!2n n ; n 1n(14)n!3n n; n 1 n(15)n 2;n 1(n1 )nn(16)x n( x 0);(1 x)(1 x 2 )n 1(1 x n )3 3 53 5 7 3579 (17)1 41 4 7;1 14710(18)1ln n ;n 1n(19)1;(20)ln n ;n 121(21)ln n;n 13 (22)13 n ;n 1(23)n.n 1 3n2.利用泰勒公式估算无穷小量的阶,从而判别下列级数的收敛性:(1)[ e (1 1 )n ] p ;n 1n(2)ln p cos;n 3n(3)( n 1n ) plnn1;n 1n 1(4)( n a4n 2n b ).n 13.已知两正项级数u n 和v n 发散,问max( u ,v ) ,min( u ,v ) 两级数的nnnnn 1n 1n 1n 1收敛性如何?4.若正项级数a n 收敛, a n 1a n (n 1,2, ) ,求证 lim na n 0 .n 1na n1 ,n k2 , k 1,2, , 5.设n 21a k 2 , k 1,2, ,k 2求证 :(1)a n 收敛 ;n 1(2)lim na n0.n6.讨论下列级数的收敛性:(1);n 2 n(ln n)p1 (2)n ln n ;n 2 ln ln n(3)10);n(ln n)1(n 2 ln ln n1(4).n 2 n(ln n)p(ln ln n)q7.利用拉阿比判别法研究下列级数的收敛性:(1) [ (2 n 1)!!] p ( p是实数 );n 1 (2 n)!!(2) ( 1) ( n 1) 1 (0, 0).n 1 n! n8.设a na n 1l ,求证 lim n a n l .反之是否成立? 0, 且 limn a n n9.利用级数收敛的必要条件证明:(1) limn n0; ( n!) 2n(2) lim (2n)!0 ( a 1).n !n a10.设a n0 , 且数列{ na n}有界 , 证明级数a n 2收敛.n 111.设正项级数a n收敛,证明anan 1 也收敛 .n 1 n 1 12.设lim a n l ,求证:n(1) 当 l 1时, 1a 收敛 ;n 1 n n(2) 当 l 1时, 1 发散 .n1n a n问 l 1时会有什么结论?4 一般项级数1.讨论下列级数的收敛性:(1)( 1)nn n ;n 1100(2)ln n sin n ;n 1 n21 1 12n ;(3)( 1)n n 1n(4)( 1)nn ( 1)n;n 2(5)sin(n 21);n 1n( n 1)(6)( 1)2;3nn 1(7)( 1)n ( p0);n 1n p(8)1sin n;3n2n 1(9)( 1)n cos 2n ; n 1n(10)( 1)n sin 2 n ;n 1n(11)( 1)nsin x( x 0) ;n 1n( 1)n n(12)(n2;n 11)(13)1 1 1 1 1 12 12 1313 1n 1;n 1( 1)n 1an ( a 0);(14)n 1 a n 1sin(n1 ) (15)n n ;n 1(16)sin nsin n 2 .n 1n2.讨论下列级数是否绝对收敛或条件收敛:(1)( 1)n;nxn 1(2)sin(2 n x)n!n 1(3)sin nx (0 x );n 1n(4)cosnxx);np(0 n 1(5)( 1)n0);( p n 1n p 1n(6)( 1)n( p0);[n ( n ] pn 21)n(7)( 1)1 ;n 1pnn(8) ( n 12n sin 2 n x 1) n ; n 1(9)( x)n , lim a na 0;n 1a nn(10)( 1)n r nn(r 0);n 1(11)n!( x)n ;(12)( 1)nln(1n p);n 1(13)( 1)np;nn 1] n 1[ ( 1)sinn(14)4.sinnn 1 np43.利用柯西收敛原理判别下列级数的敛散性 :(1) a 0a 1 q a 2 q 2 a n q n,| q | 1,| a n | A (n 0,1,2, );(2)1 1 1 11 1 .2 3 45 64.求证 : 若级数a n (a n 0) 收敛 , 则级数a n 2 收敛 . 但反之不成立 , 请举出例子 .n1n 15.若级数a n 收敛 , 且 limb n 1, 问是否能断定b n 也收敛 ?研究例子n 1 na nn 1a n ( 1)na n 1, b n.nn6.证明 : 若级数a n (A) 及b n (B) 都收敛 , 且n1n 1a n c nb n ( n 1,2, )则级数c n (C ) 也收敛 , 若级数 ( A) 与 (B) 都发散 , 问级数 (C ) 的收敛性如何 ?n 17.证明 : 若a n收敛 , 则当 x x 0 时 ,a n 也收敛 . 若a n发散 , 则当 x x 0 时 ,n 1n x 0n 1 n x n 1 n x 0a n 也发散 . n 1 n x8.求证 : 若数列 { na n } 有极限 ,n(a n a n 1 ) 收敛 , 则a n 也收敛 .n 1n 19.求证 : 若(a n a n 1 ) 绝对收敛 ,b n 收敛 , 则a nb n 收敛 .n 1n 1n 110.求证 : 若级数a n 2 和b n 2 都收敛 , 则级数n 1 n 1| a bn |, ( anb )2 , a nn nnn 1 n 1 n 1也收敛 .11.设正项数列{ x n } 单调上升且有界, 求证 :(1 x n )n 1x n 1收敛 .n12.对数列{ a n},{ b n} , 定义S n a k , b k b k 1 b k,求证:k 1(1)如果{ S n}有界, | b n | 收敛,且 b n0(n ) ,则a n b n收敛,且有n 1 n 1a nb n S n b n ;n 1n 1(2)如果a n与| b n |都收敛,则a n b n收敛.n 1 n 1 n 113.设a n 收敛 , 且lim na n 0,求证:n 1 nn(a n a n 1 )n 1收敛,并且n(a n a n 1 ) a nn 1 n 114.下列是非题 , 对的请给予证明, 错的请举出反例 :(1) 若 a n 0 ,则 a1 a1 a2 a2 a3 a3 收敛 ;(2) 若 a n 0 ,则 a1 a1 a2 a2 a3 a3 收敛 ;(3) 若 a 收敛,则( 1)n a 收敛;n nn 1 n 1(4) 若a n 2收敛,则a n 3绝对收敛 ;n 1 n 1(5) 若a n发散,则 a n不趋于0;n 1(6) 若a n收敛, b n 1 ,则a n b n收敛;n 1 n 1(7) 若| a n |收敛, b n 1,则a n b n收敛;n 1 n 1 (8) 若a n收敛,则a n 2收敛;n 1 n 1(9) 若a n收敛, a n 0 ,则lim na n0.n 1 n15.求下列极限 ( 其中p1)(1) lim(1 1 1p ); (n 1)p(n 2)p(2 n)n(2) lim(1 1 1). p n 1 p n 2 p 2nn5无穷级数与代数运算1.不用柯西准则 , 求证 : 如果| a n |,则a n也收敛.n 1 n 12.设a n收敛,求证:将相邻奇偶项交换后所成的级数收敛, 且具有相同的和数.n 1精品文档3.求证 : 由级数 ( 1)n 1重排所得的级数n 1n1 1 1 1 1 125743发散 .4.证明 : 若 a n 条件收敛 , 则可把级数重排 , 使新级数部分和数列有一子数列趋向于n 1, 有一子数列趋向.5.已知 H n 111 c ln n r n , c 是欧拉常数 , lim r n0,求证:2nn(1)1 1 1 1ln m 1 c 1r m ;2 42m 2 2 2(2)若把级数 11 1 1的各项重排 , 而使依次p 个正项的一组与依次 q 个负234项的一组相交替 , 则新级数的和为 ln 21ln p .2q6.求证 : 级数( 1) n 1的平方 ( 柯西乘积 ) 是收敛的 .n 1n7.令 e xx n , 求证 e x y e x e y .n 0 n!8.证明 : 若级数的项加括号后所成的级数收敛, 并且在同一个括号内项的符号相同 , 那么去掉括号后 , 此级数亦收敛 ; 并由此考察级数( 1)[ n ]n 1n的收敛性 .精品文档。
