当前位置:文档之家› 2019年北京中考数学试题(解析版)

2019年北京中考数学试题(解析版)

2019年北京中考数学试题(解析版)
2019年北京中考数学试题(解析版)

{来源}2019年北京中考数学试卷

{适用范围:3.九年级}

{标题}2019年北京市中考数学试卷

考试时间:120分钟满分:100分

{题型:1-选择题}一、选择题:本大题共8小题,每小题2分,合计16分.

{题目}1.(2019年北京)4月24日是中国航天日.1970年的这一天,我国自行设计、制造的第一颗人造地球卫星“东方紅一号”成功发射,标志着中国从此进入了太空时代,它的运行轨道距地球最近点439000米,将439 000用科学记数法表示应为

A.0.439×106

B.4.39×106

C.4.39×105

D.439 ×103

{答案}C

{解析}本题考查了用科学记数法表示较大的数,科学记数法的表示形式为a×10n的形式,其中

1≤|a|<10,n为整数.439 000=4.39×100000=4.39×105,故本题答案为C.

{分值}2

{章节:[1-1-5-2]科学计数法}

{考点:将一个绝对值较大的数科学计数法}

{类别:常考题}

{难度:1-最简单}

{题目}2.(2019年北京)下列但导节约的图案中,是轴对称图形的是()

A B C D

{答案}C

{解析}本题考查了轴对称图形的识.如果一个图形沿某直线对折后,这线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形,这条直线叫做对称轴.根据轴对称图形的定义可知选项C 中的图形是轴对称图形.

{分值}2

{章节:[1-13-1-1]轴对称}

{考点:轴对称图形}

{类别:常考题}

{难度:1-最简单}

{题目}3.(2019年北京)正十边形的外角和为()

A.180° B.360° C.720° D.1440°

{答案}B

{解析}本题考查了多边形的外角和,根据多边形的外角和都等于360°可知答案为B.

{分值}2

{章节:[1-11-3]多边形及其内角和}

{考点:多边形的外角和}

{类别:常考题}

{难度:1-最简单}

{题目}4.(2019年北京)在数轴上,点A ,B 在原点O 的两侧,分别表示数a ,2,将点A 向右平移1个单位长度,得到点C .若CO =BO ,则a 的值为( ) A .-3 B .-2 C .-1 D .1 {答案}A

{解析}本题考查了数轴及平移的性质. ∵点A,B 在原点O 的两侧,∴a <0.∵CO=BO ,点B 表示数2,∴点C 表示数-2.∵点A 向右平移1个单位长度得到点C ,∴点A 表示的数a=-2-1=-3. {分值}2

{章节:[1-1-2-2]数轴} {考点:数轴表示数} {类别:常考题} {难度:2-简单}

{题目}5.(2019年北京)已知锐角∠AOB . 如图

(1)在射线OA 上取一点C ,以点O 为圆心,OC 长为半径作PQ ,交射线OB 于点D .连接CD ; (2)分别以点C 、D 为圆心,CD 长为半径作弧,交PQ 于点M 、N ; (3)连接OM ,MN .

根据以上作图过程及所作图形,下列结论中错误的是

A.∠COM =∠COD

B.若OM =MN ,则∠AOB =20°

C.MN ∥CD

D.MN =3CD

{答案}D

{解析}本题是一道尺规作图题,综合考查了等腰三角形、全等三角形、平行线的判定等知识.如图,连接ON ,根据作图过程可知∠COM=∠COD=∠DON ,故选项A 正确;若OM=MN ,则△OMN 是等边三角形,∴∠AOB=

1

3

×60°=20°,故选项B 正确;设MN 与OA 交于点E,与OB 交于点F.易证△MOE ≌△NOF ,∴OE=OF.∵OC=OD ,∴∠OEF=∠OFE=∠OCD=∠ODC ,∴MN ∥CD ,故选项C 正确;连接MC,DN ,则MC=CD=DN ,根据“两点之间线段最短”可知MC+CD+DN <MN ,即3CD <MN ,故选项D 不正确.

O

{分值}2

{章节:[1-13-2-2]等边三角形} {考点:全等三角形的判定ASA,AAS} {考点:等边三角形的判定与性质} {考点:等边对等角}

{考点:同位角相等两直线平行} {考点:线段公理} {类别:常考题}

{难度:3-中等难度}

{题目}6.(2019年北京)如果m +n =1,那么代数式222

21

()()m n m n m mn m

++?--的值为 ( )

A .-3

B .-1

C .1

D .3

{答案}D

{解析}本题考查了分式的化简求值.原式=()

()()

23()()()()m n m n m

m n m n m n m n m m n m m n m m n ??+-=+?+-=

?+-??---????

=3(m+n ).当m+n=1时,原式=3×1=3. {分值}2

{章节:[1-15-2-2]分式的加减} {考点:分式的混合运算} {类别:常考题} {难度:3-中等难度}

{题目}7.(2019年北京)用不等式a >b ,ab >0,

11

a b

<中的两个不等式作为题设,余下的一个不等式作为结论组成一个命题,组成真命题的个数为( )

A .0 .1.2.3

{答案}D

{解析}本题考查了不等式的基本性质及真命题的判定.根据题意,可知组成的命题有3个,分别

为①若ab >0,11a b <,则a >b ;②若a >b ,ab >0,则11a b <;③若a >b ,11

a b

<,则ab >0. 对

于命题①,∵ab >0,11a b <,∴b <a ,故该命题正确;对于命题②,∵a >b ,ab >0,∴11

b a

<,

故该命题正确;对于命题③,∵11a b

<,∴110b a

a b ab --=<.∵a >b ,∴b-a <0,∴ab >0,故该

命题正确;

{分值}2

{章节:[1-9-1]不等式}

{考点:不等式的性质}

{考点:命题}

{类别:易错题}

{难度:3-中等难度}

{题目}8.(2019年北京)某校共有200名学生,为了解本学期学生参加公益劳动的情况,收集了他

下面有四个推断:

①这200名学生参加公益劳动时间的平均数一定在24.5-25.5之间

②这200名学生参加公益劳动时间的中位数在20-30之间

③这200名学生中的初中生参加公益劳动时间的中位数一定在20-30之间

④这200名学生中的高中生参加公益劳动时间的中位数可能在20-30之间

所有合理推断的序号是

A.①③

B.①④

C.①②③

D.①②③④

{答案}C

{解析}本题是一道与统计图有关的题目,综合考查了平均数、中位数等知识.根据题意,补全统计

名女生人均参加

公益劳动的时间为25.5,故这200名学生参加公益劳动时间的平均数x -

=

24.597+25.5103

200

??,

故24.5<x -

<25.5,故①正确;这200名学生参加公益劳动的时间的中位数是第100个数据和第101个数据的平均数,根据上面统计表可知,第100个数据和第101个数据都在20≤t <30这一组内,即中位数在20-30之间,故②正确;由统计表可知x+y=15,故初中生参加公益劳动时间的中位数一定在20≤t <30这一组内,高中生参加公益劳动时间的中位数一定在10≤t <20这一组内,故③正确,④不正确. {分值}2

{章节:[1-20-1-2]中位数和众数} {考点:频数(率)分布表} {考点:算术平均数} {考点:中位数} {考点:条形统计图} {类别:高度原创} {难度:4-较高难度}

{题型:2-填空题}二、填空题:本大题共8小题,每小题2分,合计16分.

{题目}9.(2019年北京)若分式1

x x

-的值为0,则x 的值为= .

{答案}1

{解析}本题考查了分式的值为0的条件. ∵分式1

x x

-的值为0,∴分子x-1=0,解得x=1.

{分值}2

{章节:[1-15-1]分式} {考点:分式的值} {类别:常考题} {难度:1-最简单}

{题目}10.(2019年北京)如图,已知△ABC ,通过测量、计算得△ABC 的面积约为= cm .(结果保留一位小数)

{答案}

{解析}本题考查了三角形面积的计算,解题的关键正确作出三角形的高. 如图,过点C 作CD ⊥AB ,

交AB 的延长线于点D ,则S △ABC =

1

2

AB ·CD.

{分值}2

{章节:[1-11-1]与三角形有关的线段} {考点:三角形的面积} {考点:准确数与近似数}

{类别:常考题} {难度:2-简单}

{题目}11.(2019年北京)在如图所示的几何体中,其三视图中有矩形的是 .(写出所有正确答案的序号)

{答案}①②

{解析}本题考查了几何体的三视图. ①中长方体的主视图、俯视图和左视图都是矩形,②中圆柱的主视图和左视图都是矩形,③中圆锥的三视图都不是矩形. {分值}2

{章节:[1-29-2]三视图} {考点:同底数幂的乘法} {考点:简单几何体的三视图} {类别:常考题} {难度:1-最简单}

{题目}12.(2019年北京)如图所示的网格是正方形网格,则∠PAB +∠PBA = °.

{答案}45

{解析}本题是一道网格题,利用全等三角形实现角的转化是解题的关键. 如图,∵△APC ≌△BED ,∴∠PAB=∠DBE.∵△EPB 是等腰直角三角形,∴∠EBP=45°,∴∠DBE+∠PBA=90°-45°=45°,即∠PAB+∠PBA=45°.

