当前位置:文档之家› 中考卷-2020中考数学试题(解析版)(111)

中考卷-2020中考数学试题(解析版)(111)

中考卷-2020中考数学试题(解析版)(111)
中考卷-2020中考数学试题(解析版)(111)

中考卷-2020中考数学试题(解析版)(111)

湖北省孝感市2020年中考数学试题─、精心选一选,相信自己的判断!1.如果温度上升,记作,那么温度下降记作()

A. B. C. D. 【答案】A 【解析】【分析】根据具有相反意义的量进行书写即可.【详解】由题知:温度上升,记作,∴温度下降,记作,故选:A.【点睛】本题考查了具有相反意义的量的书写形式,熟知此知识点是解题的关键.2.如图,直线,相交于点,,垂足为点.若,则的度数为()

A. B. C. D. 【答案】B 【解析】【分析】已知,,根据邻补角定义即可求出的度数.【详解】∵ ∴ ∵ ∴ 故选:B 【点睛】本题考查了垂直的性质,两条直线垂直,形成的夹角是直角;

利用邻补角的性质求角的度数,平角度数为180°.3.下列计算正确是()

A. B. C. D. 【答案】C 【解析】【分析】据合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变和单项式的乘法法则,逐一判断即可. 【详解】A:2a和3b不是同类项,不能合并,故此选项错误;

B:故B错误;

C:正确;

D:故D错误. 【点睛】本题考查了合并同类项以及单项式的乘法的知识,解答本题的关键是熟练掌握合并同类项的法则. 4.如图是由5个相同的正方体组成的几何体,则它的左视图是()

A. B. C. D. 【答案】C 【解析】【分析】从左面看,所得到的图形形状即为所求答案.【详解】从左面可看到第一层为2个正方形,第二层为1个正方形且在第一层第一个的上方,故答案为:C.【点睛】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.5.某公司有10名员工,每人年收入数据如下表:

年收入/万元4 6 8 10 人数/人3 4 2 1 则他们年收入数据的众数与中位数分别为()

A. 4,6

B. 6,6

C. 4,5

D. 6,5 【答案】B 【解析】【分析】数据出现最多的为众数;将数据从小到大排列,最中间的2个数的平均数为中位数.【详解】6出现次数最多, 故众数为: 6,最中间的2个数为6和6,中位数为,故选: B.【点睛】本题考查众数和中位数,需要注意,求解中位数前,一定要将数据进行排序. 6.已知,,那么代数式的值是()

A. 2

B.

C. 4

D. 【答案】D 【解析】【分析】先按照分式四则混合运算法则化简原式,然后将x、y的值代入计算即可.【详解】解:==x+y=+=2.故答案为D.【点睛】本题考查了分式的化简求值,根据分式四则混合运算法则化简分式是解答本题的关键.7.已知蓄电池的电压为定值,使用蓄电池时,电流(单位:)与电阻(单位:)是反比例函数关系,它的图象如图所示.则这个反比例函数的解析式为()

A. B. C. D. 【答案】C 【解析】【分析】根据题意,电流与电阻是反比例函数关系,根据图中给出的坐标即可求出该反比例函数解析式.【详解】根据题意,电流与电阻是反比例函数关系,在该函数图象上有一点(6,8),故设反比例函数解析式为I=,将(6,8)代入函数解析式中,解得k=48,故I= 故选C.【点睛】本题主要考查反比例函数解析式的求解方法,掌握求解反比例函数解析式的方法是解答本题的关键.8.将抛物线向左平移1个单位长度,得到抛物线,抛物线与抛物线关于轴对称,则抛物线的解析式为()

A. B. C. D. 【答案】A 【解析】【分析】利用平移的规律:左加右减,上加下减.并用规律求函数解析式,再因为关于x轴对称的两个抛物线,自变量x的取值相同,函数值y互为相反数,由此可直接得出抛物线的解析式.【详解】解:抛物线向左平移1个单位长度,得到抛物线:,即抛物线:; 由于抛物线与抛物线关于轴对称,则抛物线的解析式为:. 故选:A.【点睛】主要考查了函数图象的平移、

对称,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式以及关于x轴对称的两个抛物线,自变量x的取值相同,函数值y互为相反数.9.如图,在四边形中,,,,,.动点沿路径从点出发,以每秒1个单位长度的速度向点运动.过点作,垂足为.设点运动的时间为(单位:),的面积为,则关于的函数图象大致是()

A. B. C. D. 【答案】D 【解析】【分析】分点P在AB边上,如图1,点P在BC边上,如图2,点P在CD边上,如图3,利用解直角三角形的知识和三角形的面积公式求出相应的函数关系式,再根据相应函数的图象与性质即可进行判断.【详解】解:当点P在AB 边上,即0≤x≤4时,如图1,∵AP=x,,∴,∴;

当点P在BC边上,即4<x≤10时,如图2,过点B作BM⊥AD 于点M,则,∴;

当点P在CD边上,即10<x≤12时,如图3,AD=,,∴;

综上,y与x的函数关系式是:,其对应的函数图象应为:

.故选:D.【点睛】本题以直角梯形为载体,主要考查了动点问题的函数图象、一次函数和二次函数的图象与性质以及解直角三角形等知识,属于常考题型,正确分类、列出相应的函数关系式是解题的关键.10.如图,点在正方形的边上,将绕点顺时针旋转到的位置,连接,过点作的垂线,垂足为点,与交于点.若,,则的长为()

A. B. C. 4 D. 【答案】B 【解析】【分析】根据正方形性质和已知条件可知BC=CD=5,再由旋转可知DE=BF,设DE=BF=x,则CE=5-x,CF=5+x,然后再证明△ABG∽△CEF,根据相似三角形的性质列方程求出x,最后求CE即可.【详解】解:∵,∴BC=BG+GC=2+3=5 ∵正方形∴CD=BC=5 设DE=BF=x,则CE=5-x,CF=5+x ∵AH⊥EF,∠ABG=∠C=90° ∴∠HFG+∠AGF=90°,∠BAG+∠AGF=90° ∴∠HFG=∠BAG ∴△ABG∽△CEF ∴ ,即,解得x= ∴CE=CD-DE=5-=.故答案为B.【点睛】本题考查了正方形的性质和相似三角形的判定与性质,根据相似三角形的性质列方程求出DE的长是解答本题的关键.二、细心填一填,试试自己的身手!11.原子钟是北斗导