第十二章数项级数1 讨论几何级数∑∞=0n n q 的敛散性.解当1||<q 时, ) ( , 11110∞→-→--==∑=n q q q q S n nk kn . 级数收敛;当1||>q 时, , =n S 级数发散 ;当1=q 时, +∞→+=1n S n , ) (∞→n , 级数发散 ; 当1-=q 时, ()n n S )1(121-+=, ) (∞→n , 级数发散 . 综上, 几何级数∑∞=0n n q 当且仅当1||<q 时收敛, 且和为q-11( 注意n 从0开始 ).2讨论级数∑∞=+1)1(1n n n 的敛散性.解用链锁消去法求.3讨论级数∑∞=12n nn 的敛散性.解设∑=-+-++++==nk n n k n n n k S 11322212322212 , =n S 211432221 232221++-++++n n nn , 1322212121212121+-++++=-=n n n n n n S S S 12211211211→--⎪⎭⎫ ⎝⎛-=+n n n , ) (∞→n . ⇒n S →2, ) (∞→n .因此, 该级数收敛.4、讨论级数∑∞=-1352n n n 的敛散性.解52, 5252352⋅>⇒=>-n S n n n n n →∞+, ) (∞→n . 级数发散.5、证明2-p 级数∑∞=121n n 收敛 .证显然满足收敛的必要条件.令21nu n =, 则当2≥n 时,有 ∑∑==+++<+-=+-+<+=+++pk pk p n n n n p n n k n k n k n u u u 11221 ,111))(1(1 )(1 | | 注: 应用Cauchy 准则时,应设法把式 |∑=+pk kn u1|不失真地放大成只含n 而不含p 的式子,令其小于ε,确定N .6、判断级数∑∞=11sinn n n 的敛散性.(验证0→/n u . 级数判敛时应首先验证是否满足收敛的必要条件)7、证明调和级数∑∞=11n n 发散.证法一(用Cauchy 准则的否定进行验证) 证法二(证明{n S }发散.利用不等式n nn ln 1 1211 )1ln(+<+++<+ . 即得+∞→n S ,) (∞→n . )注: 此例为0→n u 但级数发散的例子.8、考查级数∑∞=+-1211n n n的敛散性.解有 , 2 11 012222nn n n n <+-⇒>+- 9、判断级数()() +-+⋅⋅-+⋅⋅++⋅⋅⋅⋅+⋅⋅+)1(41951)1(32852951852515212n n的敛散性.解1 434132lim lim1<=++=∞→+∞→n n u u n nn n ⇒∑+∞<.10、讨论级数∑>-)0( 1x nxn 的敛散性.解因为) ( , 1)1(11∞→→+⋅+=-+n x n n x nxx n u u n n n n . 因此, 当10<<x 时,∑+∞<; 1>x 时, ∑+∞=; 1=x 时, 级数成为∑n , 发散.11、判断级数∑+nn n n !21的敛散性.注:对正项级数∑n u ,若仅有11<+nn u u ,其敛散性不能确定. 例如对级数∑n 1和∑21n , 均有11<+nn u u ,但前者发散, 后者收敛. 12、研究级数∑-+nn 2) 1 (3的敛散性 .解1212)1(3lim lim <=-+=∞→∞→nnn n n n u ⇒∑+∞<. 13、判断级数∑⎪⎭⎫⎝⎛+21n n n 和∑⎪⎭⎫⎝⎛+21n n n 的敛散性 .解前者通项不趋于零 , 后者用根值法判得其收敛 .14、讨论-p 级数∑∞=11n pn 的敛散性.解考虑函数>=p xx f p ,1)(0时)(x f 在区间) , 1 [∞+上非负递减. 积分⎰+∞1)(dx x f当1>p 时收敛, 10≤<p 时发散⇒级数∑∞=11n p n 当1>p 时收敛,当10≤<p 时发散,当0≤p 时,01→/pn , 级数发散. 综上,-p 级数∑∞=11n pn当且仅当1>p 时收敛.15、判别级数∑∞=>-1)0( ) 1 (n nnx n x 的敛散性.解当10≤<x 时, 由Leibniz 判别法 ⇒∑收敛;当1>x 时, 通项0→/,∑发散.16、设0n a →.证明级数∑nx a n sin 和∑nx a n cos 对)2 , 0(π∈∀x 收敛.证++⎪⎭⎫ ⎝⎛-+=⎪⎭⎫⎝⎛+∑= 2sin 23sin 2sin cos 212sin 21x x x kx x n kx n x n x n ) 21 sin() 21 sin() 21 sin(+=⎥⎦⎤⎢⎣⎡--++,) 2 , 0 (π∈x 时,02sin ≠x ⇒∑=+=+n k x xn kx 12sin2) 21sin(cos 21. 可见) 2 , 0 (π∈x 时, 级数∑kx cos 的部分和有界. 由Dirichlet 判别法推得级数∑nx ancos 收敛 . 同理可得级数数∑nx a n sin 收敛 .17、若∑∞=1n na 收敛,证明∑∞=12n n n a 也收敛。
数项级数经典例题大全(1)第十二章数项级数1 讨论几何级数∑∞=0n n q 的敛散性.解当1||110∞→-→--==∑=n q q q q S n nk kn . 级数收敛;当1||>q 时, , =n S 级数发散 ;当1=q 时, +∞→+=1n S n , ) (∞→n , 级数发散 ; 当1-=q 时, () n n S )1(121-+=, ) (∞→n , 级数发散 . 综上, 几何级数∑∞=0n n q 当且仅当 1||q-11( 注意n 从0开始 ).2 讨论级数∑∞=+1)1(1n n n 的敛散性.解用链锁消去法求.3讨论级数∑∞=12n nn 的敛散性.解设∑=-+-++++==nk n n k n n n k S 11322212322212 ,=n S 211432221 232221++-++++n n nn , 1322212121212121+-++++=-=n n n n n n S S S12211211211→--?-=+n n n ,) (∞→n . ? n S →2, ) (∞→n .因此, 该级数收敛.4、讨论级数∑∞=-1352n n n 的敛散性.解52, 5252352?>?=>-n S n n n n n →∞+, ) (∞→n . 级数发散.5、证明2-p 级数∑∞=121n n收敛 .证显然满足收敛的必要条件.令 21nu n =, 则当2≥n 时,有∑∑==+++<+-=+-+<+=+++pk pk p n n n n p n n k n k n k n u u u 11221 ,111))(1(1 )(1 | | 注: 应用Cauchy 准则时,应设法把式 |∑=+pk kn u1|不失真地放大成只含n 而不含p 的式子,令其小于ε,确定N .6、判断级数∑∞=11s i n n n n 的敛散性.(验证0→/n u .级数判敛时应首先验证是否满足收敛的必要条件) 7、证明调和级数∑∞=11n n 发散.证法一 (用Cauchy 准则的否定进行验证) 证法二 (证明{n S }发散.利用不等式n nn ln 1 1211 )1ln(+<+++<+ . 即得+∞→n S ,) (∞→n . )注: 此例为0→n u 但级数发散的例子.8、考查级数∑∞=+-1211n n n的敛散性.解有 , 2 11 012222nn n n n <+-?>+- 9、判断级数()()+-+??-+??+++??+)1(41951)1(32852951852515212n n 的敛散性.解 1 434132lim lim1<=++=∞→+∞→n n u u n nn n ?∑+∞<.10、讨论级数∑>-)0( 1x nxn 的敛散性.解因为) ( , 1)1(11∞→→+?+=-+n x n n x nxx n u u n n n n . 因此, 当10<<="">∑+∞<; 1>x 时, ∑+∞=; 1=x 时, 级数成为∑n , 发散.11、判断级数∑+nn n n !21的敛散性.注: 对正项级数∑n u ,若仅有11<+nn u u ,其敛散性不能确定. 例如对级数∑n 1和∑21n , 均有 11<+nn u u ,但前者发散, 后者收敛. 12、研究级数∑-+nn 2) 1 (3的敛散性 .解 1212)1(3l i m l i m <=-+=∞→∞→nnn n nn u ?∑+∞<. 13、判断级数∑??+21n n n 和∑??+21n n n 的敛散性 .解前者通项不趋于零 , 后者用根值法判得其收敛 .14、讨论-p 级数∑∞=11n pn 的敛散性.解考虑函数>=p xx f p ,1)(0时)(x f 在区间) , 1 [∞+上非负递减. 积分+∞1)(dx x f当1>p 时收敛, 10≤∑∞=11n p n 当1>p 时收敛,当10≤01→/pn , 级数发散. 综上,-p 级数∑∞=11n pn当且仅当1>p 时收敛.15、判别级数∑∞=>-1)0( ) 1 (n nnx n x 的敛散性.解当10≤<="" p="" 判别法="" 时,="" 由leibniz=""> 收敛;当1>x 时, 通项0→/,∑发散.16、设0n a →.证明级数∑nx a n sin 和∑nx a n cos 对)2 , 0(π∈?x 收敛.证 ++??? ??-+=??+∑= 2s i n 23s i n 2s i n c o s 212s i n 21x x x kx x n kx n x n x n ) 21sin() 21sin() 21 sin(+=??--++,) 2 , 0 (π∈x 时,02sin ≠x ?∑=+=+n k x xn kx 12sin2) 21sin(cos 21. 可见) 2 , 0 (π∈x 时, 级数∑kx cos 的部分和有界. 由Dirichlet 判别法推得级数∑nx ancos 收敛 . 同理可得级数数∑nx a n sin 收敛 .17、若∑∞=1n na 收敛,证明∑∞=12n n n a 也收敛。