{分值}2

{章节:[1-13-2-1]等腰三角形} {考点:全等三角形的性质} {考点:等腰直角三角形} {类别:发现探究} {难度:3-中等难度}

{题目}13.(2019年北京)在平面直角坐标系xOy 中,点A (a ,b )(a >0,b >0)在双曲线1

k y x

=上,点A 关于x 轴的对称点B 在双曲线2

k y x

=

上,则k 1+k 2的值为 .{答案}0

{解析}本题考查了反比例函数表达式的求法,确定关于x 轴的对称点的坐标是解题的关键. ∵点A (a ,

b )在双曲线1k y x =上,∴k 1=ab.∵点A 与点B 关于x 轴对称,∴B (a,-b ).∵ 点B 在双曲线2k

y x

=上,

∴k 2=-ab.∴k 1+k 2 =0. {分值}2

{章节:[1-26-1]反比例函数的图像和性质}

{考点:反比例函数的解析式}

{考点:点的坐标}

{考点:坐标系中的轴对称}

{类别:常考题}

{难度:3-中等难度}

{题目}14.(2019年北京)把图1中的菱形沿对角线分成四个全等的直角三角形,将这四个直角三角形分别拼成如图2,图3所示的正方形,则图1中菱形的面积为 .

图1 图2 图3

{答案}12

{解析}本题考查了正方形和菱形的性质,根据所拼图形得到直角三角形两直角边的关系是解题的关键.设每个直角三角形较长直角边为a,较短直角边为b,则

5,

1

a b

a b

+=

?

?

-=

?

,解得

=3,

2

a

b

?

?

=

?

,∴菱形的面积为

1

2

ab×4=12.

{分值}2

{章节:[1-18-2-2]菱形}

{考点:菱形的性质}

{考点:二元一次方程组的应用}

{类别:常考题}

{难度:3-中等难度}

{题目}15.(2019年北京)小天想要计算一组数据92,90,94,86,99,85的方差2

s,在计算平均数的过程中,将这组数据中的每一个数都减去90,得到一组新数据2,0,4,-4,9,-5.记这组

新数据的方差为2

1

s,则2

s2

1

s.(填“>”,“=”或“<”)

{答案}=

{解析}本题考查了方差的计算,根据方差公式计算即可.原数据的平均数

()

1

=92+90+94+86+99+85=91

6

x

()()()()()()

222222 2

1

=929190919491869199918591

6

S??

-+-+-+-+-+-

??0

=

68

=

3

;新数据的平均数()

1

=2+04495=1

6

x+-+-

()()()()()()

222222

2

1

=210141419151

6

S??

-+-+-+--+-+--

??

1

68

=

3

,∴22

=

S S

01

.

{分值}2

{章节:[1-20-2-1]方差}

{考点:同底数幂的乘法}

{考点:方差}

{类别:常考题}

{难度:2-简单}

{题目}16.(2019年北京)在矩形ABCD中,M,N,P,Q分别为边AB,BC,CD,DA上的点(不与端点重合).

对于任意矩形ABCD,下面四个结论中,

①存在无数个四边形MNPQ是平行四边形;

②存在无数个四边形MNPQ是矩形;

③存在无数个四边形MNPQ是菱形;

④至少存在一个四边形MNPQ是正方形.

所有正确结论的序号是.

{答案}①②③

{解析}本题是一道四边形压轴题,综合考查了平行四边形的性质、矩形、菱形和正方形的判定.在矩形ABCD中,对角线AC,BD相交于点O,过点O作直线PM和NQ交BC,易证MNPQ为平行四边形;当PM=QN时,四边形MNPQ为矩形;当PM⊥QN时,四边形MNPQ为菱形;由于PM=QN与PM⊥QN不一定能同时成立,故四边形MNPQ不一定是正方形.故正确的结论是①②③.

{分值}2

{章节:[1-18-2-3] 正方形}

{考点:平行四边形边的性质}

{考点:平行四边形对角线的性质}

{考点:矩形的判定}

{考点:菱形的判定}

{考点:正方形的判定}

{类别:高度原创}{类别:易错题}

{难度:4-较高难度}

{题型:4-解答题}三、解答题:本题共68分,第17-21题,每小题5分,第22-24题,每小题6分,第25题5分,第26题6分,第27-28题,每小题7分.

{题目}17.(2019年北京)

计算:01

1

(4)2sin60()

4

π-

--+?+.

{解析}本题考查了实数的运算,掌握绝对值的性质、零指数幂、特殊角的三角函数值及负指数幂是解题才能正确解答.

{答案}解:原式

{分值}5

{章节:[1-28-3]锐角三角函数} {考点:实数与绝对值、相反数} {考点:零次幂}

{考点:负指数参与的运算} {考点:特殊角的三角函数值} {考点:简单的实数运算}

{类别:常考题}

{难度:2-简单}

{题目}18.(2019年北京)解不等式组:

4(1)2,

7

.

3

x x

x

x

-<+?

?

+

?

>

??

{解析}本题考查了不等组的解法和不等式组的整数解,解不等式组的步骤为:先解出不等式组中每个不等式的解集,然后得出不等式组的解集.

{答案}解:解不等式4(x-1)<x+2,得x<2;

解不等式

7

3x x +>,得x <72

. 所以,这个不等式组的解集为x <2. {分值}5

{章节:[1-9-3]一元一次不等式组} {难度:2-简单} {类别:常考题}

{考点:解一元一次不等式组}

{题目}19.(2019年北京)关于x 的方程22+210x x m --=有实数根,且m 为正整数,求m 的值及此时方程的根.

{解析}本题考查了一元二次方程根的判别式,由于原方程有实数根可知b 2-4ac ≥0,由此确定出m 取值范围,又有m 为正整数,从而可确定m 的值.

{答案}解:∵方程x 2

-2x+2m-1=0有实数根, ∴(-2)2-4(2m-1)≥0,解得m ≤1. ∵m 为正整数,∴m=1. ∴原方程为x 2-2x+1=0. 解得x 1=x 2=1. {分值}5

{章节:[1-21-2-2]公式法} {考点:根的判别式} {考点:完全平方式} {类别:常考题} {难度:3-中等难度}

{题目}20.(2019年北京)如图,在菱形ABCD 中,AC 为对角线,点E ,F 分别在AB ,AD 上,BE = DF ,连接EF .

(1)求证:AC ⊥EF ;

(2)延长EF 交CD 的延长线于点G ,连接BD 交AC 于点O ,若BD =4,tanG =1

2

,求AO 的长.

{解析}本题考查了菱形的性质、等腰三角形的性质、平行四边形的判定、锐角三角函数等知识.(1)先根据菱形边和对角线的性质得到AB=AD ,AC 平分∠BAD ,再根据等腰三角形三线合一的性质证得AC ⊥EF ;(2)根据菱形对角线的性质可得BO 的长度及AC ⊥BD ,又有AC ⊥EF ,故BD ∥EF ,由此可知四边形EBDG 是平行四边形,从而得到tan ∠ABD= tanG=

12.在Rt △ABD 中由tan ∠ABD=12

即可求得AO 的长度.

{答案}解:(1)证明:∵四边形ABCD 是菱形,∴AB=AD ,AC 平分∠BAD. ∵BE=DF ,即AE=AF. ∴AC ⊥EF.

(2)∵四边形ABCD 是菱形,∴AC ⊥BD ,CG ∥AB ,BO=1

2

BD=2. ∵AC ⊥EF ,∴BD ∥EF.

∴四边形EBDG 是平行四边形.

D

B

C

∴∠ABD =∠G. ∵tan ∠ABD=tanG=12

, ∴

2AO =1

2

,解得AO=1.

{分值}5

{章节:[1-28-3]锐角三角函数} {考点:正切}

{考点:菱形的性质} {考点:等腰直角三角形} {考点:平行四边形边的性质}

{考点:两组对边分别平行的四边形是平行四边形} {类别:常考题} {难度:3-中等难度}

{题目}21.(2019年北京)国家创新指数是反映一个国家科学技术和创新竞争力的综合指数,对国家创新指数得分排名前40的国家的有关数据进行收集、整理、描述和分析,下图给出了部分信息.

a .国家创新指数得分的频数分布直方图(数据分成7组:30≤x < 40,40≤x <50,50≤x <60,60 ≤x <70,70≤x <80,80≤x <90,90 ≤x ≤100);

b .国家创新指数得分在60≤x <70这一组的是:

61.7 62.4 63.6 65.9 66.4 68.5 69.1 69.3 69.5

c .40个国家的人均国内生产总值和国家创新指数得分情况统计图

国家创新指数得分

d .中国的国家创新指数得分为69.5.

(以上数据来源于《国家创新指数报告(2018)》 根据以上信息,回答下列问题:

(1)中国的国家创新指数得分排名世界第 ;

(2)在40个国家的人均国内生产总值和国家创新指数得分情况统计图中,包括中国在内的少数几个国家所对应的点位于虚线l 1的上方,请在图中用“○”画出代表中国的点;

(3)在国家创新指数得分比中国高的国家中,人均国内生产总值的最小值约为 万美元;(结果保留一位小数)

(4)下列推断合理的是 .