航卫星的“心脏”,北斗卫星上的原子钟的精度可以达到100万年以上误差不超过1秒.数据100万用科学记数法表示为______.【答案】【解析】【分析】先将100万写成***-*****,然后再写成a×10n的形式,其中1≤|a|<10,n为***-*****写成a时小时点向左移动的位数.【详解】解:100万=***-*****= 故答案为.【点睛】本题考查了科学记数法,将***-*****写成a×10n的形式,确定a和n的值是解答本题的关键.12.有一列数,按一定的规律排列成,,3,,27,-81,….若其中某三个相邻数的和是,则这三个数中第一个数是______.【答案】【解析】【分析】题中数列的绝对值的比是-3,由三个相邻数的和是,可设三个数为n,-3n,9n,据题意列式即可求解.【详解】题中数列的绝对值的比是-3,由三个相邻数的和是,可设第一个数是n,则三个数为n,-3 n,9n 由题意:,解得:n=-81,故答案为:-81.【点睛】此题主要考查数列的规律探索与运用,一元一次方程与数字的应用,熟悉并会用代数式表示常见的数列,列出方程是解题的关键.13.某型号飞机的机翼形状如图所示,根据图中数据计算的长为______.(结果保留根号)

【答案】【解析】【分析】如图(见解析),先在中,解直角三角形可求出CF的长,再根据等腰直角三角形的判定与性质可得DE 的长,从而可得CE的长,然后根据线段的和差即可得.【详解】如图,过A作,交DF于点E,则四边形ABFE是矩形由图中数据可知,,,,在中,,即解得是等腰三角形则的长为故答案为:.【点睛】本题考查了解直角三角形的应用、等腰三角形的判定与性质等知识点,掌握解直角三角形的方法是解题关键.14.在线上期间,某校落实市教育局要求,督促学生每天做眼保健操.为了解落实情况,学校随机抽取了部分学生进行调查,调查结果分为四类(A类:总时长分钟;

B类:5分钟总时长分钟;

C类:10分钟总时长分钟;

D类:总时长15分钟),将调查所得数据整理并绘制成如下两幅

不完整的统计图.该校共有1200名学生,请根据以上统计分析,估计该校每天做眼保健操总时长超过5分钟且不超过10分钟的学生约有______人.【答案】336 【解析】【分析】先根据A类的条形统计图和扇形统计图信息求出调查抽取的总人数,再求出每天做眼保健操总时长超过5分钟且不超过10分钟的学生的占比,然后乘以1200即可得.【详解】调查抽取的总人数为(人)

C类学生的占比为B类学生的占比为则(人)

即该校每天做眼保健操总时长超过5分钟且不超过10分钟的学生约有336人故答案为:336.【点睛】本题考查了条形统计图和扇形统计图的信息关联等知识点,掌握理解统计调查的相关知识是解题关键.15.如图1,四个全等的直角三角形围成一个大正方形,中间是个小正方形,这个图形是我国汉代赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”.在此图形中连接四条线段得到如图2的图案,记阴影部分的面积为,空白部分的面积为,大正方形的边长为,小正方形的边长为,若,则的值为______.【答案】【解析】【分析】如图(见解析),设,先根据直角三角形的面积公式、正方形的面积公式求出的值,再根据建立等式,然后根据建立等式求出a 的值,最后代入求解即可.【详解】如图,由题意得:,,,是直角三角形,且均为正数则大正方形的面积为小正方形的面积为设则又,即解得或(不符题意,舍去)

将代入得:

两边同除以得:

令则解得或(不符题意,舍去)

即的值为故答案为:.【点睛】本题考查了一元二次方程与几何图形、勾股定理、三角形全等的性质等知识点,理解题意,正确求出的值是解题关键.16.如图,已知菱形的对角线相交于坐标原点,四个顶点分别在双曲线和上,.平行于轴的直线与两双曲线分别交于点,,连接,,则的面积为______.【答案】【解析】【分析】先作轴于点G,作轴于点H,证明,利用,同时设出点A的坐标,表示出

OH,BH的长度,求出k的值,设直线EF的解析式为,表示点E,F 的坐标,求出EF的长度,可求得的面积.【详解】作轴于点G,作轴于点H,如图所示:

∵即∴ ∴ 设点A的坐标为则∴ ∴ ∵的图象在第二,四象限∴ 设直线EF的解析式为:

则∴ ∴ 故答案为:.【点睛】本题考查了反比例函数与几何图形的综合,快速找到相似三角形求出k的值,是解题的关键.用心做一做,显显自己的能力!17.计算:

【答案】.【解析】分析】先计算立方根、绝对值运算、特殊角的三角函数值、零指数幂,再计算实数的混合运算即可.【详解】原式.【点睛】本题考查了立方根、绝对值运算、特殊角的三角函数值、零指数幂等知识点,熟记各运算法则是解题关键.18.如图,在中,点在的延长线上,点在的延长线上,满足.连接,分别与,交于点,.求证:.【答案】证明见解析.【解析】分析】先根据平行四边形的性质可得,,再根据平行线的性质、邻补角的定义可得,,然后根据三角形全等的判定定理与性质即可得证.【详解】∵四边形为平行四边形∴,∴,在和中,∴ ∴.【点睛】本题考查了平行四边形的性质、平行线的性质、邻补角的定义、三角形全等的判定定理与性质等知识点,熟练掌握平行四边形的性质,正确找出全等三角形是解题关键.19.有4张看上去无差别的卡片,上面分别写有数,2,5,8.(1)随机抽取一张卡片,则抽取到的数是偶数的概率为______;

(2)随机抽取一张卡片后,放回并混在一起,再随机抽取一张,请用画树状图或列表法,求抽取出的两数之差的绝对值大于3的概率.【答案】(1);(2)

【解析】【分析】(1)直接利用概率公式进行计算即可;

(2)列表展示所有16种等可能的结果数,再找出两次抽取的卡片上两数之差的绝对值大于3结果数,然后根据概率公式求解.【详解】解:(1)抽取到的数为偶数的概率为P=.(2)列表如下:

次第2次2 5 8 2 5 8 ∵差的绝对值有16种可能,绝对值大于3的有6种可能,∴差的绝对值大于3的概率.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.20.如图,在平面直角坐标系中,已知点,和,请按下列要求画图并填空.(1)平移线段,使点平移到点,画出平移后所得的线段,并写出点的坐标为______;

(2)将线段绕点逆时针旋转,画出旋转后所得的线段,并直接写出的值为______;

(3)在轴上找出点,使的周长最小,并直接写出点的坐标为______.【答案】(1)(2,-4)

(2)

(3)(0,4)

【解析】【分析】(1)平移线段AB,使A点平移到C点,可以知道A点是向右平移5个单位,向下平移5个单位,故可以确定D 点坐标.(2)根据B、C、E三点坐标,连接BE,可以判断出△BCE 为直角三角形,故可求解值.(3)过A点做y轴的对称点A’,连接A’B,与y轴的交点即为F点.此时△ABF的周长最小,通过求解函数解析式确认点F的坐标.【详解】解:(1)如图所示:平移线段AB,使A点平移到C点,可以知道A点是向右平移5个单位,再向下平移5个单位,根据题意可知,B点(-3,1)平移到D点,故可以确定点

D的坐标.点D的坐标为;

(2)如图所示:

根据题意,AE是线段AB围绕点A逆时针旋转90°得到,故AB=AE,不难算出点E的坐标为(3,3).连接BE,根据B、C、E三点坐标算出BC=、EC=、BE=,故,可以判断出△BEC为直角三角形.故(3)如图所示:

过A点做y轴的对称点A’,连接A’B,与y轴的交点即为F点.故可知A’的坐标为(1,5),点B的坐标为(-3,1),设A’B的函数解析式为

y=kx+b,将(1,5),(-3,1)代入函数解析中解得k=1,b=4,则函数解析式为y=x+4,则F点坐标为(0,4), 故点F的坐标为(0,4).【点睛】(1)本题主要考查平移,洞察点A是如何平移到点C,是求出D点坐标的关键.(2)连接BE,根据B、C、E三点坐标判断出△BCE是直角三角形,就不难算出的值.(3)本题通过做A点的对称点A’,连接A’B,找到A’B与y轴的交点F是解答本题的关键.21.已知关于的一元二次方程.(1)求证:无论为何实数,方程总有两个不相等的实数根;

(2)若方程的两个实数根,满足,求的值.【答案】(1)见解析(2)0,-2 【解析】【分析】(1)根据根的判别式即可求证出答案;

(2)可以根据一元二次方程根与系数的关系得与的、的关系式,进一步可以求出答案. 【详解】(1)证明:∵,∵无论为何实数,,∴,∴无论为何实数,方程总有两个不相等的实数根;

(2)由一元二次方程根与系数的关系得:

,,∵,∴,∴,∴,化简得:,解得,.【点睛】本题主要考查根的判别式和根与系数的关系,熟练掌握概念和运算技巧即可解题. 22.某电商积极响应市政府号召,在线销售甲、乙、丙三种农产品.已知乙产品的售价比甲产品的售价多5元,丙产品的售价是甲产品售价的3倍,用270元购买丙产品的数量是用60元购买乙产品数量的3倍.(1)求甲、乙、丙三种农产品每千克的售价分别是多少元?(2)电商推出如下销售方案:甲、乙、丙三种农产品搭配销售共,其中乙产品的数量是丙产品数量的2倍,且甲、丙两种产品数量之和不超过乙产品数量的3倍.请你帮忙计算,按此方案购买农产品最少要花费多少元?【答案】(1)甲、乙、丙三种农产品每千克的售价分别是5元、10元、15元;

(2)按此方案购买农产品最少要花费300元.【解析】【分析】(1)设甲产品的售价为元,先表示出乙产品的售价和丙产品的售价,再根据“用270元购买丙产品的数量是用60元购买乙产品数量

的3倍”建立方程,然后求解即可得;

(2)设的甲、乙、丙三种农产品搭配中,丙种农产品有,先求出乙种农产品的数量和甲种农产品的数量,再根据题干三种农产品间的数量关系列出不等式求出m的取值范围,然后根据(1)的结论得出所需费用关于m的函数关系式,最后利用一次函数的性质即可得.【详解】(1)设甲产品的售价为元,则乙产品的售价为元,丙产品的售价为元由题意得:

解得:

经检验,是所列分式方程的解,也符合题意则,答:甲、乙、丙三种农产品每千克的售价分别是5元、10元、15元;

(2)设的甲、乙、丙三种农产品搭配中,丙种农产品有,则乙种农产品有,甲种农产品有由题意得:

解得设按此销售方案购买农产品所需费用元则∵在范围内,随的增大而增大∴当时,取得最小值,最小值为(元)

答:按此方案购买农产品最少要花费300元.【点睛】本题考查了分式方程的实际应用、一次函数的实际应用、一元一次不等式的应用等知识点,依据题意,正确列出方程和函数的解析式是解题关键.23.已知内接于,,的平分线与交于点,与交于点,连接并延长与过点的切线交于点,记.(1)如图1,若,①直接写出值为______;

②当的半径为2时,直接写出图中阴影部分的面积为______;

(2)如图2,若,且,,求的长.【答案】(1)①;

② ;

(2)5 【解析】【分析】(1)①连接AD,连接AO并延长交BC于H点,根据题意先证明△ABC是等边三角形,再得到∠AFD 为直角,利用含30°的直角三角形即可求解;

②根据割补法即可求解阴影部分面积;

(2)连接,连接并延长交于点,连接,根据题意先证明,得到,再求出,根据,得到,即可求出BD,从而求出BE的长.【详解】解:(1)①,∴△ABC是等边三角形,∵BD平分∠ABC,

∴∠DBC=∠ABC=30°,∵∠BDC=∠BAC=60° ∴∠BCD=180°-∠DBC-∠BDC=90° ∴BD是直径,∴∠BAD=90°,CD=AD 连接AO 并延长交BC于H点,∵AO=BO ∴∠BAH=∠ABO=30°,∴∠AHB=180°-∠BAH-∠ABC=90° ∴AH⊥BC ∵AF是的切线∴AF⊥AH ∴四边形AHCF是矩形∴AF⊥CF ∵∠ADB=∠BDC=60° ∴∠ADF=180°-∠ADB-∠BDC=60° ∴∠FAD=90°-∠ADF=30° ∴;

②∵半径为2,∴AO=OD=2,∵∠DBC=30°,∴CD=BD=2=AD,∴DF=AD=1, ∴AF=, ∵∠AOB=180°-2∠ABO=120°,∴∠AOD=180°-∠AOB=60°,∴﹔故答案为:①;

②;

(2)如图,连接,连接并延长交于点,连接,则,∴.∵与相切,∴.∴.∵平分,∴.∴,∴.∵,∴.∵四边形内接于,∴.又∵,∴.又∵,∴.又∵公共,∴,∴.∵,∴.∵,公共,∴.∴,即,∴.∴.【点睛】此题主要考查切线的判定与性质综合,解题的关键是熟知切线的性质、等边三角形的判定与性质及相似三角形的判定与性质.24.在平面直角坐标系中,已知抛物线与轴交于,两点(点在点的左侧),与轴交于点,顶点为点.(1)当时,直接写出点,,,的坐标:

______,______,______,______;

(2)如图1,直线交轴于点,若,求的值和的长;

(3)如图2,在(2)的条件下,若点为的中点,动点在第三象限的抛物线上,过点作轴的垂线,垂足为,交于点;

过点作,垂足为.设点的横坐标为,记.①用含的代数式表示;

②设,求的最大值.【答案】(1),,,;

(2);

(3)①;

②.【解析】【分析】(1)求出时,x的值可得点A、B的坐标,求出时,y的值可得点C的坐标,将二次函数的解析式化为顶点

式即可得点D的坐标;

(2)先求出顶点D的坐标,从而可得DK、OK的长,再利用正切三角函数可得EK、OE、OC的长,从而可得出点C的坐标,然后将点C的坐标代入二次函数的解析式可得a的值,利用勾股定理可求出CE的长;

(3)①如图,先利用待定系数法求出直线AN的解析式,从而可得点F的坐标,由此可得出PF的长,再利用待定系数法求出直线CE的解析式,从而可得点J的坐标,由此可得出FJ的长,然后根据相似三角形的判定与性质可得,从而可得FH的长,最后根据的定义即可得;