1第十二章 无穷级数第一节 常数项级数的概念与性质1.填空: (1)1+1(-1)n n n -.(2)__0__.(3)111+-n , _1_. (4)11+-n a a ,1a a -.(5) 收敛 ,12-s u .(6) 发散_. 2.根据级数收敛与发散的定义判断下列级数的敛散性,如果收敛,则求级数的和:(1)解:级数的部分和为...n s +++1-.因为lim 1)n n n s →∞→∞=-=+∞,即部分和数列不存在极限,所以原级数发散. (2)解:将级数的一般项进行分解得211111()(1)(1)2111n u n n n n n ===-+--+-, 所以,级数的部分和为111111111[()+()()...()]213243511n s n n =--+-++--+1111(1)221n n =+--+. 因为11113lim lim (1)2214n n n s n n →∞→∞=+--=+, 即部分和数列存在极限,且极限值为34,根据定义可得,原级数收敛,且收敛于34.(3)解: 因为lim lim sin 6n n n n u π→∞→∞=不存在,根据收敛级数的必要性条件可知,级数的一般项极限不为零,则原级数必定发散.3.判断下列级数的敛散性,如果收敛,则求级数的和: (1)解:这是一个公比为34-的等比级数,因为314-<,所以收敛.其和为13343171()4u s q-===----. (2)解:这是公比为32-的等比级数,因为3>12-,所以发散.(3)解:因为1lim lim=0100+1100n n n n u n →∞→∞=≠,根据收敛级数的2必要性条件可知,原级数发散. (4)解:因为级数123nnn ∞=∑是公比为23的等比级数,所以收敛,而级数1131=3n n n n∞∞==∑∑是发散级数,根据收敛级数的性质可知,原级数发散.(5)解:原级数的一般项ln (1)-ln n u n n =+,所以原级数的部分和(ln 2-ln1)(ln 3-ln 2)...[(ln(1)-ln ]n s n n =++++ln(1)-ln1ln(1)n n =+=+,因为lim limln(1)n n n s n →∞→∞=+不存在,所以原级数发散.(6)解:原级数变形为111[()()]32n n n ∞=+∑,因为级数11()3nn ∞=∑和11()2n n ∞=∑均为公比1q <的等比级数,所以原级数收敛. 其和为113321121132s =+=--.(7)解:因为313lim =3lim()3lim011+(1+)(1+)n nn n n n nn n n e n n→∞→∞→∞==≠,根据收敛级数的必要条件可知,原级数发散.第二节 常数项级数的审敛法1.填空: (1) 收敛 .(2) 发散 ; 收敛 ;可能收敛也可能发散 . (3)1k <;1k >时,1k =.(4)1p >;1p ≤时.(5)发散 . (6)可能发散也可能收敛 . 2.选择:(1)D .(2)C .(3)B .(4)C .3.用比较审敛法及其极限形式判断下列级数的敛散性:(1)解:因为222+1++2lim lim 11+2n n n n n n n n→∞→∞==,而级数11n n∞=∑发散,根据比较审敛法的极限形式(或者极限审敛法),原级数一定发散.(2)解:因为2211(1)(21)limlim 1(1)(21)2n n n n n n n n →∞→∞++==++,而3 级数211n n∞=∑收敛,根据比较审敛的极限形式(或者极限审敛法),原级数一定收敛.(3)解:因为0sin 22n n ππ≤≤,而12n n π∞=∑是公比为12的等比级数,根据比较审敛法,原级数一定收敛.(4)解:当>1a 时,110<1n na a ≤+而11n n a∞=∑是公比为1<1a 的等比级数,根据比较审敛法,级数111nn a ∞=+∑一定收敛; 当0<1a <时,因为1lim=101nn a →∞≠+,根据级数收敛的必要性条件,级数111nn a ∞=+∑发散; 当=1a 时,原级数即112n ∞=∑,发散. (5*)解:因为ln (1+)(0,1)x x x x <≠-<<+∞,所以111ln =ln(1+)n n n n +<,即原级数为正项级数; 同时,111ln =ln ln(1)111n n n n n n +-=-->+++, 则:21111110<ln 1(1)n n n n n n n n+-<-=<++, 而211n n∞=∑收敛,所以原级数也收敛. 4.用比值审敛法判断下列级数的敛散性:(1)解:2+122(1)1113lim lim(1)1333n n n nn n n →∞→∞+=+=<,根据比值审敛法,原级数收敛.(2)解:135(2+1)2+1(+1)!limlim 2>1135(21)+1!n n n n n n n n →∞→∞⋅⋅⋅⋅⋅==⋅⋅⋅⋅⋅-,根据比值审敛法,原级数发散.4(3)解:+2+2+1+1(+1)tan+1122limlim 12tan 22n n n n n n n n n n ππππ→∞→∞=⋅=<,根据比值审敛法,原级数收敛.(4)解:1+12(1)!12(+1)lim 2lim()2lim <1112!(1+)n n n n n n n nnn n n n e n n n +→∞→∞→∞+===+, 根据比值审敛法,原级数收敛.5.用根值审敛法判别下列级数的敛散性:(1)解:1lim 12+12n n n n →∞=<,根据根值审敛法,原级数收敛. (2)解:1lim 01ln(+1)n n n →∞=<,根据根值审敛法,原级数收敛. (3)解:n b a, 当1ba<,即>a b 时,原级数收敛; 当>1ba ,即ab <时,原级数发散; 当1ba=,即=a b 时,原级数可能收敛也可能发散. 6.判别下列级数的敛散性: (1)解:10n n ==≠,根据收敛级数的必要条件可知,原级数发散.(2)解:原级数显然为正项级数,根据比较审敛法的极限形式,111lim =lim 1n n na b b aa n n→∞→∞+=+,所以原级数发散. (3)解:因为11lim 1>122nn n e n →∞⎛⎫+= ⎪⎝⎭, 所以原级数发散.7.判别级数的敛散性,若收敛,指出条件收敛还是绝对收敛: (1)解:因为11111(1)=33n n n n n n n ∞∞---==-∑∑,而1+11+113lim =lim <1333n n n n n n n n →∞→∞-=,所以级数113n n n ∞-=∑收敛,5因此原级数绝对收敛.(2)解:因为22(21)(21)cos 22n nn n n π++≤,又因为: 22+122(23)(23)12lim =lim 12(21)2(21)2n n n nn n n n →∞→∞++=<++,所以级数21(21)2nn n ∞=+∑收敛,因此原级数绝对收敛. (3)解:级数的一般项为:11(1)(1)10n n n u -=-+,因为1lim||lim(1)1010n n n n u →∞→∞=+=≠,所以原级数的一般项不趋近 于0,原级数发散. (4*)解:这是一个交错级数11(1)n n n u ∞-=-∑,因为级数1n ∞=-∑发散(见第一节习题2(1)),所以原级数不是绝对收敛,又因为:0n n =,1n n u u +-=---==-,根据莱布尼兹定理可知,原级数收敛且是条件收敛.8*.解:先讨论0x >的情形. 当=1x 时,级数为112n ∞=∑,显然发散;当0<<1x 时,级数为正项级数,利用比值审敛法,1221+122221lim =lim lim 111n n n n n n n n n n nu x x x x x u x x x ++++→∞→∞→∞++⋅==<++, 所以此时级数211+n nn x x ∞=∑收敛且是绝对收敛; 当1x >时,同样利用比值审敛法,2121+12222111lim =lim lim1111n n n n n n n nn u x x x x u x x x +++→∞→∞→∞+++==<++,6 所以此时级数211+nnn x x∞=∑收敛且是绝对收敛; 再看<0x 的情形.当1x =-,级数为1(1)2nn ∞=-∑,显然发散;当10x -<<和1x <-时,级数为21()(1)1nn n n x x ∞=--+∑,这是一个交错级数,对其一般项取绝对值得到正项级数21()1nnn x x ∞=-+∑,按照同样的方法可知21()1nnn x x∞=-+∑收敛,也即原级数绝对收敛; 而当0x =时,级数显然收敛且绝对收敛;综合得,原级数在1x =±时发散,其他均为绝对收敛. 9*.证明:设111(1)n n n a S ∞-=-=∑,若∑∞=-112n n a 收敛,设2121n n aS ∞-==∑,则122121111(1)n n n n n n n a a a S S ∞∞∞--====--=-∑∑∑,即21nn a∞=∑收敛,所以22-111(+)nn n n n aa a ∞∞===∑∑收敛,与11(1)n n n a ∞-=-∑条件收敛矛盾,所以∑∞=-112n n a 发散.因为11(1)n n n a ∞-=-∑条件收敛,所以∑∞=1n n a 发散.10*证明:因为222||0nnn n a b a b +≥≥,所以∑∞=1n nnba 收敛;因为2220()2||n n n nn n a b a b a b ≤+≤++,所以∑∞=+12)(n n nb a收敛;令1n b n =,因为∑∞=12n n b 收敛,所以∑∞=1n n n b a 收敛,即∑∞=1n n na 收敛.第三节 幂级数1.填空:(1)绝对收敛 ; 绝对收敛 .(2)1ρ;+∞;_0_.(3)_1_,7 (-1,1).(4)12=R R ;(5) (),R R -.2.选择:(1)B .(2)B . (3)A . (4)C . (5*)B (提示:令=1y x -,则1111(1)n n n n n n na x na y ∞∞++==-=∑∑21211=()n n n n n n yna yy a y ∞∞-=='=∑∑).(6)B .(7)D .3. 求下列幂级数的收敛域:(1)解:因为+11=lim lim 02(1)n n n na a n ρ→∞→∞==+,收敛半径为R =+∞,收敛域为(,)-∞+∞.(2)解:因为12121(1)(1)limlim 11(1)n n n n n na n a nρ++→∞→∞-+===-, 所以收敛半径1R =,收敛区间为(1,1)-;当1x =时,级数为211(1)nn n ∞=-∑,这是一个绝对收敛级数; 当1x =-时,级数为211n n∞=∑,这是一个收敛的正项级数; 综合得原级数的收敛域为[1,1]-.(3)解:121limlim 121n n n n a n a n +→∞→∞-==+1R ⇒=, 故当231x -<,即12x <<时级数绝对收敛,当1x =时,11(1)(1)12121n n n n n n ∞∞==--=--∑∑,级数发散,当2x =时, 1(1)21nn n ∞=--∑为收敛的交错级数,所以原级数的收敛域为(1,2].