①相比于点A ,B 所代表的国家,中国的国家创新指数得分还有一定差距,中国提出"加快建设创新型国家"的战略任务,进一步提高国家综合创新能力;

②相比于点B ,C 所代表的国家,中国的人均国内生产品值还有一定差距,中国提出"决胜全国建成小集社会"的奋斗目标,进一步提高人均国内生产总值.

{解析}本题考查了统计图及数据的分析. (1)得分在60 ≤x <70这一组的9个国家中,中国得分最高,故70 ≤x <80这一组有12个国家,80 ≤x <90这一组有2个国家,90 ≤x <100这一组有2个国家,故中国的得分排名为1+12+2+2=17. (2)由中国的国家创新指数得分为69.5及“包括中国在内的少数几个国家所对应的点位于虚线l 1的上方”可以代表中国的点.(3)观察《40个国家的人均国内生产总值和国家创新指数得分情况统计图》可知有在国家创新指数得分比中国高的国家中,人均国内生产总值的最小值约为2.7万美元.(4)因为中国的国家创新指数得分比A,B 所代表的国家低得多,所以中国需进一步提高国家综合创新能力;因为中国的人均国内生产品值比B,C 所代表的国家低得多,所以中国需要进一步提高人均国内生产总值,故推断①②都是合理的.

{答案}解:(1)17; (2)如图:

(3)2.7. (4)①②. {分值}5

{章节:[1-20-3]课题学习 体质健康测试中的数据分析} {考点:数据分析综合题}

/万美元30

405060708090

{考点:频数(率)分布直方图} {类别:高度原创} {难度:3-中等难度}

{题目}22.(2019年北京)在平面内,给定不在同一条直线上的点A ,B ,C .如图所示,点O 到点A ,B ,C 的距离均等于a (a 为常数),到点O 的距离等于a 的所有点组成图形G ,∠ABC 的平分线交图形G 于点D ,连接AD ,CD .

(1)求证:AD = CD

(2)过点D 作DE ⊥BA ,垂足为E ,作DF ⊥BC ,垂足为F ,延长DF 交图形G 于点M ,连接CM .若AD = CM ,求直线DE 与图形G 的公共点个数.

{解析}解析:(1)由BD 平分∠ABCA 可得∠ABD=∠CBD ,根据相等的圆周角、等弧、等弦之间的

关系可得AD CD =和AD=CD.(2)通过证明Rt △CDF ≌Rt △CMF 得到DF=MF ,连接OD ,由∠ABC=2∠CBD=∠COD 可得OD ∥BE ,进而由DE ⊥AB 得到OD ⊥DE ,即DE 为⊙O 的切线. {答案}解:(1)∵BD 平分∠ABCA,∴∠ABD=∠CBD , ∴AD CD =,∴AD=CD.

(2)∵DF ⊥BC ,∴∠DFC=∠CFM=90°. 又∵CD=AD=CM.

∴Rt △CDF ≌Rt △CMF.

∴DF=MF ,∴BC 为⊙O 的直径. 连接OD.

∵∠COD=2∠CBD ,∠ABC=2∠CBD , ∴∠ABC=∠OCD. ∴OD ∥BE. ∵DE ⊥AB , ∴OD ⊥DE.

∴DE 为⊙O 的切线,即直线DE 与图形G 的公共点个数为1.

{分值}6

{章节:[1-24-2-2]直线和圆的位置关系} {考点:垂径定理}

{考点:圆心角、弧、弦的关系} {考点:圆周角定理} {考点:切线的判定}

{考点:全等三角形的判定HL}

A

B

C

{考点:同位角相等两直线平行} {考点:两直线平行同旁内角互补} {类别:高度原创} {类别:发现探究} {难度:4-较高难度}

{题目}23.(2019年北京)小云想用7天的时间背诵若干首诗词,背诵计划如下:

①将诗词分成4组,第i 组有x i 首,i =1,2,3,4;

②对于第i 组诗词,第i 天背诵第一遍,第(i +1)天背诵第二遍,第(i +3)天背调第三遍,三

解答下列问题:

(1)填入x 3,补全上表;

(2)若x 1=4,x 2=3,x 3=4,则x 4的所有可能取值为 ; (3)7天后,小云背诵的诗词最多为 首.

{解析}本题是一道与不等式组有关的实际应用题.(1)由题意,得对于第3组诗词,第3天背诵第一遍,第4天背诵第二遍,第6天背调第三遍,三遍后完成背诵,其它天无需背诵.

(2)由“每天最多背诵14首,最少背诵4首”可得134244414414414

x x x x x x ≤++≤??

≤+≤??≤≤?

,解得4≤x 4≤6.

(3)当第4天背诵的诗词数为14首时,x 1+x 3+x 4=14.由题意,得122324414414414x x x x x x ≤+≤??

≤+≤??≤+≤?

②③

,∴

123412242x x x x ≤+++≤,解得2228

33

x -≤≤,∴x 2的最大值为9,∴(x 1+x 3+x 4)+x 2=23.

{答案}

解: ((2)4,5,6. (3)23. {分值}6

{章节:[1-9-3]一元一次不等式组} {考点:一元一次不等式组的应用} {类别:高度原创}{类别:易错题} {难度:4-较高难度}

{题目}24.(2019年北京)如图,P 是AB 与弦AB 所围成的图形的外部的一定点,C 是AB 上一动点连接PC 交弦AB 于点D .

小腾根据学习函数的经验,对线段PC ,PD ,AD 的长度之间的关系进行了程究. 下面是小腾的探究过程,请补充完整:

(1)对于点C 在AB 的不同位置,画图,测量,得到了线段PC ,PD ,AD 的长度的几组值,如

的长度这三个量中,确定 的长度是自变量, 的长度和 的长度都是这个自变量的函数;

(2)在同一平面直角坐标系xOy 中,画出(1)中所确定的函数的图象;

(3)结合函数图象,解决问题:当PC =2PD 时,AD 的长度约为 cm .

{解析}本题是一道与函数图像有关的实际应用题.(1)观察表格可知,PC 在位置5和位置6时长度都等于2.25,PD 在位置3和位置7时长度都等于2.00,而AD 在不同位置时的长度各不相等,故AD 的长度是自变量,PC 的长度和PD 的长度都是这个自变量的函数.

(2)根据(1)表格中的数值描点、连线,注意平面坐标系的x 轴表示AD 的长度,纵轴表示PC 或PD 的长度;

(3)观察(2)中函数图像,并结合(1)表格求解即可. {答案}解: (1)AD PC PD ; (2)如图

A

(3)2.29或3.98.

{分值}6

{章节:[1-19-1-2] 函数的图象}

{考点:函数的概念}

{考点:函数的图象}

{类别:高度原创}

{难度:4-较高难度}

{题目}25.(2019年北京)在平面直角坐标系xOy中,直线l:1(0)

y kx k

=+≠与直线x=k,直线y=-k分别交于点A,B,直线x=k与直线y =-k交于点C.

(1)求直线1与y轴的交点坐标;

(2)横、纵坐标都是整数的点叫做整点,记线段AB,BC,CA围成的区域(不含边界)为W.

①当k=2时,结合函数图象,求区域W内的整点个数;

②若区城W内没有整点,直接写出k的取值范围.

{解析}本题是考查了一次函数的图像,解题时要画出函数图像并结合图像分析求解.(1)将x=0代入l的解析式即可;(2)画出k=2时三条直线并求出点A,B,C的坐标,从而确定出区域W及其内部整点的个数;(3)当-1≤k<0或k=-2时,区域W内没有整点.

{答案}解:(1)将x=0代入y=kx+1,得y=1,∴直线l与y轴的交点坐标为(0,1).

(2)①将x=2代入y=2x+1,得y=5,∴A(2,5).

将y=-2代入y=2x+1,得2x+1=-2,解得y=-3

2

,∴点B(-

3

2

,-2).

又∵直线x=2和y=-2的交点C(2,-2),

∴W内的整点为(1,2)(1,1)(1,0)(1,-1)(0,0)(0,-1),共6个.

②k=-2或-1≤k<0.

{分值}5

{章节:[1-19-3]一次函数与方程、不等式}

{考点:一次函数的图象}

{考点:一次函数与几何图形综合}

{类别:高度原创}

{类别:发现探究}

{类别:新定义}

{难度:5-高难度}

{题目}26.(2019年北京)在平面直角坐标系xOy中,抛物线21

y ax bx

a

=+-与y轴交于点A,将点A向右平称2个单位长度,得到点B,点B在抛物线上.

(1)求点B的坐标(用含a的式子表示);

(2)求抛物线的对称轴:

(3)已知点P

11

(,)

2a

-,Q(2.2),若抛物线与线段PQ恰有一个公共点,结合函数图象,求a

的取值范围.

{解析}本题是一道与二次函数图像有关的压轴题,解题时要画图分析.(1)先将x=0代入抛物线的

解析式求得点A的坐标,再根据平移规律求得点B的坐标;(2)根据抛物线的对称性求解;(3)画出函数图像求解,注意由于点A和P的纵坐标相等,点B和点Q的纵坐标相等,故抛物线不能同

时经过点A和P,也不能同时经过点B和Q.