②先将的表达式化为顶点式,从而得出其增减性,再利用二次函数的性质即可得.【详解】(1)当时,当时,,解得或则点A的坐标为,点B的坐标为当时,则点C的坐标为将化成顶点式为则点D的坐标为故答案为:,,,;

(2)如图,作轴于点将化成顶点式为则顶点D的坐标为∴,在中,,即解得在中,,即解得,将点代入得:

解得;

(3)①如图,作与的延长线交于点由(2)可知,,∴ 当时,,解得或∴,为OC的中点∴ 设直线AN的解析式为将点,代入得:,解得则直线AN的解析式为∵ ∴ ∴ 由(2)知,,设直线CE的解析式为将点,代入得:,解得则直线CE的解析式为∴ ∴ ∵,轴∴,∴ ∴,即解得∴ 即;

②将化成顶点式为由二次函数的性质可知,当时,随t的增大而增大;

当时,随t的增大而减小因此,分以下两种情况:

当时在内,随t的增大而增大则当时,取得最大值,最大值为又当时,当时在内,随t的增大而增大;

在内,随t的增大而减小则当时,取得最大值,最大值为综上,的最大值为.【点睛】本题考查了利用待定系数法求二次函数的表

达式、二次函数的图象与性质、正切三角函数、相似三角形的判定与性质等知识点,较难的是题(3)①,通过作辅助线,构造相似三角形求出的长是解题关键.

人教版中考数学模拟试题及答案(含详解)

中考数学模拟试卷 一、选择题(每题只有一个正确选项,本题共10 小题,每题3分,共30分)1.(3.00分)﹣的相反数是() A.﹣B.C.﹣D. 2.(3.00分)今年一季度,河南省对“一带一路”沿线国家进出口总额达214.7亿元,数据“214.7亿”用科学记数法表示为() A.2.147×102B.0.2147×103C.2.147×1010D.0.2147×1011 3.(3.00分)某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是() A.厉B.害C.了D.我 4.(3.00分)下列运算正确的是() A.(﹣x2)3=﹣x5B.x2+x3=x5 C.x3?x4=x7 D.2x3﹣x3=1 5.(3.00分)河南省旅游资源丰富,2013~2017 年旅游收入不断增长,同比增速分别为:15.3%,12.7%,15.3%,14.5%,17.1%.关于这组数据,下列说法正确的是() A.中位数是12.7% B.众数是15.3% C.平均数是15.98% D.方差是0 6.(3.00分)《九章算术》中记载:“今有共买羊,人出五,不足四十五;人出七,不足三问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5 钱,还差45钱;若每人出7钱,还差3 钱,问合伙人数、羊价各是多少?设合伙人数为x 人,羊价为y 线,根据题意,可列方程组为() A.C.B.D. 7.(3.00分)下列一元二次方程中,有两个不相等实数根的是()

A .x 2 +6x +9=0 B .x 2 =x C .x 2 +3=2x D .(x ﹣1)2 +1=0 8.(3.00 分)现有 4 张卡片,其中 3 张卡片正面上的图案是“ ”,1 张卡片正 面上的图案是“ ”,它们除此之外完全相同.把这 4 张卡片背面朝上洗匀,从 中随机抽取两张,则这两张卡片正面图案相同的概率是( ) A . B . C . D . 9.(3.00 分)如图,已知 AOBC 的顶点 O (0,0),A (﹣1,2),点 B 在 x 轴正 半轴上按以下步骤作图:①以点 O 为圆心,适当长度为半径作弧,分别交边 OA , OB 于点 D ,E ;②分别以点 D ,E 为圆心,大于 DE 的长为半径作弧,两弧在∠ AOB 内交于点 F ;③作射线 OF ,交边 AC 于点 G ,则点 G 的坐标为( ) A .( ﹣1,2) B .( ,2) C .(3﹣ ,2) D .( ﹣2,2) 10.(3.00 分)如图 1,点 F 从菱形 ABCD 的顶点 A 出发,沿 A →D→B 以 1cm/s 的速度匀速运动到点 B ,图 2 是点 F 运动时 △,FBC 的面积 y (cm 2 变化的关系图象,则 a 的值为( ) )随时间 x (s ) A . B .2 C . D .2 二、细心填一填(本大题共 5 小题,每小题 3 分,满分 15 分,请把答案填在答 題卷相应题号的横线上) 11.(3.00 分)计算:|﹣5|﹣ = .

2016年中考数学压轴题精选及详解

2020年中考数学压轴题精选解析 中考压轴题分类专题三——抛物线中的等腰三角形 基本题型:已知AB ,抛物线()02≠++=a c bx ax y ,点P 在抛物线上(或坐标轴上,或 抛物线的对称轴上),若ABP ?为等腰三角形,求点P 坐标。 分两大类进行讨论: (1)AB 为底时(即PA PB =):点P 在AB 的垂直平分线上。 利用中点公式求出AB 的中点M ; 利用两点的斜率公式求出AB k ,因为两直线垂直斜率乘积为1-,进而求出AB 的垂直平分线的斜率k ; 利用中点M 与斜率k 求出AB 的垂直平分线的解析式; 将AB 的垂直平分线的解析式与抛物线(或坐标轴,或抛物线的对称轴)的解析式联立即可求出点P 坐标。 (2)AB 为腰时,分两类讨论: ①以A ∠为顶角时(即AP AB =):点P 在以A 为圆心以AB 为半径的圆上。 ②以B ∠为顶角时(即BP BA =):点P 在以B 为圆心以 AB 为半径的圆上。 利用圆的一般方程列出A e (或B e )的方程,与抛物线(或坐标轴,或抛物线的对称轴)的解析式联立即可求出点P 坐标。 中考压轴题分类专题四——抛物线中的直角三角形 基本题型:已知AB ,抛物线()02≠++=a c bx ax y ,点P 在抛物线上(或坐标轴上,或 抛物线的对称轴上),若ABP ?为直角三角形,求点P 坐标。 分两大类进行讨论: (1)AB 为斜边时(即PA PB ⊥):点P 在以AB 为直径的圆周上。 利用中点公式求出AB 的中点M ; 利用圆的一般方程列出M e 的方程,与抛物线(或坐标轴,或抛物线的对称轴)的解析式联立即可求出点P 坐标。 (2)AB 为直角边时,分两类讨论: ①以A ∠为直角时(即AP AB ⊥): ②以B ∠为直角时(即BP BA ⊥): 利用两点的斜率公式求出AB k ,因为两直线垂直斜率乘积为1-,进而求出PA (或PB )的斜率 k ;进而求出PA (或PB )的解析式; 将PA (或PB )的解析式与抛物线(或坐标轴,或抛物线的对称轴)的解析式联立即可求出点P 坐标。 所需知识点: 一、 两点之间距离公式: 已知两点()()2211y ,x Q ,y ,x P , 则由勾股定理可得:()()2 21221y y x x PQ -+-= 。 二、 圆的方程: 点()y ,x P 在⊙M 上,⊙M 中的圆心M 为()b ,a ,半径为R 。 则()()R b y a x PM =-+-= 22,得到方程☆:()()22 2 R b y a x =-+-。 ∴P 在☆的图象上,即☆为⊙M 的方程。 三、 中点公式: 四、 已知两点()()2211y ,x Q ,y ,x P ,则线段PQ 的中点M 为??? ??++22 2121y y ,x x 。 五、 任意两点的斜率公式: 已知两点()()2211y ,x Q ,y ,x P ,则直线PQ 的斜率: 2 12 1x x y y k PQ --= 。 中考压轴题分类专题五——抛物线中的四边形 基本题型:一、已知AB ,抛物线()02≠++=a c bx ax y ,点P 在抛物线上(或坐标轴上, 或抛物线的对称轴上),若四边形ABPQ 为平行四边形,求点P 坐标。 分两大类进行讨论: (1)AB 为边时 (2)AB 为对角线时 二、已知AB ,抛物线()02 ≠++=a c bx ax y ,点P 在抛物线上(或坐标轴上,或抛物线的对 称轴上),若四边形ABPQ 为距形,求点P 坐标。 在四边形ABPQ 为平行四边形的基础上,运用以下两种方法进行讨论: (1)邻边互相垂直 (2)对角线相等 三、已知AB ,抛物线()02 ≠++=a c bx ax y ,点P 在抛物线上(或坐标轴上,或抛物线的对 称轴上),若四边形ABPQ 为菱形,求点P 坐标。 在四边形ABPQ 为平行四边形的基础上,运用以下两种方法进行讨论: (1)邻边相等 (2)对角线互相垂直