(4)解:这是一个缺奇次项的幂级数,直接使用比值审敛法得:1()lim ()n n n nu x u x +→∞=2222n x x =⋅=,8 所以当22<1x,即x <<时,级数绝对收敛;当22>1x时,即x >或<x -时,原级数发散;当x =时,级数为1n ∞=∑,发散;当x =时,级数为21(1)nn ∞=--∑,发散(见第一节习题2(1));所以,级数的收敛域为(-.(5*)解:因为+111111+231=limlim 111123n n n na n n a nρ→∞→∞+++⋅⋅⋅++=+++⋅⋅⋅+11lim(1)111123n n n→∞+=++++⋅⋅⋅+,因为正项级数11n n ∞=∑发散,因此111lim(1)23n n →∞+++⋅⋅⋅+=+∞,所以上述的=1ρ,即级数的收敛半径为1,收敛区间为(1,1)-.当1x =±时,级数为∑∞=+⋅⋅⋅+++1)131211(n n x n,因为 111=1()23n u n n+++⋅⋅⋅+→∞→∞, 所以发散,综合得原级数的收敛域为(1,1)-. 4.求下列幂级数的收敛域与和函数:(1)解:先求收敛域:利用比值审敛法可得454141()45lim lim =()41n n n n n nx u x n x u x x n +++→∞→∞+=+, 因此,当41x <,即||1x <时,级数收敛; 当1x =时,级数为141n n ∞=+∑,发散;当1x =-时,级数为1()41n n ∞=-+∑,发散,所以级数的收敛域为(1,1)-.9为求和函数,令410()=41n n x s x n +∞=+∑,两端同时求导得:4141440001()==,(1,1)41411-n n n n n n x x s x x x n n x ++∞∞∞===''⎛⎫⎛⎫'==∈- ⎪ ⎪++⎝⎭⎝⎭∑∑∑再两端同时积分得:400111+1()(0)=()==ln arctan 4121-xxx s x s s x dx dx x x x '-+-⎰⎰, 显然(0)=0s ,所以原级数的和函数为11+1()=ln arctan ,(1,1)412x s x x x x +∈--.(2)解:212121(22)lim lim 2n n n n n nu x n x u x n ++-→∞→∞+==, 故当211x x <⇒<时级数绝对收敛,当||1x >时,级数发散. 当1x =-时,21112(1)2n n n n n ∞∞-==-=-∑∑发散,当1x =时,12n n ∞=∑发散,⇒ 收敛域为(1,1)-.令211()2(0)0n n S x nxS ∞-==⇒=∑2212211()21xxn nn n x S t dt ntdt xx ∞∞-==⇒===-∑∑⎰⎰22222()(||1)1(1)x x S x x xx '⎛⎫⇒==< ⎪--⎝⎭. (3)解:先求收敛域:因为1(+1)(+2)limlim 1(+1)n n n n a n n a n n ρ+→∞→∞===, 所以收敛半径为1,明显当1x =±原级数发散,故级数的收敛域为(1,1)-;令1()(1)(0)0nn S x n n xS ∞==+⇒=∑,121111()(1)xx nn n n n n S t dt n n t dt nxxnx∞∞∞+-===⇒=+==∑∑∑⎰⎰222211(1)n n x x x x x x x ∞=''⎛⎫⎛⎫=== ⎪ ⎪--⎝⎭⎝⎭∑ 2232()(||1)(1)(1)x x S x x x x '⎛⎫⇒==< ⎪--⎝⎭.10(4)解:212121(21)lim lim (21)n n n n n nu x n x u x n ++-→∞→∞-==+,故当211x x <⇒<时级数绝对收敛, 当||1x >时,级数发散.当1x =-时, 12111(1)(1)(1)2121n n n n n n n +∞∞-==---=--∑∑为收敛的交错级数,当1x =时, 11(1)21n n n +∞=--∑为收敛的交错级数,⇒ 收敛域为[1,1]-.令1211(1)()(0)021n n n x S x S n +-∞=-=⇒=-∑, 122211()(1)1n n n S x x x∞+-='⇒=-=+∑ 201()(0)arctan 1xS x S dt x t ⇒-==+⎰()arctan (11)S x x x ⇒=-≤≤.第四节 函数展开成幂级数1.将下列函数展开成x 的幂级数,并求展开式成立的区间:(1)解:利用间接展开法.因为=0=,(,)!nxn x e x n ∞∈-∞+∞∑,所以ln ln 00(ln )(ln ),(,)!!xn n xa x ann n x a a a eex x n n ∞∞======∈-∞+∞∑∑.(2)解:利用间接展开法.因为1(1)ln(1)=,(1,1]1n n n x x x n ∞+=-+∈-+∑,所以 ln()=ln[(1)]ln ln(1)x xa x a a a a++=++110(1)ln ,(,](1)nn n n a x x a a n a∞++=-=+∈-+∑. (3*)解:利用间接展开法.因为2(1)(1)...(1)(1)1...,||12!!m nm m m m m n x mx x x x n ---++=++++<122(1)x x -=⋅+11357113135...,(1,1]224246x x x x x ⋅⋅⋅=-+-+∈-⋅⋅⋅. 注:当1=2m -时,在右端点处收敛.(4)解:利用间接展开法.因为20(1)cos =,(,)(2)!n nn t t x n ∞=-∈-∞+∞∑,所以22100000(1)(1)cos d =[]d d (2)!(2)!n nxxx n n n n t t t t t t t t n n ∞∞+==--=∑∑⎰⎰⎰ 212200(1)(1)=d ,(,)(2)!(2)!(22)n nxn n n n t t t x n n n ∞∞++==--=∈-∞+∞+∑∑⎰. 2. 解:111(1)=,(,)!nx x x x x e ee e e x n ∞-+-=-=⋅=∈-∞+∞∑.3.解:011111(2),(0,4)2422212n n n x x x x ∞==⋅=-∈---∑. 4.解:将sin x 变形为:1sin sin[()])cos()662626x x x x ππππ=-+=-+-, 利用sin x 和cos x 的展开式可得2-121211sin ()()...221!622!6(1))(),(,)622n!6n n n x x x x x x ππππ-=+---++⋅⋅--+-∈-∞+∞⋅.5.解:211=()34154x x x x x x ----+5(5)111=()531(5)414x x x +--⋅-+-+111005111=(1)(1)(5)(1)(1)(5)3344n n nn n n n n x x ∞∞+++==---+---∑∑, 其中第一个展开式的收敛域为|5|<1x -,第二个展开式的收敛域为|5|<14x -,所以原函数的展开式的收敛域为|5|<1x -,即46x <<.第五节 函数的幂级数展开式的应用1.利用函数的幂级数的展开式求下列各数的近似值: (1)解:根据ln (1+)x 的展开式可得:35111ln2(...)(11)135x x x x x x +=+++-<<-(见教材)12令1=51x x +-,解得2(1,1)3x =∈-,带入上述展开式可得 35793579212121212ln 52(...)335793333=+⋅+⋅+⋅+⋅,如果取前五项作为其近似值,则1113151751113151712121212||=2(...)111315173333r ⋅+⋅+⋅+⋅+1123112312114114114=2(1...)111391517399⋅⋅+⋅+⋅+⋅+1123112322444(1...)119399<⋅++++ 111111112212290.00384111153319<⋅⋅=⋅⋅≈-,符合误差要求,因此取前五项作为其近似值,即35793579212121212ln 52() 1.61335793333≈+⋅+⋅+⋅+⋅≈.(2)解:根据cos x 的幂级数展开式可得246111cos18cos1()()() (10)2!104!106!10ππππ==-+-+, 6-61() 1.335106!10π≈⨯,所以取前四项作为近似值,即 246111cos181()()()0.950992!104!106!10πππ=-+-≈.(3)解:根据cos x 的幂级数展开式可得2621cos 111...2!4!6!x x x x -=-++, 于是可得0.50.5262001cos 111d =(...)d 2!4!6!x x x x x x--++⎰⎰ 3511111111=()()...0.123272!24!326!52⋅-⋅⋅+⋅⋅+≈. 2.解:因为sin arctan x x 、的展开式分为可以写为:33sin ()3!x x x o x =-+,33arctan ()3x x x o x =-+,所以3333001()sin arctan 16lim lim 6x x x o x x x x x→→+-==.第七节 傅里叶级数1.填空:(1)其中的任何两个不同函数的乘积在区间[,]ππ-上的积分为130,相同函数的乘积在此区间上积分不为0 . (2)1()d f x x πππ-⎰,1()cos d (1,2,...)f x nx x n πππ-=⎰,1()sin d (1,2,...)f x nx x n πππ-=⎰. (3)02=0,()sin d n n a b f x nx x ππ=⎰.(4)1+π.(5)在一个周期内连续或者只有有限个第一类间断点 , 在一个周期内至多有有限个极值点 , 收敛 ,()f x , 左右极限均值.2.