{答案}解:(1)将x=0代入y=ax2+bx-1

a

,得y=-

1

a

,∴点A的坐标为(0,-

1

a

).

∵点B的坐标为(2,-1

a

).

(2)∵抛物线经过点A(0,-1

a

)和点B(2,-

1

a

),

∴抛物线的对称轴为x=1.

(2)①当a>0时,-1

a

<0.根据抛物线的对称性,可知抛物线不能同时经过点A和点P,也不能

同时经过点B和点Q,所以此时抛物线与线段PQ没有交点;

②当a<0时,-1

a

>0.根据抛物线的对称性,可知抛物线不能同时经过点A和点P;当点Q在点B

上方或与点B重合时,抛物线与线段PQ恰有一个公共点,此时-1

a

≤2,即a≤-

1

2

.

综上可知,当a≤-1

2

时,抛物线与线段PQ恰有一个公共点.

{分值}6

{章节:[1-22-1-4]二次函数y=ax2+bx+c的图象和性质} {考点:算术平均数}

{考点:含参系数的二次函数问题}

{类别:思想方法}{类别:高度原创}{类别:发现探究} {难度:5-高难度}

{题目}27.(2019年北京)已知∠AOB=30°,H为射线OA上一定点,OH

,P为射线OB上

一点,M为线段OH上一动点,连接PM.满足∠OMP为钝角,以点P为中心,将线段PM顺时针旋转150°,得到线段PN,连接ON.

(1)依题意补全图1:

(2)求证:∠OMP = ∠OPN:

(3)点M关于点H的对称点为Q,连接QP,写出一个OP的值,使得对于任意的点M总有ON= QP,并证明.

O A

O A

{解析}本题是考查了图形的旋转与中心对称、三角形内角和定理、全等三角形的判定和性质、解直角三角形等知识.(1)根据题意画图即可;(2)在△OMP中根据三角形内角和定理可知∠OMP=150°-∠OPM,而∠OPN=1 50°-∠OPM,故∠OMP=∠OPM;(3)求出当ON=PQ时x的值即可. {答案}解:(1)如图所示:

(2)在△OMP中,∵∠AOB=30°,∴∠OMP=150°-∠OPM.

∵∠MON=150°,∴∠OPN=150°-∠OPM,∴∠OMP=∠OPM.

(3)如图,过点P作PK⊥OA,过点N作NF⊥OB,垂足分别为K,F.

∴∠PKM=∠NFP=90°.

∵∠OMP=∠OPM,∴∠PMK=∠NPF.

∴△PMK≌△NPF.

∴MK=PF,∠MPK=∠PNF,PK=NF.

假设ON=PQ,∴Rt△NOF≌Rt△PQK.

∴KQ=OF.

设MK=y,PK=x.

在Rt△OPK中,∵∠AOB=30°,∴OP=2x,x.

∴,

∵点M与Q关于H对称,

∴MH=HQ,∴

∵KQ=OF,∴,解得x=1.

∴OP=2x=2.

{分值}7

{章节:[1-28-1-2]解直角三角形}

{考点:三角形内角和定理}

{考点:全等三角形的判定HL}

{考点:全等三角形的判定ASA,AAS}

{考点:全等三角形的性质}

{考点:含30度角的直角三角形}

{考点:解直角三角形}

{类别:高度原创}

{类别:发现探究}

{难度:5-高难度}

{题目}28.(2019年北京)在△ABC中,D,E分别是△ABC两边的中点,如果DE上的所有点都在

△ABC 的内部或边上,则称DE 为△ABC 的中内弧,例如,下图中DE 是△ABC 的一条中内弧

(1)如图,在Rt △ABC 中,AB =AC

=D ,E 外别是AB ,AC 的中点,画出△ABC 的最长的中内弧DE ,并直接写出此时DE 的长;

(2)在平而直角坐标系中,已知点A (0,2),B (0,0),C (4t ,0)(t >0). 在△ABC 中,D ,E 分别是AB ,AC 的中点

①若t =1

2

,求△ABC 的中内弧DE 所在圆的圆心P 的纵坐标的取值范围;

②若在△ABC 中存在一条中内弧DE ,使得DE 所在圆的圆心P 在△ABC 的内部或边上,直接写出t 的取值范围.

{解析}本题是一道新定义题,综合考查了等腰直角三角性的性质、弧长的计算、切线的性质、相似三角形的判定和性质等知识.(1)设DE 所在圆的圆心为P ,当⊙P 与BC 相切于F 时,中内弧DE

最长,易证点P 是DE 的中点,∴PD=

12

DE=1. 11

22122DE l r πππ=?=??=.(2)分别求出⊙P 与

AB 相切和⊙P 与AC 相切时y p 的值,即可求出y p 的取值范围;(3)求出⊙P 分别与AC ,BC 相切时t

的值即可.

{答案}解:(1)如图所示:

DE 的长为π.

(2)①当t=1

2

时,

C (2,0),

D (0,1),

E (1,1).

如图,当

⊙P 与AB 相切于点D ,y p =1;如图,当⊙P 与AC 相切于点E ,y p =

12,∴y p ≤12

. B

C

C

B

∴y p≥1或y p≤1 2 .

(3)0<t

{分值}7

{章节:[1-27-1-3]相似三角形应用举例}

{考点:等腰直角三角形}

{考点:勾股定理}

{考点:切线的性质}

{考点:弧长的计算}

{考点:相似三角形的性质}

{考点:相似三角形的判定(两角相等)}

{类别:思想方法}{类别:高度原创}{类别:发现探究}{类别:新定义} {难度:5-高难度}

2019年安徽中考数学试卷及答案

2019年安徽省初中学业水平考试数学试卷 一、选择题(本大题共10小题,每小题4分,满分40分) 1、在—2,—1,0,1这四个数中,最小的数是() A、—2 B、—1 C.、0 D、1 2、计算a3·(—a)的结果是() A、a2 B、—a2 C、a4 D、—a4 3、一个由圆柱和长方体组成的几何体如图水平放置,它的俯视图是() 4、2019年“五一”假日期间,我省银联网络交易总金额接近161亿元,其中161亿用科学计数法表示为() A、1.61×109 B、1.61×1010 C、1.61×1011 D、1.61×1012 5、已知点A(1,—3)关于x轴的对称点A/在反比例函数 k y x 的图像上,则 实数k的值为() A、3 B、 1 3 C、—3 D、- 1 3 6、在某时段有50辆车通过一个雷达测速点,工作人员将测得的车速绘制成如图所示的条形统计图,则这50辆车的车速的众数(单位:km/h)为() A、60 B、50 C、40 D、15

7、如图,在R t△ABC中,∠ACB=900,AC=6,BC=12,点D在边BC上,点E在线段AD上,E F⊥AC于点F,EG⊥EF交AB于G,若EF=EG,则CD的长为() A、3.6 B、4 C、4.8 D、5 8、据国家统计局数据,2018年全年国内生产总值为90.3万亿,比2017年增长6.6﹪,假设国内生产总值增长率保持不变,则国内生产总值首次突破100万亿的年份为() A、2019年 B、2020年 C、2021年 D、2022年 9、已知三个实数a,b,c满足a-2b+c=0,a+2b+c<0,则() A、b>0,b2-a c≤0 B、b<0,b2-a c≤0 C、b>0,b2-a c≥0 D、b<0,b2-a c≥0 10、如图,在正方形ABCD中,点E,F将对角线AC三等 分,且AC=12,点P正方形的边上,则满足PE+PF=9 的点P个数是() A、0 B、4 C、6 D、8 二、填空题(本大题共4小题,每小题5分,满分20分) 的结果是. 11、计算182 12、命题“如果a+b=0,那么a,b互为相反数”的逆命题 为. 13、如图,△ABC内接于⊙O,∠CAB=30O,∠CBA=45O, CD⊥AB于点D,若⊙O的半径为2,则CD的长 为 . 14、在平面直角坐标系中,垂直于x轴的直线l分别与函数y=x-a+1和y=x2-2ax 的图像交于P,Q两点,若平移直线l,可以使P,Q都在x轴的下方,则实数a的取值范围是. 三、(本大题共2小题,每小题8分,满分16分) 15、解方程(x—1)2=4. 16、如图,在边长为1的单位长度的小正方 形组的12×12风格中,给出了以格点 (风格线的交点)为端点的线段AB。 (1)将线段AB向右平移5个单位,再向 上平移3个单位得到线段CD,请画出 线段CD。 (2)以线段CD为一边,作一个菱形CDEF, (作出一个菱形即可) 且E,F也为格点。 四、(本大题共2小题,每小题8分,满分16分)

人教版中考数学模拟试题及答案(含详解)