历年全国中考数学试题及答案

班级 姓名 学号 成绩 一、精心选一选 1.下列运算正确的是( ) A.()11a a --=-- B.( ) 2 3624a a -= C.()2 22a b a b -=- D.3 2 5 2a a a += 2.如图,由几个小正方体组成的立体图形的左视图是( ) 3.下列事件中确定事件是( ) A.掷一枚均匀的硬币,正面朝上 B.买一注福利彩票一定会中奖 C.把4个球放入三个抽屉中,其中一个抽屉中至少有2个球 D.掷一枚六个面分别标有1,2,3,4,5,6的均匀正方体骰子,骰子停止转动后奇数点朝上 4.如图,AB CD ∥,下列结论中正确的是( ) A.123180++=o ∠ ∠∠ B.123360++=o ∠ ∠∠ C.1322+=∠∠∠ D.132+=∠ ∠∠ 5.已知24221 x y k x y k +=??+=+?,且10x y -<-<,则k 的取值范围为( ) A.112 k -<<- B.102 k << C.01k << D. 1 12 k << 6.顺次连接矩形各边中点所得的四边形( ) A.是轴对称图形而不是中心对称图形 B.是中心对称图形而不是轴对称图形 C.既是轴对称图形又是中心对称图形 D.没有对称性 7.已知点()3A a -,,()1B b -,,()3C c ,都在反比例函数4 y x = 的图象上,则a ,b ,c 的大小关系为( ) A.a b c >> B.c b a >> C.b c a >> D.c a b >> 8.某款手机连续两次降价,售价由原来的1185元降到580元.设平均每次降价的百分率为x ,则下面列出的方程中正确的是( ) A.2 1185580x = B.()2 11851580x -= C.( )2 11851580x -= D.()2 58011185x += 9.如图,P 是Rt ABC △斜边AB 上任意一点(A ,B 两点除外),过P 点作一直线,使截得的三角形与Rt ABC △相似,这样的直线可以作( ) A.1条 B.2条 C.3条 D.4A. B. C. D. A B D C 3 2 1 第4题图 P 第9题图

历年中考数学试题(含答案解析)

2016年云南省昆明市中考数学试卷 一、填空题:每小题3分,共18分 1.(3分)(2016?昆明)﹣4的相反数为. 2.(3分)(2016?昆明)昆明市2016年参加初中学业水平考试的人数约有67300人,将数据67300用科学记数法表示为. 3.(3分)(2016?昆明)计算:﹣=. 4.(3分)(2016?昆明)如图,AB∥CE,BF交CE于点D,DE=DF,∠F=20°,则∠B的度数为. 5.(3分)(2016?昆明)如图,E,F,G,H分别是矩形ABCD各边的中点,AB=6,BC=8,则四边形EFGH的面积是. 6.(3分)(2016?昆明)如图,反比例函数y=(k≠0)的图象经过A,B两点,过点A作 AC⊥x轴,垂足为C,过点B作BD⊥x轴,垂足为D,连接AO,连接BO交AC于点E,若OC=CD,四边形BDCE的面积为2,则k的值为. 二、选择题(共8小题,每小题4分,满分32分) 7.(4分)(2016?昆明)下面所给几何体的俯视图是()

A.B.C.D. 8.(4分)(2016?昆明)某学习小组9名学生参加“数学竞赛”,他们的得分情况如表: 人数(人) 1 3 4 1 分数(分)80 85 90 95 那么这9名学生所得分数的众数和中位数分别是() A.90,90 B.90,85 C.90,87.5 D.85,85 9.(4分)(2016?昆明)一元二次方程x2﹣4x+4=0的根的情况是() A.有两个不相等的实数根 B.有两个相等的实数根 C.无实数根 D.无法确定 10.(4分)(2016?昆明)不等式组的解集为() A.x≤2 B.x<4 C.2≤x<4 D.x≥2 11.(4分)(2016?昆明)下列运算正确的是() A.(a﹣3)2=a2﹣9 B.a2?a4=a8C.=±3 D.=﹣2 12.(4分)(2016?昆明)如图,AB为⊙O的直径,AB=6,AB⊥弦CD,垂足为G,EF切⊙O于点B,∠A=30°,连接AD、OC、BC,下列结论不正确的是() A.EF∥CD B.△COB是等边三角形 C.CG=DG D.的长为π 13.(4分)(2016?昆明)八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑车学生速度的2倍.设骑车学生的速度为x千米/小时,则所列方程正确的是() A.﹣=20 B.﹣=20 C.﹣=D.﹣= 14.(4分)(2016?昆明)如图,在正方形ABCD中,AC为对角线,E为AB上一点,过点E作EF∥AD,与AC、DC分别交于点G,F,H为CG的中点,连接DE,EH,DH,FH.下列结论: ①EG=DF;②∠AEH+∠ADH=180°;③△EHF≌△DHC;④若=,则3S△EDH=13S△DHC,其中结论正确的有()

中考数学计算题大全及答案解析

中考数学计算题大全及答案解析 1.计算: (1); (2). 【来源】2018年江苏省南通市中考数学试卷 【答案】(1)-8;(2) 【解析】 【分析】 (1)先对零指数幂、乘方、立方根、负指数幂分别进行计算,然后根据实数的运算法则,求得计算结果; (2)用平方差公式和完全平方公式,除法化为乘法,化简分式. 【详解】 解:(1)原式; (2)原式. 【点睛】 本题考查的知识点是实数的计算和分式的化简,解题关键是熟记有理数的运算法则. 2.(1)计算: (2)化简: 【来源】四川省甘孜州2018年中考数学试题 【答案】(1)-1;(2)x2 【解析】 【分析】 (1)原式第一项化为最简二次根式,第二项利用零指数幂法则计算,第三项利用特殊角的三角函数值计算,计算即可得到结果.