下列函数以π2为周期,且在[,)ππ-上取值如下,试将其展开成傅里叶级数:(1)解:先利用系数公式得出傅里叶级数.2220111()d d ()2x xx a f x x e x e e πππππππ---===-⎰⎰, 22212()(1)()cos ,( 1.2 (4)n e ea f x nxdx n n ππππππ----==⋅=+⎰, 2-2121(1)()sin ,(n=1,2...)4n n e e nb f x nxdx nππππππ+---==⋅+⎰, 所以,函数的傅里叶级数为2-22221(1)()(2cos sin )44nn e e e e f x nx n nx nππππππ-∞=---+-+∑. 再考虑其收敛性.易知函数满足收敛性定理的条件,其不连续点为(21)(0,1,2,...)x k k π=+=±±,在这些点处,上述的傅里叶级数收敛于左右极限的均值,即22(0)(0)22f x f x e e ππ-++-+=,在连续点处,傅里叶级数收敛于函数2()=xf x e ,因此2-22221(1)()(2cos sin )44nn e e e e f x nx n nx nππππππ-∞=---=+-+∑(,),(21)(0,1,2,...)x x k k π∈-∞+∞≠+=±±.(2)解:先根据系数公式求傅里叶级数.40113()d sin d 4a f x x x x ππππππ--===⎰⎰, 41131sin cos (2cos2cos4)cos 422n a x nxdx x x nxdx ππππππ--==-+⎰⎰, 根据三角函数系的正交性,仅当=2,=4n n 时,0n a ≠,易得142411,28a a =-=,由于4()sin f x x =是[,]ππ-的偶函数,故0n b =; 又因为函数4()sin f x x =是连续函数,所以可得:311()cos 2cos 4,<<828f x x x x =-+-∞∞.3.解:(1) ()()f x x x ππ=-<<作周期延拓的图象如下:其分段光滑,故可展开为傅里叶级数. 由系数公式得.当时,,,所以 11sin ()2(1)()n n nxf x x xππ∞+==--<<∑,为所求. (2)()(02)f x x x π=<<作周期延拓的图象如下:其分段光滑,故可展开为傅里叶级数. 由系数公式得.当时,011()d d 0a f x x x x ππππππ--===⎰⎰1n ≥11cos d d(sin )n a x nx x x nx n ππππππ--==⎰⎰11sin sin d 0|x nx nx x n n ππππππ--=-=⎰11sin d d(cos )n b x nx x x nx n ππππππ---==⎰⎰1112cos cos d (1)|n x nx nx x n n n ππππππ+---=+=-⎰220011()d d 2a f x x x x πππππ===⎰⎰1n ≥22011cos d d(sin )n a x nx x x nx n ππππ==⎰⎰15 ,,所以1sin ()2(02)n nxf x x x ππ∞==-<<∑,为所求. 4.解:要展开为余弦级数,需对函数进行偶延拓,即定义函数1cos 02()cos ,02x x f x x x ππ⎧≤≤⎪⎪=⎨⎪-≤≤⎪⎩,,并将1()f x 以2π周期延拓到整个数轴,得到偶函数()g x . 对()g x 进行傅里叶展开,显然有0n b =,且0024cos d 2x a x πππ==⎰,2024(1)cos cos d ()(=1,2,...)241nn x a nx x n n πππ-==--⎰,根据上述系数即可得到()g x 在整个数轴上的傅里叶展开式,由于()g x 连续,所以其傅里叶均收敛于()g x ,最后将展开式限制在[0,]π,既得()cos2xf x =的傅里叶展开式 2124(1)()cos ,[0,]41nn f x nx x n πππ∞=-=--∈-∑.4.解:将函数进行奇延拓,并求傅里叶系数:0(0,1,2,...)n a n ==,021sin [(1)1](1,2,...)42n n b nxdx n nπππ==---=⎰,因此函数()4f x π=的正弦级数展开式为11sin +sin 3sin 5...(0,)435x x x x ππ=++∈, 根据收敛性定理,在端点=0,=x x π处傅里叶级数收敛于零.令上式中的=2x π,即可得到1111 (4357)π=-+-+.第八节 一般周期函数的傅里叶级数1.填空:220011sin sin d 0|x nx nx x n n ππππ=-=⎰220011sin d d(cos )n b x nx x x nx n ππππ-==⎰⎰2200112cos cos d |x nx nx x n n n ππππ--=+=⎰16(1)-1()cos (0,1,2...)l n l n xa f x dx n l lπ==⎰-1()sin (1,2...)l n l n x b f x dx n l l π==⎰.(2)02()sin(n=1,2...)l n xf x dx l lπ⎰. 2.解:为展开为正弦级数,先将函数()f x 做奇延拓,其傅里叶系数为0(0,1,2,...)n a n ==;20222sin +(-)sin ll l n n x n xb x dx l x dx l l l lππ=⎰⎰224=sin2l n n ππ, 所以1()=sinn n n xf x b lπ∞=∑ 22224131517=(sin sin +sin sin +...)357l x x x xl l l l πππππ--, 由于()f x 连续,上述展开式对于任意的[0,]x l ∈均成立. 3.解:()2+||f x x =为偶函数,所以展为余弦级数,其系数为0(1,2,...)n b n ==,1002(2)d 5a x x =+=⎰,1222(cos 1)2(2)cos()(1,2,...)n n a x n x dx n n πππ-=+==⎰, 因为函数()2+||f x x =满足狄氏收敛定理,所以22152(cos 1)2||cos 2n n x n x n πππ∞=-+=+∑ 2225411(cos cos3cos5...)()235x x x x ππππ=-+++-∞≤≤∞. 令上式中的=0x ,可得2222111 (8135)π+++=,又2222222=11111111(...)(...)135246n n ∞=+++++++∑ 2222221111111(...)(...)4135123=+++++++所以22222=114111=(...)=36135n nπ∞+++∑.第十二章 自测题1.填空:17 (1)仍收敛于原来的和s .(2) 均收敛 ; 均发散 . (3)_1_;_2__.(4)34, 12, 34. 2.选择:(1)C .(2)A (提示:使用阿贝尔定理).(3)D (提示:ln ln ln 2ln ln 2ln 22()n n n e e n λλλλ--⋅--===). (4)B .(5)A . (6)C .3.判别下列级数的敛散性,若收敛指出绝对收敛或条件收敛: (1)解:根据正项级数的根值审敛法,有(!)lim n n n n →∞=+∞, 所以,原级数发散.(2)解:因为2211sin 4n n n π≤,而211n n∞=∑收敛, 所以原级数收敛且绝对收敛.(3)解:这是一个交错级数,由于(1)11=-ln -ln n n n n n n-≥,所以不是绝对收敛.因为111ln(1)ln n n n n-+-+-1ln(1)10(ln )[1ln(1)]n n n n n +-=<-+-+,且1lim=0ln n n n→∞-,根据莱布尼兹定理,级数收敛,即原级数条件收敛.(4*)解:根据比值审敛法,有1(1)lim ||lim ||1n pp n n n pa n n a a n a n +→∞→∞+⎛⎫== ⎪+⎝⎭, 所以,当||<1a 时,即11a -<<时,级数绝对收敛; 当||1a >,根据罗比达法则可知212+++ln (ln )lim lim lim(1)x x x p p p x x x a a a a a x px p p x --→∞→∞→∞=-, 因为p 是常数,有限次使用罗比达法则,可求出上述极限为无穷,因此lim np n a n→∞=∞,所以原级数发散;当1a =时,级数既为11pn n∞=∑,此时若01p <≤时,原级数18 发散,若1p >原级数收敛且绝对收敛;当1a =-时,级数既为1(1)npn n∞=-∑,此时,若01p <≤时,根据莱布尼兹定理可知,原级数条件收敛,若1p >时,根据比较审敛法可知,原级数绝对收敛.4.解:因为11113+(2)[3+(2)]1lim lim 3+(2)(1)[3+(2)]n n n n n nn n n n n n n n++++→∞→∞--+=-+-12[1+()]3lim 3112(1)[1+()]33n n nn +→∞-==+⋅⋅-,所以,级数的收敛半径为13,收敛区间为42(,)33--;在端点4=3x -处,级数为12(1)+()3nnn n ∞=-∑,因为级数11(1)21,()3n n n n n n ∞∞==-⋅∑∑均收敛,所以在此点处,原级数收敛; 在端点2=3x -处,级数为121+()3nn n ∞=-∑,因为级数11,n n ∞=∑发散,而121()3nn n∞=-⋅∑收敛,所以在此端点处,原级数发散; 综合得,原级数的收敛域为42[,)33--. 5.解:先利用比值审敛法求幂级数的收敛域.因为2+222(2+2)!lim =lim (2+2)(2+1)(2)!n n n n x x n n n xn →∞→∞=+∞, 所以级数的收敛域为(,)-∞+∞;令22420()1......