中考数学模拟试卷 一、选择题(每题只有一个正确选项,本题共10 小题,每题3分,共30分)1.(3.00分)﹣的相反数是() A.﹣B.C.﹣D. 2.(3.00分)今年一季度,河南省对“一带一路”沿线国家进出口总额达214.7亿元,数据“214.7亿”用科学记数法表示为() A.2.147×102B.0.2147×103C.2.147×1010D.0.2147×1011 3.(3.00分)某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是() A.厉B.害C.了D.我 4.(3.00分)下列运算正确的是() A.(﹣x2)3=﹣x5B.x2+x3=x5 C.x3?x4=x7 D.2x3﹣x3=1 5.(3.00分)河南省旅游资源丰富,2013~2017 年旅游收入不断增长,同比增速分别为:15.3%,12.7%,15.3%,14.5%,17.1%.关于这组数据,下列说法正确的是() A.中位数是12.7% B.众数是15.3% C.平均数是15.98% D.方差是0 6.(3.00分)《九章算术》中记载:“今有共买羊,人出五,不足四十五;人出七,不足三问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5 钱,还差45钱;若每人出7钱,还差3 钱,问合伙人数、羊价各是多少?设合伙人数为x 人,羊价为y 线,根据题意,可列方程组为() A.C.B.D. 7.(3.00分)下列一元二次方程中,有两个不相等实数根的是()

A .x 2 +6x +9=0 B .x 2 =x C .x 2 +3=2x D .(x ﹣1)2 +1=0 8.(3.00 分)现有 4 张卡片,其中 3 张卡片正面上的图案是“ ”,1 张卡片正 面上的图案是“ ”,它们除此之外完全相同.把这 4 张卡片背面朝上洗匀,从 中随机抽取两张,则这两张卡片正面图案相同的概率是( ) A . B . C . D . 9.(3.00 分)如图,已知 AOBC 的顶点 O (0,0),A (﹣1,2),点 B 在 x 轴正 半轴上按以下步骤作图:①以点 O 为圆心,适当长度为半径作弧,分别交边 OA , OB 于点 D ,E ;②分别以点 D ,E 为圆心,大于 DE 的长为半径作弧,两弧在∠ AOB 内交于点 F ;③作射线 OF ,交边 AC 于点 G ,则点 G 的坐标为( ) A .( ﹣1,2) B .( ,2) C .(3﹣ ,2) D .( ﹣2,2) 10.(3.00 分)如图 1,点 F 从菱形 ABCD 的顶点 A 出发,沿 A →D→B 以 1cm/s 的速度匀速运动到点 B ,图 2 是点 F 运动时 △,FBC 的面积 y (cm 2 变化的关系图象,则 a 的值为( ) )随时间 x (s ) A . B .2 C . D .2 二、细心填一填(本大题共 5 小题,每小题 3 分,满分 15 分,请把答案填在答 題卷相应题号的横线上) 11.(3.00 分)计算:|﹣5|﹣ = .

全国卷2019年中考数学试题(解析版)

初中毕业学业考试 数学试题卷解析 准考证号___________ 姓名______ 考生注意∶ 1.请考生在试题卷首填写好准考证号及姓名 2.请将答案填写在答题卡上,填写在试题卷上无效 3.本学科试题卷共4页,七道大题,满分120分,考试时量120分钟。 4.考生可带科学计算机参加考试 一、填空题(本大题8个小题,每小题3分,满分24分﹚ 1、若向东走5米记作+5米,则向西走5米应记作_____米。 知识点考察:有理数的认识;正数与负数,具有相反意义的量。 分析:规定向东记为正,则向西记为负。 答案:-5 点评:具有相反意义的一对量在日常生活中很常见,若一个记为“+”,则另一个 记为“-”。 2、我国南海海域的面积约为3500000㎞2,该面积用科学计数法应表示为_____㎞2。 知识点考察:科学计数法。 分析:掌握科学计数的方法。)10(10≤

2019年广东省中考数学试卷

2019 年广东省中考数学试卷 副标题 题号 得分 一二三总分 一、选择题(本大题共10 小题,共30.0 分) 1. -2 的绝对值是() 1 2 A. 2 B. -2 C. D. ±2 【答案】A 【解析】解:|-2|=2,故选:A. 根据负数的绝对值是它的相反数,即可解答. 本题考查了绝对值,解决本题的关键是明确负数的绝对值是它的相反数. 2. 某网店 2019 年母亲节这天的营业额为 221000 元,将数 221000 用科学记数法表示 为() A. 2.21×106 C. 221×103 B. 2.21×105 D. 0.221×106 【答案】B 【解析】解:将 221000 用科学记数法表示为:2.21×105. 故选:B. 根据有效数字表示方法,以及科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1 时,n 是正数;当原数的绝对值<1 时,n 是负数. 此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a| <10,n 为整数,表示时关键要正确确定a 的值以及n 的值. 3. 如图,由 4 个相同正方体组合而成的儿何体,它的左视图是() A. B. C. D. 【答案】A

【解析】解:从左边看得到的是两个叠在一起的正方形,如图所示. 故选:A. 左视图是从左边看得出的图形,结合所给图形及选项即可得出答案. 此题考查了简单几何体的三视图,解答本题的关键是掌握左视图的观察位置. 4. 下列计算正确的是( A. b6+b3=b2 ) B. b3?b3=b9 C. a2+a2=2a2 D. (a3)3=a6 【答案】C 【解析】解:A、b6+b3,无法计算,故此选项错误; B、b3?b3=b6,故此选项错误; C、a2+a2=2a2,正确; D、(a3)3=a9,故此选项错误. 故选:C. 直接利用合并同类项法则以及幂的乘方运算法则、同底数幂的乘法运算法则分别化简得出答案. 此题主要考查了合并同类项以及幂的乘方运算、同底数幂的乘法运算,正确掌握相关运算法则是解题关键. 5. 下列四个银行标志中,既是中心对称图形,又是轴对称图形的是() A. B. C. D. 【答案】C 【解析】解:A、是轴对称图形,不是中心对称图形,故本选项错误; B、是轴对称图形,不是中心对称图形,故本选项错误; C、既是轴对称图形,也是中心对称图形,故本选项正确; D、是轴对称图形,不是中心对称图形,故本选项错误. 故选:C. 根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解. 本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转 180 度后两部分重合 6. 数据 3,3,5,8,11 的中位数是() A. 3 B. 4 C. 5 D. 6 【答案】C 【解析】解:把这组数据按照从小到大的顺序排列为:3,3,5,8,11, 故这组数据的中位数是,5. 故选:C. 先把原数据按从小到大排列,然后根据中位数的定义求解即可. 本题考查了中位数的概念:把一组数据按从小到大的顺序排列,最中间那个数或中间两个数的平均数就是这组数据的中位数. 7. 实数a、b 在数轴上的对应点的位置如图所示,下列式子成立的是()

中考数学计算题大全及答案解析

中考数学计算题大全及答案解析 1.计算: (1); (2). 【来源】2018年江苏省南通市中考数学试卷 【答案】(1)-8;(2) 【解析】 【分析】 (1)先对零指数幂、乘方、立方根、负指数幂分别进行计算,然后根据实数的运算法则,求得计算结果; (2)用平方差公式和完全平方公式,除法化为乘法,化简分式. 【详解】 解:(1)原式; (2)原式. 【点睛】 本题考查的知识点是实数的计算和分式的化简,解题关键是熟记有理数的运算法则. 2.(1)计算: (2)化简: 【来源】四川省甘孜州2018年中考数学试题 【答案】(1)-1;(2)x2 【解析】 【分析】 (1)原式第一项化为最简二次根式,第二项利用零指数幂法则计算,第三项利用特殊角的三角函数值计算,计算即可得到结果.

(2)先把除法转化为乘法,同时把分子分解因式,然后约分,再相乘,最后合并同类项即可. 【详解】 (1)原式=-1-4× =-1- =-1; (2)原式=-x =x(x+1)-x =x2. 【点睛】 此题考查了实数和分式的运算,熟练掌握运算法则是解本题的关键. 3.(1)解不等式组: (2)化简:(﹣2)?. 【来源】2018年山东省青岛市中考数学试卷 【答案】(1)﹣1<x<5;(2). 【解析】 【分析】 (1)先求出各不等式的解集,再求出其公共解集即可. (2)根据分式的混合运算顺序和运算法则计算可得. 【详解】 (1)解不等式<1,得:x<5, 解不等式2x+16>14,得:x>﹣1, 则不等式组的解集为﹣1<x<5; (2)原式=(﹣)?