(2)先把除法转化为乘法,同时把分子分解因式,然后约分,再相乘,最后合并同类项即可. 【详解】 (1)原式=-1-4× =-1- =-1; (2)原式=-x =x(x+1)-x =x2. 【点睛】 此题考查了实数和分式的运算,熟练掌握运算法则是解本题的关键. 3.(1)解不等式组: (2)化简:(﹣2)?. 【来源】2018年山东省青岛市中考数学试卷 【答案】(1)﹣1<x<5;(2). 【解析】 【分析】 (1)先求出各不等式的解集,再求出其公共解集即可. (2)根据分式的混合运算顺序和运算法则计算可得. 【详解】 (1)解不等式<1,得:x<5, 解不等式2x+16>14,得:x>﹣1, 则不等式组的解集为﹣1<x<5; (2)原式=(﹣)?

=? =. 【点睛】 本题主要考查分式的混合运算和解一元一次不等式组,解题的关键是掌握解一元一次不等式组的步骤和分式混合运算顺序和运算法则. 4.先化简,再求值:,其中. 【来源】内蒙古赤峰市2018年中考数学试卷 【答案】, 【解析】 【分析】 先根据分式混合运算顺序和运算法则化简原式,再利用二次根式性质、负整数指数幂及绝对值性质计算出x的值,最后代入计算可得. 【详解】 原式(x﹣1) . ∵x=22﹣(1)=21,∴原式.【点睛】 本题考查了分式的化简求值,解题的关键是掌握分式混合运算顺序和运算法则.5.先化简,再求值.(其中x=1,y=2) 【来源】2018年四川省遂宁市中考数学试卷 【答案】-3. 【解析】 【分析】

中考数学压轴题解题方法大全及技巧

专业资料整理分享 中考数学压轴题解题技巧 湖北竹溪城关中学明道银 解中考数学压轴题秘诀(一) 数学综合题关键是第24题和25题,我们不妨把它分为函数型综合题和几何型综合题。 (一)函数型综合题:是先给定直角坐标系和几何图形,求(已知)函数的解析式(即在求解前已知函数的类型),然后进行图形的研究,求点的坐标或研究图形的某些性质。初中已知函数有:①一次函数(包括正比例函数)和常值函数,它们所对应的图像是直线;②反比例函数,它所对应的图像是双曲线; ③二次函数,它所对应的图像是抛物线。求已知函数的解析式主要方法是待定系数法,关键是求点的坐标,而求点的坐标基本方法是几何法(图形法)和代数法(解析法)。此类题基本在第24题,满分12分,基本分2-3小题来呈现。 (二)几何型综合题:是先给定几何图形,根据已知条件进行计算,然后有动点(或动线段)运动,对应产生线段、面积等的变化,求对应的(未知)函数的解析式(即在没有求出之前不知道函数解析式的形式是什么)和求函数的定义域,最后根据所求的函数关系进行探索研究,一般有:在什么条件下图形是等腰三角形、直角三角形、四边形是菱形、梯形等或探索两个三角形满足什么条件相似等或探究线段之间的位置关系等或探索面积之间满足一定关系求x的值等和直线(圆)与圆的相切时求自变量的值等。求未知函数解析式的关键是

列出包含自变量和因变量之间的等量关系(即列出含有x、y的方程),变形写成y=f(x)的形式。一般有直接法(直接列出含有x和y的方程)和复合法(列出含有x和y和第三个变量的方程,然后求出第三个变量和x之间的函数关系式,代入消去第三个变量,得到y=f(x)的形式),当然还有参数法,这个已超出初中数学教学要求。找等量关系的途径在初中主要有利用勾股定理、平行线截得比例线段、三角形相似、面积相等方法。求定义域主要是寻找图形的特殊位置(极限位置)和根据解析式求解。而最后的探索问题千变万化,但少不了对图形的分析和研究,用几何和代数的方法求出x的值。几何型综合题基本在第25题做为压轴题出现,满分14分,一般分三小题呈现。 在解数学综合题时我们要做到:数形结合记心头,大题小作来转化,潜在条件不能忘,化动为静多画图,分类讨论要严密,方程函数是工具,计算推理要严谨,创新品质得提高。 解中考数学压轴题秘诀(二) 具有选拔功能的中考压轴题是为考察考生综合运用知识的能力而设计的题目,其特点是知识点多,覆盖面广,条件隐蔽,关系复杂,思路难觅,解法灵活。解数学压轴题,一要树立必胜的信心,二要具备扎实的基础知识和熟练的基本技能,三要掌握常用的解题策略。现介绍几种常用的解题策略,供初三同学参考。 1、以坐标系为桥梁,运用数形结合思想:

2018天津中考数学试卷详细解析

2018年天津市中考数学试卷 参考答案与试题解析 一、选择题(本大题共 12小题,每小题 3分,共36分。在每小题给出的四个选项中,只 有一项是符合题目要求的) 2 1. ( 3分)(2018?天津)计算(-3)的结果等于( ) A . 5 B . - 5 C . 9 D . - 9 【考点】1E :有理数的乘方. 【专题】1:常规题型. 【分析】根据有理数的乘方法则求出即可 【解答】解:(-3) 2 = 9, 故选:C . 【点评】本题考查了有理数的乘方法则,能灵活运用法则进行计算是解此题的关键. 【考点】11:科学记数法一表示较大的数. 【专题】511:实数. 【分析】科学记数法的表示形式为 a x 10n 的形式,其中1w |a|v 10, n 为整数.确定n 的值 时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同. 当 原数绝对值〉1时,n 是正数;当原数的绝对值v 1时,n 是负数. 4 【解答】 解:77800= 7.78 X 10 , A . 一 B 一 2 2 【考 点】 T5: 特殊角的三角函数值. 【分 析】 根据特殊角的三角函数值直接解答即可 【解 答】 解: cos30°= . ) C . 1 故选:B . 【点评】此题考查了特殊角的三角函数值,是需要识记的内容. 3. (3分)(2018?天津)今年“五一”假期,我市某主题公园共接待游客 77800 人次,将 77800 用科学记数法表示为 5 A . 0.778 X 10 ) 4 B . 7.78 X 10 C . 77.8 X 103 D . 778X 102 2. ( 3分)(2018?天津)cos30°的值等于( 2