(2)!2!4!(2)!n nn x x x x s x n n ∞===+++++∑, 则3521()+......3!5!(21)!n x x x s x x n -'=++++-,所以 234()()1......2!3!4!!nx x x x x s x s x x e n '+=+++++++=,19 即()()x s x s x e '+=,这是一个一阶线性微分方程,解之得1()+2x x s x ce e -=.又因为(0)1s =,带入求得常数12c =,所以幂级数的和函数为11()(,)22x xs x e e x -=+∈-∞+∞,.6.解:因为2ln(12)ln(1)ln(12)x x x x +-=-++,而11(1)ln(1)(11)n nn x x x n -∞=-+=-<≤∑,所以,=1ln(1)(11)nn x x x n∞-=--≤<∑,1=1(1)211ln(12)()22n n n n x x x n -∞-+=-<≤∑,于是得出原函数的展开式为12=1(1)2111ln(12)=()22n n n n x x x x n -∞--+--<≤∑.7.解:为展开为正弦级数,先将函数()f x 在[,0)π-上做奇延拓,再延拓到整个数轴,并求傅里叶系数0(0,1,2...)n a n ==, 02()sin d n b f x nx x ππ=⎰202sin d x nx x ππ=⎰221sincos (1,2,...)22n n n n n πππ=-=, 因此可得函数()f x 在[0,)π的傅里叶级数2=121()(sincos )sin ([0,),)222n n n f x nx x x n n πππππ∞=-∈≠∑, 由于3=2x π-为函数的不连续点,根据狄氏收敛性定理,和函数在3=2x π-处的值3()2s π-为左右极限的均值,即31()=24s ππ-,而5=4x π是函数的连续点,在此点处,收敛于(延拓后的)函数()f x ,即5()=04s π.8.考研题练练看:(1)C .解析:幂级数1(1)k kk ax ∞=-∑的收敛域中心为1x =,而20 =1(1,2,...)n n k k S a n ==∑无界表明1(1)k k k a x ∞=-∑在2x =发散,因此幂级数的收敛半径1R ≤,同时,根据莱布尼兹定理,数列{}n a 单减且收敛于0,表明1(1)kkk ax ∞=-∑在0x =收敛,因此幂级数的收敛半径1R ≥,综合得收敛半径为=1R ,因此选C . (2)A .解析:若1n n u ∞=∑收敛,则对其任意项加括号后仍收敛,其逆命题不一定成立,所以选A . (3)D .解析:=11(1)a n n ∞-∑绝对收敛,即1=121a n n∞-∑收敛,所以32α>,又由2=1(1)n a n n ∞--∑条件收敛可知12α≤<,所以选D .(4)C .解析:根据题意,将函数在[]1,1-展开成傅里叶级数(只含有正弦,不含余弦),因此将函数进行奇延拓:1,(0,1)2()1,(1,0)2x x f x x x ⎧-∈⎪⎪=⎨⎪-+∈-⎪⎩,其傅里叶级数以2为周期,则当()1,1x ∈-且()f x 在x 处连续时,()()S x f x =,所以 91111()()()()44444S S S f -=-=-=-=-.(5)D .解析:因为1P >时,=11P n n ∞∑收敛,且lim =lim 1Pn n n n Pa n a n →∞→∞存在,所以=1nn a∞∑收敛.(6)解:先求收敛域.222212(1)212+1lim lim 12+1(1)21n n n n n nxn n x x n x n +-→∞→∞--==<--,即11x -<<时级数绝对收敛;当=1x ±时,级数为1=1(1)21n n n -∞--∑,根据莱布尼兹定理,可知21此级数收敛,因此原级数的收敛域为[1,1]-.为求和函数,设112211=1(1)(1)()2121n n n n n n s x x x xn n --∞∞-=--==--∑∑, 令1211=1(1)()21n n n s x xn -∞--=-∑,则 1212112=1=1(1)1()=() (11)211n n n n n s x x x x n x -∞∞--'⎛⎫-'=-=-<< ⎪-+⎝⎭∑∑, 两端同时积分,得11201()(0)d arctan (11)1xs x s x x x x -==-<<+⎰,明显1(0)0s =,所以1()arctan (11)s x x x =-<<,既得()arctan (11)s x x x x =-<<,又因为=1x ±时,()arctan s x x x ,都有定义,且连续,所以()arctan (11)s x x x x =-≤≤.(7)B.(8)解:先求收敛域.22224(+1)4(+1)321lim 12(1)1443n n n n x x n n n →∞+++⋅⋅=<++++, 即11x -<<时级数绝对收敛;当=1x ±时,级数为2=044321n n n n ∞+++∑,发散,因此幂级数的收敛域为11x -<<.为求和函数,设2222=0=0443(21)2()==2121n nn n n n n S x x x n n ∞∞++++++∑∑,所以22=0=02()=(21)21nn n n S x n xx n ∞∞+++∑∑,令2212=0=02()=(21)()21nn n n S x n x S x x n ∞∞+=+∑∑,,对1()S x 两端积分得210=0()d =(21)d xx nn S x x n x x ∞+∑⎰⎰212=0= (11)1n n xx x x∞+=-<<-∑, 两端求导得212221()= (11)1(1)xx S x x xx '+⎛⎫=-<< ⎪--⎝⎭;22因为212=02()21n n xS x x n ∞+=+∑,两边求导得 222=02[()]2 (11)1n n xS x x x x ∞'==-<<-∑, 再对两端积分得22021()0(0) ln (11)11xxxS x S dx x xx +-⋅==-<<--⎰,所以211()ln((1,0)(0,1))1xS x x x x+=∈-⋃-, 又因为=0x 时,12(0) 1.(0)2S S ==,综合可得和函数为222111ln ,(1,0)(0,1)()1(1)3, 0x xx S x x xx x ⎧+++∈-⋃⎪=--⎨⎪=⎩. (9)(i)证明:由题意得1=1()n nn S x na x∞-'=∑,22=2=0()(1)(1)(2)n nn n n n S x n n a xn n a x ∞∞-+''=-=++∑∑,2(1)0n n a n n a ---=,2=(1)(2)(0,1,2...)n n a n n a n +∴++=, ()=()S x S x ''∴,即()()0S x S x ''-=.(ii) 解:()()0S x S x ''-=为二阶常系数齐次线性微分方程,其特征方程为210λ-=,从而特征根为1λ=±,于是其通解为12()x xS x C e C e -=+,由0(0)3S a ==,1(0)1S a '==得1212123121C C C C C C +=⎧⇒==⎨-+=⎩,,所以()2x x S x e e -=+. (10)解:(1)证明:由cos cos n n n a a b -=,及0,022n n a b ππ<<<<可得0cos cos 2n n n a a b π<=-<,所以02n n a b π<<<,由于级数1nn b∞=∑收敛,所以级数1nn a∞=∑也收敛,由收敛的必要条件可得lim 0n n a →∞=.(2)证明:由于0,022n n a b ππ<<<<,23 所以sin ,sin 2222n n n n n n n na b a b b a b a ++--≤≤2222sin sin cos cos 22222222n n nnn n n n n nn n n nn n n nn n n a b b a a a b b b b a b b a b a b b b b b +--==+--≤=<=由于级数1nn b∞=∑收敛,由正项级数的比较审敛法可知级数1nn na b ∞=∑收敛. (11)解:由于1lim1n n na a +→∞=,所以得到收敛半径1R =. 当1x =±时,级数的一般项不趋于零,是发散的,所以收敛域为()1,1-.令和函数)(x S =0(1)(3)n n n n x ∞=++∑,则2111()(43)(2)(1)(1)nn n nn n S x n n x n n x n x ∞=∞∞===++=++++∑∑∑211123"'3"'11(1)n n n n x x x x x x x x ∞∞++==⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭⎛⎫-⎛⎫=+= ⎪ ⎪---⎝⎭⎝⎭∑∑。