=? =. 【点睛】 本题主要考查分式的混合运算和解一元一次不等式组,解题的关键是掌握解一元一次不等式组的步骤和分式混合运算顺序和运算法则. 4.先化简,再求值:,其中. 【来源】内蒙古赤峰市2018年中考数学试卷 【答案】, 【解析】 【分析】 先根据分式混合运算顺序和运算法则化简原式,再利用二次根式性质、负整数指数幂及绝对值性质计算出x的值,最后代入计算可得. 【详解】 原式(x﹣1) . ∵x=22﹣(1)=21,∴原式.【点睛】 本题考查了分式的化简求值,解题的关键是掌握分式混合运算顺序和运算法则.5.先化简,再求值.(其中x=1,y=2) 【来源】2018年四川省遂宁市中考数学试卷 【答案】-3. 【解析】 【分析】

【附5套中考模拟试卷】甘肃省陇南市2019-2020学年中考中招适应性测试卷数学试题(5)含解析

甘肃省陇南市2019-2020学年中考中招适应性测试卷数学试题(5) 一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查.各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是( ) A . 1 9 B . 16 C . 13 D . 23 2.计算(-ab 2)3÷(-ab)2的结果是( ) A .ab 4 B .-ab 4 C .ab 3 D .-ab 3 3.二次函数2y ax bx c =++(a≠0)的图象如图所示,则下列命题中正确的是( ) A .a >b >c B .一次函数y=ax +c 的图象不经第四象限 C .m (am+b )+b <a (m 是任意实数) D .3b+2c >0 4.如图,把一块直角三角板的直角顶点放在直尺的一边上,若∠1=50°,则∠2的度数为( ). A .50° B .40° C .30° D .25° 5.某校九年级(1)班学生毕业时,每个同学都将自己的相片向全班其他同学各送一张留作纪念,全班共送了1980张相片,如果全班有x 名学生,根据题意,列出方程为 A . (1) 19802 x x -= B .x (x+1)=1980 C .2x (x+1)=1980 D .x (x-1)=1980 6.一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次,朝上一面的数字是偶数的概率为( ). A . 1 6 B . 12 C . 13 D . 23 7.方程x 2+2x ﹣3=0的解是( ) A .x 1=1,x 2=3 B .x 1=1,x 2=﹣3

2019年安徽省中考数学试卷及答案(最新)

2019年安徽省中考数学试卷 一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A,B,C,D四个选项,其中只有一个是正确的. 1.(4分)在﹣2,﹣1,0,1这四个数中,最小的数是() A.﹣2B.﹣1C.0D.1 2.(4分)计算a3?(﹣a)的结果是() A.a2 B.﹣a2C.a4D.﹣a4 3.(4分)一个由圆柱和长方体组成的几何体如图水平放置,它的俯视图是() A.B.C.D. 4.(4分)2019年“五一”假日期间,我省银联网络交易总金额接近161亿元,其中161亿用科学记数法表示为() A.1.61×109 B.1.61×1010 C.1.61×1011 D.1.61×1012 5.(4分)已知点A(1,﹣3)关于x轴的对称点A'在反比例函数y=的图象上,则实数k的值为() A.3B.C.﹣3D.﹣ 6.(4分)在某时段由50辆车通过一个雷达测速点,工作人员将测得的车速绘制成如图所示的条形统计图,则这50辆车的车速的众数(单位:km/h)为() A.60B.50C.40D.15 7.(4分)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=12,点D在边BC上,点E在线段AD上,EF⊥AC于点F,EG⊥EF交AB于点G.若EF=EG,则CD的长为()

A.3.6B.4C.4.8D.5 8.(4分)据国家统计局数据,2018年全年国内生产总值为90.3万亿,比2017年增长6.6%.假设国内生产总值的年增长率保持不变,则国内生产总值首次突破100万亿的年份是()A.2019年B.2020年C.2021年D.2022年 9.(4分)已知三个实数a,b,c满足a﹣2b+c=0,a+2b+c<0,则() A.b>0,b2﹣ac≤0B.b<0,b2﹣ac≤0 C.b>0,b2﹣ac≥0D.b<0,b2﹣ac≥0 10.(4分)如图,在正方形ABCD中,点E,F将对角线AC三等分,且AC=12,点P在正方形的边上,则满足PE+PF=9的点P的个数是() A.0B.4C.6D.8 二、填空题(共4小题,每小题5分,满分20分) 11.(5分)计算÷的结果是. 12.(5分)命题“如果a+b=0,那么a,b互为相反数”的逆命题为. 13.(5分)如图,△ABC内接于⊙O,∠CAB=30°,∠CBA=45°,CD⊥AB于点D,若⊙O的半径为2,则CD的长为. 14.(5分)在平面直角坐标系中,垂直于x轴的直线l分别与函数y=x﹣a+1和y=x2﹣2ax的图象相交于P,Q两点.若平移直线l,可以使P,Q都在x轴的下方,则实数a的取值范围是.三、(本大题共2小题,每小题8分,满分16分) 15.(8分)解方程:(x﹣1)2=4.

2019年中考数学试卷

2019年中考数学试卷 1、如图,在Rt△ABC中,∠C=90°,AB=10cm,AC:BC=4:3,点P从点A出发沿AB方向向点B运动,速度为1cm/s,同时点Q从点B出发沿B→C→A方向向点A运动,速度为2cm/s,当一个运动点到达终点时,另一个运动点也随之停止运动. (1)求AC、BC的长; (2)设点P的运动时间为x(秒),△PBQ的面积为y(cm2),当△PBQ存在时,求y与x的函数关系式,并写出自变量x的取值范围; (3)当点Q在CA上运动,使PQ⊥AB时,以点B、P、Q为定点的三角形与△ABC 是否相似,请说明理由; (4)当x=5秒时,在直线PQ上是否存在一点M,使△BCM得周长最小,若存在,求出最小周长,若不存在,请说明理由. 解:(1)设AC=4x,BC=3x,在Rt△ABC中,AC2+BC2=AB2, 即:(4x)2+(3x)2=102,解得:x=2,∴AC=8cm,BC=6cm; (2)①当点Q在边BC上运动时,过点Q作QH⊥AB于H, ∵AP=x,∴BP=10﹣x,BQ=2x,∵△QHB∽△ACB, ∴QH QB AC AB ,∴QH= 8 5 x,y= 1 2 BP?QH= 1 2 (10﹣x)? 8 5 x=﹣ 4 5 x2+8x(0<x≤3), ②当点Q在边CA上运动时,过点Q作QH′⊥AB于H′,∵AP=x,

∴BP=10﹣x ,AQ=14﹣2x ,∵△AQH′∽△ABC, ∴'AQ QH AB BC =,即:'14106x QH -=,解得:QH′=3 5 (14﹣x ), ∴y= 12PB?QH′=12(10﹣x )?35(14﹣x )=310x 2﹣36 5 x+42(3<x <7); ∴y 与x 的函数关系式为:y=2 248(03)5 33642(37)10 5x x x x x x ?-+<≤????-+<

2018年中考数学模拟试卷及答案解析

2018年中考数学模拟试卷 一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.7的相反数是() A.7 B.﹣7 C.D.﹣ 2.数据3,2,4,2,5,3,2的中位数和众数分别是() A.2,3 B.4,2 C.3,2 D.2,2 3.如图是一个空心圆柱体,它的左视图是() A.B.C. D. % 4.下列二次根式中,最简二次根式是() A.B. C.D. 5.下列运算正确的是() A.3a2+a=3a3B.2a3?(﹣a2)=2a5C.4a6+2a2=2a3D.(﹣3a)2﹣a2=8a2 6.在平面直角坐标系中,点P(m﹣3,4﹣2m)不可能在() A.第一象限B.第二象限C.第三象限D.第四象限 7.下列命题中假命题是() A.正六边形的外角和等于360° B.位似图形必定相似 C.样本方差越大,数据波动越小 ) D.方程x2+x+1=0无实数根 8.从长为3,5,7,10的四条线段中任意选取三条作为边,能构成三角形的概

率是() A.B.C.D.1 9.如图,A,B,C,D是⊙O上的四个点,B是的中点,M是半径OD上任意一点.若∠BDC=40°,则∠AMB的度数不可能是() A.45°B.60°C.75°D.85° 10.将如图所示的抛物线向右平移1个单位长度,再向上平移3个单位长度后,得到的抛物线解析式是() A.y=(x﹣1)2+1 B.y=(x+1)2+1 C.y=2(x﹣1)2+1 D.y=2(x+1)2+1 11.如图,在Rt△ABC中,∠ACB=90°,将△ABC绕顶点C逆时针旋转得到△A'B'C,M是BC的中点,P是A'B'的中点,连接PM.若BC=2,∠BAC=30°,则线段PM 的最大值是() \ A.4 B.3 C.2 D.1 12.如图,在正方形ABCD中,O是对角线AC与BD的交点,M是BC边上的动点(点M不与B,C重合),CN⊥DM,CN与AB交于点N,连接OM,ON,MN.下列五个结论:①△CNB≌△DMC;②△CON≌△DOM;③△OMN∽△OAD;④AN2+CM2=MN2;⑤若AB=2,则S△OMN的最小值是,其中正确结论的个数是()

山东泰安市2019年中考数学阶段测试卷3(带答案)