2018年中考数学模拟试卷及答案解析

2018年中考数学模拟试卷 一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.7的相反数是() A.7 B.﹣7 C.D.﹣ 2.数据3,2,4,2,5,3,2的中位数和众数分别是() A.2,3 B.4,2 C.3,2 D.2,2 3.如图是一个空心圆柱体,它的左视图是() A.B.C. D. % 4.下列二次根式中,最简二次根式是() A.B. C.D. 5.下列运算正确的是() A.3a2+a=3a3B.2a3?(﹣a2)=2a5C.4a6+2a2=2a3D.(﹣3a)2﹣a2=8a2 6.在平面直角坐标系中,点P(m﹣3,4﹣2m)不可能在() A.第一象限B.第二象限C.第三象限D.第四象限 7.下列命题中假命题是() A.正六边形的外角和等于360° B.位似图形必定相似 C.样本方差越大,数据波动越小 ) D.方程x2+x+1=0无实数根 8.从长为3,5,7,10的四条线段中任意选取三条作为边,能构成三角形的概

率是() A.B.C.D.1 9.如图,A,B,C,D是⊙O上的四个点,B是的中点,M是半径OD上任意一点.若∠BDC=40°,则∠AMB的度数不可能是() A.45°B.60°C.75°D.85° 10.将如图所示的抛物线向右平移1个单位长度,再向上平移3个单位长度后,得到的抛物线解析式是() A.y=(x﹣1)2+1 B.y=(x+1)2+1 C.y=2(x﹣1)2+1 D.y=2(x+1)2+1 11.如图,在Rt△ABC中,∠ACB=90°,将△ABC绕顶点C逆时针旋转得到△A'B'C,M是BC的中点,P是A'B'的中点,连接PM.若BC=2,∠BAC=30°,则线段PM 的最大值是() \ A.4 B.3 C.2 D.1 12.如图,在正方形ABCD中,O是对角线AC与BD的交点,M是BC边上的动点(点M不与B,C重合),CN⊥DM,CN与AB交于点N,连接OM,ON,MN.下列五个结论:①△CNB≌△DMC;②△CON≌△DOM;③△OMN∽△OAD;④AN2+CM2=MN2;⑤若AB=2,则S△OMN的最小值是,其中正确结论的个数是()

中考数学试卷含答案

扬州市初中毕业、升学统一考试数学试题 第Ⅰ卷(共24分) 一、 选择题:(本大题共8个小题,每小题3分,共24分.) 二、 1.若数轴上表示1-和3的两点分别是点A 和点B ,则点A 和点B 之间的距离是( ) A .4- B .2- C .2 D .4 2.下列算式的运算结果为4a 的是( ) A .4a a ? B .()22a C .33a a + D .4a a ÷ 3.一元二次方程2720x x --=的实数根的情况是( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .没有实数根 D .不能确定 4.下列统计量中,反映一组数据波动情况的是( ) A .平均数 B .众数 C.频率 D .方差 5.经过圆锥顶点的截面的形状可能是( ) A . B . C. D . 6.若一个三角形的两边长分别为2和4,则该三角形的周长可能是( ) A .6 B .7 C. 11 D .12 7.在一列数:1a ,2a ,3a ,???,n a 中,13a =,27a =,从第三个数开始,每一个数都等于它前两个数之积的个位数字,则这一列数中的第2017个数是( ) A .1 B .3 C.7 D .9 8.如图,已知C ?AB 的顶点坐标分别为()0,2A 、()1,0B 、()C 2,1,若二次函数21y x bx =++的图象与 阴影部分(含边界)一定有公共点,则实数b 的取值范围是( ) A .2b ≤- B .2b <- C. 2b ≥- D .2b >- 第Ⅱ卷(共126分) 二、填空题(每题3分,满分30分,将答案填在答题纸上) 9.2017年5月18日,我国在南海北部神弧海域进行的可燃冰试开采成功,标志着 我国成为全球第一个在海域可燃冰开采中获得连续稳定的国家.目前每日的天然气 试开采量约为16000立方米,把16000立方米用科学记数法表示为 立方米. 10.若2a b =,6b c =,则a c = .11.因式分解:2327x -= .

天津中考数学试卷详细解析.pdf

2018年天津市中考数学试卷 参考答案与试题解析 一、选择题(本大题共12小题,每小题3分,共36分。在每小题给出的四个选项中,只 有一项是符合题目要求的) 1.(3分)(2018?天津)计算(﹣3)2的结果等于() A.5B.﹣5C.9D.﹣9 【考点】1E:有理数的乘方. 【专题】1:常规题型. 【分析】根据有理数的乘方法则求出即可. 【解答】解:(﹣3)2=9, 故选:C. 【点评】本题考查了有理数的乘方法则,能灵活运用法则进行计算是解此题的关键.2.(3分)(2018?天津)cos30°的值等于() A.B.C.1D. 【考点】T5:特殊角的三角函数值. 【分析】根据特殊角的三角函数值直接解答即可. 【解答】解:cos30°=. 故选:B. 【点评】此题考查了特殊角的三角函数值,是需要识记的内容. 3.(3分)(2018?天津)今年“五一”假期,我市某主题公园共接待游客77800人次,将77800用科学记数法表示为() A.0.778×105B.7.78×104C.77.8×103D.778×102 【考点】1I:科学记数法—表示较大的数. 【专题】511:实数. 【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数. 【解答】解:77800=7.78×104, 故选:B.

【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值. 4.(3分)(2018?天津)下列图形中,可以看作是中心对称图形的是() A.B.C.D. 【考点】R5:中心对称图形. 【专题】1:常规题型. 【分析】根据中心对称图形的概念对各选项分析判断即可得解. 【解答】解:A、是中心对称图形,故本选项正确; B、不是中心对称图形,故本选项错误; C、不是中心对称图形,故本选项错误; D、不是中心对称图形,故本选项错误. 故选:A. 【点评】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合. 5.(3分)(2018?天津)如图是一个由5个相同的正方体组成的立体图形,它的主视图是() A.B.C.D. 【考点】U2:简单组合体的三视图. 【专题】55F:投影与视图. 【分析】根据从正面看得到的图形是主视图,可得答案. 【解答】解:从正面看第一层是三个小正方形,第二层右边一个小正方形,第三层右边一个小正方形, 故选:A. 【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.