第十二章 数项级数习题课 一 概念叙述 1.∑∞=1n nu收敛于S ⇔部分和数列{}n S 收敛于S ⇔S S n n =∞→lim2.nu ∑收敛的柯西准则⇔0,0,,,N m n N ∀ε>∃>∀>有12m m n u u u +++++<ε.3.nu∑发散的柯西准则⇔0ε∃ N ∀,0()m N ∃>,0p ∃,有0210000ε≥++++++p m m m u u u 二 疑难解析与注意事项1.有人说,既然一个级数是无限多个数“相加”的结果,而数的加法满足交换律和结合律,所以在一个级数中,可以任意交换项的次序,也可以任意加括号.这种说法对吗?答:不对.一个收敛级数,适当改变项的次序以后,可能得到一个发散级数;即使得到的仍收敛级数,其和也可能与原级数的不同.这就是无限项相加与有限项相加的质的不同.(条件收敛的级数重排后所得到的级数,不一定收敛;即使收敛,也不一定收敛于原来的和数;条件收敛的级数适当重排后,可得到发散级数,或收敛于事先指定的任何数.)当然,如果仅仅交换一个级数的有限项的次序,则级数的敛散性不变.(去掉、增加或改变级数的有限个项并不改变级数的敛散性;级数的敛散性与级数的有限个项无关,但当收敛时其和可能是要改变的.)如果一个级数是正项级数或是绝对收敛的级数,则可以任意改变一个级数的项的次序,其收敛性不变,且和也不变.(绝对收敛的级数任意重排后所得到的级数也绝对收敛亦有相同的和数.) 类似地,一个收敛级数可以任意加括号,加括号后的级数与原来的级数有相同的收敛性与相同的和;(在收敛级数的项中任意加括号,既不改变级数的收敛性,也不改变它的和.) 但一个发散级数,经适当添加无限个括号后,可能变成一个收敛级数.有一种特殊情形,如果添加括号后,每个括号中的项都保持同一正,负号,则所得级数与原级数同收敛,且和(如有的话)也不变.2.级数n u ∑,n v ∑,()n n u v +∑的敛散性有何联系?答:1)若n u ∑与n v ∑都收敛,则()n n u v +∑收敛,且()n n n n u v u v +=+∑∑∑;2)若n u ∑与n v ∑中有一个收敛有一个发散,则()n n u v +∑发散; 3)若n u ∑与n v ∑都发散,则()n n u v +∑可能收敛可能发散. 例如,11,n n ⎛⎫- ⎪⎝⎭∑∑都发散,但110n n ⎛⎫-= ⎪⎝⎭∑收敛,11,n n ∑∑都发散,但112n n n ⎛⎫+= ⎪⎝⎭∑∑发散.3.设级数n u ∑,n v ∑都是发散级数,则()n n u v ∑发散吗? 答:不一定,()n n u v ∑可能收敛,可能发散. 例如,11,n n ∑∑都发散,但2111n n n ⎛⎫⋅= ⎪⎝⎭∑∑收敛.,n n ∑∑都发散,()2n n n⋅=∑∑也发散.4.若加括号后的级数收敛,加括号前的级数收敛吗?答:从级数加括号后的收敛,不能推断它在未加括号前也收敛,例如+-++-+-)11()11()11(0000=++++=收敛,而级数+-+-1111是发散的.但级数加括号后发散,则原级数一定发散. 5.级数nu∑收敛,与0lim =∞→n n u 有什么关系?答:nu∑收敛0lim =∞→n n u ,但lim 0n n n u u →∞≠⇒∑发散.6.若级数nu∑对每个固定的p 满足条件()1lim 0n n p n u u ++→∞++=,则级数nu∑一定收敛吗?答:不一定,这里说法与柯西准则有本质的不同,这里是对固定的p ,可找到与任给正数ε有关的N (这里一般与p 还有关),使得当n N >,有12n n n p u u u ++++++<ε,而nu∑收敛的柯西准则⇔0,0,,0,N n N p ∀ε>∃>∀>∀>有12n n n p u u u ++++++<ε.例如,级数1n ∑,对每个固定的p ,都有111111lim lim lim lim01212n nn n n n n p n n n p→∞→∞→∞→∞⎛⎫+++=+++=⎪++++++⎝⎭,但级数1n ∑发散.7.1)若nb ∑和nc∑都收敛,且n n n b a c ≤≤,则na ∑收敛吗? 2)若n b ∑和n c∑都发散,且n n n b a c ≤≤,则na∑发散吗? 答:1) 若nb ∑和nc∑都收敛,且n n n b a c ≤≤,则na∑收敛.由n n n b a c ≤≤得0n n n n a b c b ≤-≤-,而()nn cb -∑收敛,由比较原则得()n n a b -∑,因此na∑收敛.(注意比较原则适用于正项级数,不能直接由nc∑收敛得na∑收敛)2)不一定,例如1nb n ⎛⎫=-⎪⎝⎭∑∑,1n c n =∑∑,0na =,na∑收敛,假如还有条件0n b ≥,则na∑发散,这由比较原则得到.8.设∑n u 为正项级数,且11n nu u +<,则级数∑nu收敛吗?答:不一定,例如∑n 1满足111111n n u nn u n n++==<+,但∑n 1发散,因此一定要强调11n nu q u +≤<. 9.如何判断正项级数的敛散性?答:1)先判断n u ∑的通项n u 的极限是否为0,若lim 0n n u →∞≠,则n u ∑发散,若lim 0n n u →∞=,则需继续判断;2)根据通项特点选取合适的方法判断正项级数的敛散性: 若通项很容易找等价无穷小量就用比较原则的极限形式;若通项含有阶乘连乘n 次幂等因子时用比式判别法的极限形式; 若通项含有n 次幂因子时用根式判别法的极限形式; 若通项非负单调用积分判别法.若上述方法失效用比较原则(例如含sin n 等容易放缩成已知收敛的级数)或级数收敛的定义(易求部分和).10.1)交错级数一定收敛吗? 2) 若) ( , 0 , 0∞→→>n u u n n . 交错级数∑∞=+-11)1(n n n u 是否必收敛 ?答:1)不一定,交错级数只有满足了莱布尼兹判别法的条件才收敛. 例如,()1n n -∑为交错级数,但通项极限不为0,因此()1nn -∑发散.2) 不一定,考查交错级数 +-++-+-+-2221131********nn . 这是交错级数 , 有) ( , 0 ∞→→n u n . 但该级数∑∞=⎪⎭⎫⎝⎛-1211n n n发散 . 11.n u ∑收敛与n u ∑收敛,n u ∑发散与n u ∑发散有什么关系? 答:n u ∑收敛nu∑收敛,n u ∑发散nu∑发散,但若用正项级数的比式判别法或根式判别法判断n u ∑发散,则n u ∑一定发散.因为当用比式判别法判断n u ∑发散时,条件1111n n n n nu u u u u u ++≥⇒≥≥≥⇒0⇒nu 0,于是n u ∑发散;当用根式判 别法判断n u ∑发散时,条件11n n n nu u u ≥⇒≥⇒0⇒nu 0于是n u ∑发散.12.1)n u ∑绝对收敛,n v ∑绝对收敛,则()n n u v +∑是绝对收敛还是条件收敛?2)n u ∑条件收敛,n v ∑绝对收敛,则()n n u v +∑是绝对收敛还是条件收敛? 3)n u ∑条件收敛,n v ∑条件收敛,则()n n u v +∑是绝对收敛还是条件收敛? 答:1)是绝对收敛,因为n u ∑绝对收敛(n u ∑收敛),n v ∑绝对收敛(n v ∑收敛),n n n n u v u v +≤+,且n n u v +∑收敛,因此n n u v +∑收敛,即()n n u v +∑绝对收敛.2)是条件收敛,反证法,设()n n u v +∑绝对收敛,因为n u ∑绝对收敛,则n v ∑绝对收敛,矛盾.3)收敛,但可能绝对收敛可能条件收敛.例n u ∑条件收敛,()2n n n u u u +=∑∑条件收敛;n u ∑条件收敛,()n u -∑条件收敛,但()0n n u u +-=⎡⎤⎣⎦∑是绝对收敛的.13.判断一般项级数n u ∑敛散性的步骤:答:1)先判断通项的极限是否为0,若通项的极限不为0,则n u ∑发散,若通项极限为0,则需继续判断;2)判断n u ∑的收敛性(用正项级数判别法判断)若n u ∑收敛,则n u ∑绝对收敛,若n u ∑发散,如果是用比式判别法或根式判别法判断n u ∑发散,则n u ∑发散,若不是用比式判别法且不是用根式判别法判断n u ∑发散,则需要继续判断;3)若n u ∑是交错级数,用莱布尼兹判别法,如用莱布尼兹判别法判断交错级数n u ∑收敛,则n u ∑条件收敛,若n u ∑的通项可分解成两个数列的乘积,用阿贝尔判别法或狄利克雷判别法,若判断n u ∑收敛,则n u ∑条件收敛.14.对于一般项级数n u ∑,n v ∑,如果lim 0nn nu l v →∞=≠,能否推出n u ∑与n v ∑具有相同的敛散性.答:不能,例如1n-11n n ⎡⎤-+⎥⎥⎦∑,前者收敛,后者发散,但却有1lim11nn →∞-=-.注意:正项级数与一般级数的性质有很大的差异,对正项级数成立的结论对一般级数不一定成立.读者在学习时,一定要分清那些是关于正项级数的结论,那些是关于一般项级数的结论,注意不要把仅对正项级数成立的结论随意套用到一般级数上来.15.因为1)1()1()1(lim=-+--∞→nn nn n n 1(1)+-n )(∞→n 则∑∞=-1)1(n n n 和∑∞=-+-1)1()1(n nnn 同时敛散,对吗?答:不对,比较判别法的极限形式只能用于正项级数,对变号级数不能使用. 第一个级 数是交错级数,满足莱布尼兹判别法的条件,因此收敛.第二个级数虽然是交错级数,并且它的通项与第一个级数的通项是等价无穷小量,但并不满足通项绝对值单调的条件,因此不能用莱布尼兹判别法.为了研究第二个级数的敛散性,把两个级数通项之差构成第三个级数:2nn c ∞=∑,其中1~n n n c n ==,由此可见第二个级数发散. 16.设∑∞=1n nu为收敛的正项级数, 能否存在一个正数0>ε, 使得:01lim1>=+∞→C n u nn ε? 答:不一定. 如∑∞=12ln 1n n n 收敛, 而+∞==∞→+∞→n n n n n n n 212ln lim 1ln 1lim εε. 17.若1nn u∞=∑为正项级数,判断下列语句是否正确,并说明理由.1)若lim 0n n nu →∞=,则级数1nn u∞=∑收敛吗?2)若存在非零常数λ,使得lim n n nu λ→∞=,级数1nn u∞=∑收敛性如何?3)设级数1nn u∞=∑收敛,能否推出21nn u∞=∑收敛,反之又如何?答:1)不一定:例如级数1n n u ∞=∑若为11ln n n n ∞=∑,则满足所给条件,但是发散. 2)正确:由于lim n n nu λ→∞=可写成lim 1n n u nλ→∞=,由比较法可知级数1n n u ∞=∑与11n n∞=∑具有同敛散性,即发散. 3)正确:由级数1nn u∞=∑收敛可知0()n u n →→∞.