山东泰安市2019年中考数学阶段测试卷3(带答案) 阶段检测三一、选择题 1.在平面直角坐标系中,点P(-2,x2+1)所在的象限是( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限2.根据如图所示的程序计算函数值,若输入的x值为5/2,则输出的y 值为( ) A.3/5 B.2/5 C.4/25 D.25/4 3.将某抛物线向右平移2个单位,再向下平移3个单位所得的抛物线的函数关系式是 y=-2x2+4x+1,则将该抛物线沿y轴翻折后所得抛物线的函数关系式 是( ) A.y=-2(x-1)2+6 B.y=-2(x-1)2-6 C.y=-2(x+1)2+6 D.y=2(x+1)2-6 4.(2017河南)我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形ABCD的边AB在x轴上,AB的中点是坐标原点O.固定点A,B,把正方形沿箭头方向推,使点D落在y轴正半轴上点D'处,则点C的对应点C'的坐标为( ) A.(√3,1) B.(2,1) C.(1,√3) D.(2,√3) 5.甲骑摩托车从A地去B地,乙开汽车从B地去A地,同时出发,匀速行驶,各自到达终点后停止,设甲、乙两人间距离为s(单位:千米),甲行驶的时间为t(单位:小时),s与t之间的函数关系如图所示,有下列结论: ①出发1小时时,甲、乙在途中相遇; ②出发1.5小时时,乙比甲多行驶了60千米; ③出发3小时时,甲、乙同时到达终点; ④甲的速度是乙的速度的一半. 其中,正确结论的个数是( ) A.4 B.3 C.2 D.1 6.如图,正方形OABC,正方形ADEF 的顶点A,D,C在坐标轴上,点F在AB上,点B,E在函数y=4/x(x>0)的图象上,则点E的坐标是( ) A.(√5+1,√5-1) B.(3+√5,3-√5) C.(√5-1,√5+1) D.(3-√5,3+√5) 7.已知一次函数y=kx+b的图象与直线y=-5x+1平行,且过点(2,1),那么此一次函数的关系式为( ) A.y=-5x-2 B.y=-5x-6 C.y=-5x+10 D.y=-5x+11 8.已知函数y=-(x-m)(x-n)(其中m0)的图象与正方形的一个交点,若图中阴影部分的面积等于16,则k的值为( ) A.16 B.1 C.4 D.-16 10.一元二次方程(x+1)(x-2)=10的根的情况是( )

2019年中考数学试卷(及答案)

2019年中考数学试卷(及答案) 一、选择题 1.已知反比例函数 y = 的图象如图所示,则二次函数 y =a x 2-2x 和一次函数 y =bx+a 在同一平面直角坐标系中的图象可能是( ) A . B . C . D . 2.已知11(1)11 A x x ÷+=-+,则A =( ) A . 21 x x x -+ B . 21 x x - C . 21 1 x - D .x 2﹣1 3.如图,某小区规划在一个长16m ,宽9m 的矩形场地ABCD 上,修建同样宽的小路,使其中两条与AB 平行,另一条与AD 平行,其余部分种草,如果使草坪部分的总面积为112m 2,设小路的宽为xm ,那么x 满足的方程是( ) A .2x 2-25x+16=0 B .x 2-25x+32=0 C .x 2-17x+16=0 D .x 2-17x-16=0 4.二次函数y=ax 2+bx+c 的图象如图所示,对称轴是x=-1.有以下结论:①abc>0,②4ac2,其中正确的结论的个数是( ) A .1 B .2 C .3 D .4 5.如图,菱形ABCD 的对角线相交于点O ,若AC =8,BD =6,则菱形的周长为( )

A .40 B .30 C .28 D .20 6.如图,正比例函数1y=k x 与反比例函数2 k y=x 的图象相交于点A 、B 两点,若点A 的坐标为(2,1),则点B 的坐标是( ) A .(1,2) B .(-2,1) C .(-1,-2) D .(-2,-1) 7.如图,在半径为13的O e 中,弦AB 与CD 交于点E ,75DEB ∠=?, 6,1AB AE ==,则CD 的长是( ) A .26 B .210 C .211 D .43 8.如图,已知⊙O 的半径是2,点A 、B 、C 在⊙O 上,若四边形OABC 为菱形,则图中阴影部分面积为( ) A . 2 3 π﹣3B . 1 3 π3 C . 4 3 π﹣3 D . 4 3 π3 9.某商店销售富硒农产品,今年1月开始盈利,2月份盈利240000元,4月份盈利290400元,且从2月份到4月份,每月盈利的平均增长率相同,则每月盈利的平均增长率是( ) A .8% B .9% C .10% D .11% 10.在全民健身环城越野赛中,甲乙两选手的行程y (千米)随时间(时)变化的图象

2019年全国各地中考数学真题大集合

河南省2019年中考数学试题 班级______ 姓名______ 一. 选择题: 1. 1 2 -的绝对值是( ) A. 12- B. 1 2 C. 2 D. 2- 2. 成人每天维生素D 的摄入量约为0.0000046克,数据“0.0000046”用科学记数法表示为( ) A. 74610-? B.74.610-? C. 64.610-? D. 50.4610-? 3. 如图,,75,27AB CD B E ∠=?∠=?P ,则D ∠的度数为( ) A. 45° B. 48° C. 50° D. 58° 4. 下列计算正确的是( ) A. 236a a a += B.()2 236a a -= C. ( )2 22 x y x y -=- D.=5. 如图①是由大小相同的小正方体搭成的几何体,将上层的小正方体平移后得到图②. 关于平移后几何体的三视图,下列说法正确的是( ) A. 主视图相同 B. 左视图相同 C. 俯视图相同 D. 三种视图都不相同 6. 一元二次方程(1)(1)23x x x +-=+的根的情况是( ) A.有两个不相等的实数根 B.有两个相等的实数根 C. 只有一个实数根 D. 没有实数根 图2 E D C B A

7. 某超市销售A ,B ,C ,D 四种矿泉水,它们的单价依次是5元,3元,2元,1元. 某天的销售情况如图所示,则这天销售的矿泉水的平均单价( ) A. 1.95 元 B. 2.15元 C. 2.25元 D. 2.75元 8. 已知抛物线24y x bx =-++经过(-2,n )和(4,n )两点,则n 的值为( ) A. -2 B. - 4 C. 2 D. 4 9. 如图,在四边形ABCD 中,AD ∥BC ,∠D=90°,AD=4,BC=3 ,分别以A ,C 为 圆心,以大于1 2 AC 的长为半径画弧,两弧交于点E ,作射线BE 交AD 于点F , 交AC 于点O ,若点O 是AC 的中点,则CD 的长为 ( ) A. B. 4 C. 3 D. 10. 如图,在△OAB 中,顶点O (0,0),A (-3,4),B (3,4),将△OAB 与正方形ABCD 组成的图形绕点O 顺时针旋转,每次旋转90°,则第70次旋转结束时,点D 的坐标为( ) A. (10,3) B. (-3,10) C. (10,-3) D. (3,-10) 二. 填空题 11. 12-=___________ 12. 不等式组1 274 x x ?≤-???-+>?的解集是_________________ 13. 现有两个不透明的袋子,一个装有2个红球、1个白球,另一个装有1个 黄球2个红球,这些球除颜色外完全相同。从两个袋子中各随机摸出1个球,摸出的两个球颜色相同的概率是______________ 15% 10%20% 55% D C B A A

中考数学试卷及答案解析word版完整版

中考数学试卷及答案解 析w o r d版 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

2015年北京市中考数学试卷 一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一.个.是符合题意的 1.(3分)(2015?北京)截止到2015年6月1日,北京市已建成34个地下调蓄设施,蓄水能力达到140000立方米,将140000用科学记数法表示应为()A.14×104B.×105C.×106D.14×106 考 点: 科学记数法—表示较大的数. 专 题: 计算题. 分 析: 将140000用科学记数法表示即可. 解答:解:140000=×105,故选B. 点评:此题考查了科学记数法﹣表示较大的数,较小的数,以及近似数与有效数字,科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值. 2.(3分)(2015?北京)实数a,b,c,d在数轴上的对应点的位置如图所示,这四个数中,绝对值最大的是() A.a B.b C.c D.d 考 点: 实数大小比较. 分析:首先根据数轴的特征,以及绝对值的含义和性质,判断出实数a,b,c,d的绝对值的取值范围,然后比较大小,判断出这四个数中,绝对值最大的是哪个数即可. 解答:解:根据图示,可得 3<|a|<4,1<|b|<2,0<|c|<1,2<|d|<3,所以这四个数中,绝对值最大的是a. 故选:A. 点评:此题主要考查了实数大小的比较方法,以及绝对值的非负性质的应用,要熟练掌握,解答此题的关键是判断出实数a,b,c,d的绝对值的取值范围. 3.(3分)(2015?北京)一个不透明的盒子中装有3个红球,2个黄球和1个绿球,这些球除了颜色外无其他差别,从中随机摸出一个小球,恰好是黄球的概率为() A.B.C.D. 考 点: 概率公式. 专 题: 计算题. 分 析: 直接根据概率公式求解. 解 答: 解:从中随机摸出一个小球,恰好是黄球的概率==. 故选B. 点本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出

2019年中考数学测试卷(含答案)

毕节市2019年初中毕业生学业(升学)统一考试试卷 数 学 一、选择题: 1.下列实数中,无理数为( ) A . 2.0 B . 2 1 C .2 D .2 2.2019年毕节市参加中考的学生约为115000人.将115000用科学记数法表示为( ) A .6 1015.1? B .6 10115.0? C .4 105.11? D .51015.1? 3.下列计算正确的是( ) A .93 3 a a a =? B .2 22)(b a b a +=+ C .02 2 =÷a a D .6 32)(a a = 4.一个几何体是由一些大小相同的小立方块摆成的,其主视图和俯视图如图所示,则组成这个几何体的小立方块最少.. 有( ) A .3个 B .4个 C .5个 D .6个 5.对一组数据:1,2,1,2-,下列说法不正确... 的是( ) A .平均数是1 B .众数是1 C .中位数是1 D .极差是4 6.如图,CD AB //,AE 平分CAB ∠交CD 于点E ,若0 70=∠C ,则AED ∠等于( ) A .0 55 B .0 125 C. 0 135 D .0 140

7.若关于x 的一元一次不等式 23 2-≤-x m 的解集为4≥x ,则m 的值为( ) A .14 B .7 C.2- D .2 8.为了估计鱼塘中鱼的数量,可以先从鱼塘中随机打捞50条鱼,在每条鱼身上做上记号后,把这些鱼放归鱼塘,经过一段时间,等这些鱼完全混合于鱼群后,在从鱼塘中随机打捞50条鱼,发现只有2条鱼是前面做了记号的,那么可以估计这个鱼塘鱼的数量约为( ) A .1250条 B .1750条 C.2500条 D .5000条 9.若关于x 的分式方程 1 1 2517--=+-x m x x 有增根,则m 的值为( ) A .1 B .3 C. 4 D .5 10.甲、乙、丙、丁四人参加体育训练,近期10次跳绳测试的平均成绩都是每分钟174个,其方差如下表: 则这10次跳绳测试中,这四个人发挥最稳定...的是( ) A .甲 B .乙 C.丙 D .丁 11.把直线12-=x y 向左平移1个单位,平移后直线的关系式为( ) A .22-=x y B .12+=x y C. x y 2= D .22+=x y 12.如图,AB 是⊙O 的直径,CD 是⊙O 的弦,0 30=∠ACD ,则BAD ∠为( ) A .0 30 B .0 50 C. 0 60 D .0 70 13.如图,ABC Rt ?中,0 90=∠ACB ,斜边9=AB ,D 为AB 的中点,F 为CD 上一点,且CD CF 3 1 = ,过点B 作DC BE //交AF 的延长线于点E ,则BE 的长为( )

2019年成都中考数学试题与答案

2019年成都中考数学试题与答案 A 卷(共100分) 一.选择题(本大题共10个小题,每小题3分,共30分) 1.比-3大5的数是( ) A.-15 B.-8 C.2 D.8 2.如图所示的几何体是由6个大小相同的小立方块搭成,它的左视图是( ) A. B. C. D. 3.2019年4月10日,人类首张黑洞图片问世,该黑洞位于室女座一个巨椭圆星系M87的中心,距离地球5500万光年.将数据5500万用科学计数法表示为( ) 5500×104 B.55×106 C.5.5×107 D.5.5×108 4.在平面直角坐标系中,将点(-2,3)向右平移4个单位长度后得到的点的坐标为( ) A.(2,3) B.(-6,3) C.(-2,7) D.(-2,-1) 5.将等腰直角三角形纸片和矩形纸片按如图方式折叠放在一起,若∠1=30°,则∠2的度数为( ) A.10° B.15° C.20° D.30° 6.下列计算正确的是( ) A. B. C. D. b b ab 235=-242263b a b a =-)(1)1(22-=-a a 2222a b b a =÷

7.分式方程的解为( ) A. B. C. D. 8.某校开展了主题为“青春·梦想”的艺术作品征集互动,从九年级五个班收集到的作品数量(单位:件)分别为:42,50,45,46,50则这组数据的中位数是( ) A.42件 B.45件 C.46件 D.50件 9.如图,正五边形ABCDE 内接于⊙O ,P 为上的一点(点P 不与点D 重合),则∠CPD 的度数为( ) A.30° B.36° C.60° D.72° 10.如图,二次函数的图象经过点A (1,0),B (5,0),下列说法正确的是( ) A. B. C. D.图象的对称轴是直线 二.填空题(本大题共4个小题,每小题4分,共16分) 1215=+--x x x 1-=x 1=x 2=x 2-=x DE c bx ax y ++=20>c 042<-ac b 0<+-c b a 3= x

舟山市2019年中考数学试题及答案

舟山市2019年中考数学试题及答案 (试卷满分120分,考试时间120分钟) 一、选择题(本题有10小题,每题3分,共30分.请选出各题中唯一的正确选项,不选、多选、错选,均不得分) 1.﹣2019的相反数是() A.2019 B.﹣2019 C.D.﹣ 2. 2019年1月3日10时26分,“嫦娥四号”探测器飞行约380000千米,实现人类探测器首次在月球背面软着陆.数据380000用科学记数法表示为() A.38×104B.3.8×104C.3.8×105D.0.38×106 3.如图是由四个相同的小正方形组成的立体图形,它的俯视图为() A.B.C.D. 4. 2019年5月26日第5届中国国际大数据产业博览会召开.某市在五届数博会上的产业签约金额的折线统计图如图.下列说法正确的是() A.签约金额逐年增加 B.与上年相比,2019年的签约金额的增长量最多 C.签约金额的年增长速度最快的是2016年 D.2018年的签约金额比2017年降低了22.98% 5.如图是一个2×2的方阵,其中每行、每列的两数和相等,则a可以是()

A.tan60°B.﹣1 C.0 D.12019 6.已知四个实数a,b,c,d,若a>b,c>d,则() A.a+c>b+d B.a﹣c>b﹣d C.ac>bd D.> 7.如图,已知⊙O上三点A,B,C,半径OC=1,∠ABC=30°,切线PA交OC延长线于点P,则PA的长为() A.2 B.C.D. 8.中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(我国古代货币单位);马二匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹x两,牛每头y两,根据题意可列方程组为() A.B. C.D. 9.如图,在直角坐标系中,已知菱形OABC的顶点A(1,2),B(3,3).作菱形OABC关于y轴的对称图形OA'B'C',再作图形OA'B'C'关于点O的中心对称图形OA″B″C″,则点C的对应点C″的坐标是() A.(2,﹣1)B.(1,﹣2)C.(﹣2,1)D.(﹣2,﹣1)10.小飞研究二次函数y=﹣(x﹣m)2﹣m+1(m为常数)性质时如下结论: ①这个函数图象的顶点始终在直线y=﹣x+1上; ②存在一个m的值,使得函数图象的顶点与x轴的两个交点构成等腰直角三角形;

2019年陕西省中考数学试题及答案)

机密★启用前试卷类型:A 2019年陕西省初中毕业学业考试 数学试卷 注意事项: 1、本试卷分为第一部分(选择题)和第二部分(非选择题)。全卷共8页,总分120分。考试时间120分钟。 2、领取试卷和答题卡后,请用0.5毫米黑色墨水签字笔,分别在试卷和答题卡上填写姓名和准考证号,同时用2B铅笔在答题卡填涂对应的试卷类型信息点(A或B)。 3、请在答题卡上各题的指定区域内作答,否则作答无效。 4、作图时,先用铅笔作图,再用规定签字笔描黑。 5、考试结束,本试卷和答题卡一并交回。 第一部分(选择题共30分) 一、选择题(共10小题,每小题3分,计30分,每小题只有一个选项是符合题意的) 1.计算:(-3)0=【A】 A.1 B.0 C.3 D .- 1 3 2.如图,是由两个正方体组成的几何体,则该几何体的俯视图为【D 】 3.如图,OC是∠AOB的平分线,l∥OB.若∠1=52°,则∠2的度数为【C】A.52°B.54° C.64°D.69° 4.若正比例函数y=-2x的图象经过点(a-1,4),则a的值为【A】 A.-1 B.0 C.1 D.2 5.下列计算正确的是【D】 A.2a2·3a2=6a2B.(-3a2b)2=6a4b2 C.(a-b)2=a2-b2D.-a2+2a2=a2 6.如图,在△ABC中,∠B=30°,∠C=45°,AD平分∠BAC,交BC于点D,DE⊥AB,垂足为E,若DE=1,则BC的长为【A】 A.2+ 2 B.2+ 3 C.2+ 3 D.3 7.在平面直角坐标系中,将函数y=3x的图象向上平移6个单位长度,则平移后的图象与x轴交点的坐标为【B】 A.(2,0) B.(-2,0) C.(6,0) D.(-6,0) 8.如图,在矩形ABCD中,AB=3,BC=6.若点E、F分别在AB、CD上,且BE=2AE,DF=2FC,G、H分别是AC的三等分点,则四边形EHFG的面积为【C】 A.1 B. 3 2 C.2 D.4 BE=2AE,DF=2FC,G、H分别是AC的三等分点 ∴E是AB的三等分点,F是CD的三等分点 ∴EG∥BC且EG=- 1 3BC=2 同理可得HF∥AD且HF=- 1 3AD=2 ∴四边形EHFG为平行四边形EG和HF间距离为1 S四边形EHFG=2×1=2 9.如图,AB是⊙O的直径,EF、EB是⊙O的弦,且EF=EB,EF与AB交于点C,连接OF.若∠AOF=40°,则∠F的度数是【B】 A.20°B.35°C.40°D.55° 连接FB,得到FOB=140°; ∴∠FEB=70° ∵EF=EB

相关主题
文本预览
相关文档 最新文档