故存在0n ,当0n n >时有1n u <,从而0n n >之后恒有2n n u u <,故由级数1nn u∞=∑收敛,知21nn u∞=∑也收敛. 但反之不一定,例如,取1n u n =,则21n n u ∞=∑发散,但是1n n u ∞=∑收敛.注:要掌握常见级数,例如11p n n ∞=∑、11ln n n n ∞=∑等级数的敛散性.18. 设级数1nn u∞=∑收敛,能否推出21nn u∞=∑收敛?答: 不能,例如取()1nn u =-,()11nn ∞=-∑收敛,但11n n∞=∑发散. 三 重点习题1.几个常用级数的收敛性 1)等比级数(几何级数)∑∞=-11n n aq :当1<q 时,级数收敛于qas -=1;当1≥q 时,级数发散. 2).-p 级数∑∞=11n pn:当1>p 级数收敛;1p ≤级数发散.∑∞1n ln1=nn p,当1>p 时收敛;当1≤p 时发散3).交错-p 级数∑∞=--11)1(n pn n :当1>p 级数绝对收敛;10≤<p 级数条件收敛;0p ≤级数发散. 4)1sin pn nxn ∞=∑:当1>p 级数绝对收敛;10≤<p 级数条件收敛;0p ≤级数发散. 2.讨论下列级数的敛散性:(1)1;21n n n ∞=-∑(2)12sin ;3n n n π∞=∑ (3)1!3;n n n n n ∞=∑ (4)12(1);1(3)nn n n∞=+-+∑ (5)ln 21;3n n ∞=∑ (6)ln 21;n n n ∞=∑(7)ln 21;(ln )n n n ∞=∑ (8)21(ln )nn n ∞=∑. 解:(1)(拿到级数先判断级数的通项是否为0)因为22lim 0323n n n →∞=≠+,则121n n n ∞=-∑发散. (2)(通项易找等价无穷小量用比较原则的极限形式) 因为22sin33n n nππ⎛⎫ ⎪⎝⎭,而123nn π∞=⎛⎫⎪⎝⎭∑收敛(等比级数的公比213<). (3)(含有阶乘用比式判别法)因为()()111!3133limlim 1!311n n n n n n nn n e n n n ++→∞→∞++==≥⎛⎫+ ⎪⎝⎭,则1!3nn n n n∞=∑发散.(4)(含有n 次幂用根式判别法)因为113n =<,则12(1)1(3)n n n n ∞=+-+∑收敛.(5) 因为()ln ln3ln ln3ln ln3ln ln33nnn n e e e n ====则ln ln 322113n n n n ∞∞===∑∑,因为ln31>,则ln ln 322113n n n n∞∞===∑∑收敛. (6)因为ln 2n >(2n e >),则ln 211n n n <,因为221n n ∞=∑收敛,则ln 21n n n∞=∑收敛.(7)()ln ln ln ln ln ln ln ln ln ln ln ln 2ln nnnn n nn n neeen n ====>(n 充分大)则ln 211(ln )n n n <,因为221n n ∞=∑收敛,则ln 21(ln )nn n ∞=∑收敛. (8)因为ln 2n >(2n e >),则11(ln )2n nn <,因为212n n ∞=∑收敛, 则21(ln )nn n ∞=∑收敛. 3.判断下列级数的敛散性.若收敛,指出绝对收敛或条件收敛.1) 112(1)sin n n n ∞-=-∑; 2)()1ln 1nn n n ∞=-∑;3)nn n xn ∑∞=1)(!.证 1)先对通项加绝对值,判断12sinn n ∞=∑(当n 充分大,有202n π<<,且级数与前面有限项无关)的敛散性.因为22sinn n ,而12n n ∞=∑发散,则12sin n n ∞=∑发散.再判断通项不加绝对值的敛散性. 因为112(1)sin n n n ∞-=-∑为交错级数,且2sin n 递减(2n 递减,当n 充分大,有202n π<<,sin u 递增,则复合之后2sin n 递减)且2limsin 0n n →∞=,由莱布尼兹判别法知112(1)sin n n n ∞-=-∑收敛,综上112(1)sin n n n∞-=-∑条件收敛.2)先对通项加绝对值,判断1ln n nn∞=∑的敛散性.因为()ln 1n n e n n >>,且11n n ∞=∑发散,则1ln n n n ∞=∑发散. 再判断通项不加绝对值的敛散性. 因为()1ln 1nn nn∞=-∑为交错级数,令()ln x f x x =,则()()21ln 0x f x x e x -'=<>,即ln n n 递减且ln lim 0n nn→∞=,由莱布尼兹判别法知()1ln 1nn nn∞=-∑收敛,综上()1ln 1nn nn∞=-∑条件收敛. 3)先对通项加绝对值,判断1!()nn xn n ∞=∑的敛散性,因为()11!()1limlim 1!()1n n n n n x n x x n x e n n n +→∞→∞++==⎛⎫+ ⎪⎝⎭, 当x e <时1!()nn xn n ∞=∑收敛,nn n xn ∑∞=1)(!绝对收敛,当x e >时1!()nn xn n ∞=∑发散,因为是用比式判别法判断的,则nn n xn ∑∞=1)(!发散,当x e =时,()11!()111!()1n nn x n x n x n n n +++=≥⎛⎫+ ⎪⎝⎭,则1!()nn xn n ∞=∑发散,因为是用比式判别法判断的,则nn n x n ∑∞=1)(!发散(因为11n n ⎛⎫+ ⎪⎝⎭单调增加收敛于e ,则e 为11nn ⎛⎫+ ⎪⎝⎭的上界).注:当x e =,()11!()1limlim 11!()1n n n n n x n x x n x e n n n +→∞→∞++===⎛⎫+ ⎪⎝⎭,此时不好用比式判别法的极限判断,则我们用比式判别法判断.4. 证明:若数列}{n b 有∞=∞→n n b lim , 则(1) 级数∑∞=+-11)(n n n b b发散;(2) 当0≠n b 时,1111)11(b b b n n n =-∑∞=+. 证明: (1) 级数∑∞=+-11)(n n n b b的部分和1111)(b b b b S n nk k k n -=-=+=+∑,而 ∞=-=+∞→∞→)(lim lim 11b b S n n n n , 故级数∑∞=+-11)(n n n b b发散.(2) 级数∑∞=+-11)11(n n n b b 的部分和111111)11(+=+-=-=∑n nk k k n b b b b S ,故 1111)11(lim lim b b b S n n n n =-=+∞→∞→∑∞=+-=11)11(n n n b b . 5. 设),2,1(0 =≥n u n ,证明:如果级数∑∞=1n n u 收敛,则级数∑∞=12n nu与级数∑∞=1n n nu都收敛.证 1)先证∑∞=12n n u 收敛:因级数∑∞=1n n u 收敛,则lim 0→∞=n n u ,故当n 充分大时,1<n u ,因而n n u u ≤2,由比较判别法知级数∑∞=12n n u 收敛.2)证∑∞=1n n nu 收敛:因)1(212n nu n n u +≤,且∑∞=121n n 和∑∞=1n n u 均收敛,所以由比较判别法知级数∑∞=1n n nu 收敛.6. 应用级数理论证明极限: (1) 0)13(852!lim=-⋅⋅∞→n n n ;(2)0!lim =∞→n n nn .分析 如果级数∑∞=1n n u 收敛,则0lim =∞→n n u ,这个结果称为级数收敛的必要条件.把数列的通项看成某级数的通项,而对此级数的收敛性的判别又较容易,则由级数收敛的必要条件,立即得出数列的极限.证 (1)考虑级数∑∞=1n n u ,)13(852!-⋅⋅=n n u n , 由于131!)13(852)23)(13(852)!1(lim lim1<=-⋅⋅⋅+-⋅⋅+=∞→+∞→n n n n n u u n nn n ,所以级数∑∞=1n n u 收敛,由级数收敛的必要条件知0)13(852!limlim =-⋅⋅=∞→∞→n n u n n n .(2)考虑级数∑∞=1!n n nn ,由于 ()()11!111limlim1!11+→∞→∞++==<⎛⎫+ ⎪⎝⎭n nn n nn n n en n 所以级数∑∞=1!n n nn 收敛,由级数收敛的必要条件即知 0!lim =∞→n n n n . 7.证明:若∑∞=--11||n n na a收敛,则}{n a 收敛.分析 这是一个抽象的数列和级数,且条件类型相当于知道相邻两项的估计,由此可得任意两项差的估计,故考虑用Cauchy 收敛准则.证明:由于∑∞=--11||n n na a收敛,则由Cauchy 收敛准则,对0,存在N ,当n N>时,对任意的正整数p ,成立11||||nn npnp a a a a ,因而,11||||||npn nn npnp a a a a a a ,再次用数列收敛的Cauchy 收敛准则得:}{n a 收敛.8.设∑∞=1n na收敛且0lim =+∞→n n na ,证明:∑∞=+=-11)(n n na an ∑∞=1n n a .证明:记∑∞=+-11)(n n na an 的部分和为n S ,则11111)1(++=+=+-=-=∑∑n n k k n nk kn a n a na aS取极限即可得到结论.注.从证明过程中发现,除去定量关系,上述结论的逆也成立,即在条件lim 0n n nu →+∞=下若11()nn n n u u 收敛,则∑∞=1n n u 也收敛.同样,在11()nn n n u u ,1n n u ∞=∑都收敛的条件下,{}n nu 也收敛.9. 判断∑∞=++++-1)]!1!21!111([n n e 敛散性. 解 利用函数泰勒展开1111 011!2!!(1)!e e n n ξξ=+++++<<+, 故, 1110(1)1!2!!(1)!e e n n ,因而,该级数收敛.。