中考数学试卷及答案解析word版完整版

中考数学试卷及答案解 析w o r d版 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

2015年北京市中考数学试卷 一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一.个.是符合题意的 1.(3分)(2015?北京)截止到2015年6月1日,北京市已建成34个地下调蓄设施,蓄水能力达到140000立方米,将140000用科学记数法表示应为()A.14×104B.×105C.×106D.14×106 考 点: 科学记数法—表示较大的数. 专 题: 计算题. 分 析: 将140000用科学记数法表示即可. 解答:解:140000=×105,故选B. 点评:此题考查了科学记数法﹣表示较大的数,较小的数,以及近似数与有效数字,科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值. 2.(3分)(2015?北京)实数a,b,c,d在数轴上的对应点的位置如图所示,这四个数中,绝对值最大的是() A.a B.b C.c D.d 考 点: 实数大小比较. 分析:首先根据数轴的特征,以及绝对值的含义和性质,判断出实数a,b,c,d的绝对值的取值范围,然后比较大小,判断出这四个数中,绝对值最大的是哪个数即可. 解答:解:根据图示,可得 3<|a|<4,1<|b|<2,0<|c|<1,2<|d|<3,所以这四个数中,绝对值最大的是a. 故选:A. 点评:此题主要考查了实数大小的比较方法,以及绝对值的非负性质的应用,要熟练掌握,解答此题的关键是判断出实数a,b,c,d的绝对值的取值范围. 3.(3分)(2015?北京)一个不透明的盒子中装有3个红球,2个黄球和1个绿球,这些球除了颜色外无其他差别,从中随机摸出一个小球,恰好是黄球的概率为() A.B.C.D. 考 点: 概率公式. 专 题: 计算题. 分 析: 直接根据概率公式求解. 解 答: 解:从中随机摸出一个小球,恰好是黄球的概率==. 故选B. 点本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出

中考数学压轴题解析二十

中考数学压轴题解析二十 103.(2017黑龙江省龙东地区,第25题,8分)在甲、乙两城市之间有一服务区,一辆客车从甲地驶往乙地,一辆货车从乙地驶往甲地.两车同时出发,匀速行驶,客车、货车离服务区的距离y1(千米),y2(千米)与行驶的时间x(小时)的函数关系图象如图1所示. (1)甲、乙两地相距千米. (2)求出发3小时后,货车离服务区的路程y2(千米)与行驶时间x(小时)之间的函数关系式. (3)在客车和货车出发的同时,有一辆邮政车从服务区匀速去甲地取货后返回乙地(取货的时间忽略不计),邮政车离服务区的距离y3(千米)与行驶时间x(小时)之间的函数关系图线如图2中的虚线所示,直接写出在行驶的过程中,经过多长时间邮政车与客车和货车的距离相等? 【答案】(1)480;(2)y2=40x﹣120;(3)1.2或4.8或7.5小时. 【分析】(1)根据图1,根据客车、货车离服务区的初始距离可得甲乙两地距离; (2)根据图象中的数据可以求得3小时后,货车离服务区的路程y2与行驶时间x之间的函数关系式; (3)分三种情况讨论,当邮政车去甲地的途中会有某个时间邮政车与客车和货车的距离相等;当邮政车从甲地返回乙地时,货车与客车相遇时,邮政车与客车和货车的距离相等;货车与客车相遇后,邮政车与客车和货车的距离相等. . 106.(2017山东省莱芜市,第22题,10分)某网店销售甲、乙两种防雾霾口罩,已知甲种口罩每袋的售价比乙种口罩多5元,小丽从该网店网购2袋甲种口罩和3袋乙种口罩共花费110元. (1)改网店甲、乙两种口罩每袋的售价各多少元? (2)根据消费者需求,网店决定用不超过10000元购进价、乙两种口罩共500袋,且甲 种口罩的数量大于乙种口罩的4 5,已知甲种口罩每袋的进价为22.4元,乙种口罩每袋的 进价为18元,请你帮助网店计算有几种进货方案?若使网店获利最大,应该购进甲、乙两种口罩各多少袋,最大获利多少元? 【答案】(1)该网店甲种口罩每袋的售价为25元,乙种口罩每袋的售价为20元;(2)该网店购进甲种口罩227袋,购进乙种口罩273袋时,获利最大,最大利润为1136.2元.【分析】(1)分别根据甲种口罩每袋的售价比乙种口罩多5元,小丽从该网店网购2袋甲种口罩和3袋乙种口罩共花费110元,得出等式组成方程求出即可; (2)根据网店决定用不超过10000元购进价、乙两种口罩共500袋,甲种口罩的数量大

中考数学试卷含解析 (8)

湖北省恩施州中考数学试卷 一、选择题(本大题共12个小题,每小题3分,共36分。在每小题给出的四个选项中,恰有一项是符合要求的。) 1.(3分)(?恩施州)的相反数是() A.B. ﹣ C.3D.﹣3 考 点: 相反数. 分 析: 根据只有符号不同的两个数互为相反数求解后选择即可. 解 答: 解:﹣的相反数是. 故选A. 点 评: 本题主要考查了互为相反数的定义,是基础题,熟记概念是解题的关键. 2.(3分)(?恩施州)今年参加恩施州初中毕业学业考试的考试约有39360人,请将数39360用科学记数法表示为(保留三位有效数字)() A.3.93×104B.3.94×104C.0.39×105D.394×102 考 点: 科学记数法与有效数字. 分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于39360有5位,所以可以确定n=5﹣1=4. 有效数字的计算方法是:从左边第一个不是0的数字起,后面所有的数字都是有效数字. 用科学记数法表示的数的有效数字只与前面的a有关,与10的多少次方无关. 解答:解:39360=3.936×104≈3.94×104.故选:B. 点评:此题考查了科学记数法的表示方法,以及用科学记数法表示的数的有效数字的确定方法. 3.(3分)(?恩施州)如图所示,∠1+∠2=180°,∠3=100°,则∠4等于()

A.70°B.80°C.90°D.100° 考 点: 平行线的判定与性质. 分析:首先证明a∠b,再根据两直线平行同位角相等可得∠3=∠6,再根据对顶角相等可得∠4. 解答:解:∠∠1+∠5=180°,∠1+∠2=180°,∠∠2=∠5, ∠a∠b, ∠∠3=∠6=100°, ∠∠4=100°. 故选:D. 点 评: 此题主要考查了平行线的判定与性质,关键是掌握两直线平行同位角相等. 4.(3分)(?恩施州)把x2y﹣2y2x+y3分解因式正确的是() A.y(x2﹣2xy+y2)B.x2y﹣y2(2x﹣y)C.y(x﹣y)2D.y(x+y)2 考 点: 提公因式法与公式法的综合运用. 分 析: 首先提取公因式y,再利用完全平方公式进行二次分解即可. 解答:解:x2y﹣2y2x+y3 =y(x2﹣2yx+y2)=y(x﹣y)2. 故选:C. 点评:本题主要考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底. 5.(3分)(?恩施州)下列运算正确的是() A.x3?x2=x6B.3a2+2a2=5a2C.a(a﹣1)=a2﹣1D.(a3)4=a7 考 点: 多项式乘多项式;合并同类项;同底数幂的乘法;幂的乘方与积的乘方. 分析:根据乘方与积的乘方、合并同类项、同底数幂的乘法、合并同类项的运算法则分别进行计算,即可得出答案.

2015年南宁市中考数学试题及答案(详细解析版)

2015南宁市初中升学毕业数学考试试卷 本试卷分第I 卷和第II 卷,满分120分,考试时间120分钟 第I 卷(选择题,共36分) 一、选择题(本大题共12小题,每小题3分,共36分)每小题都给出代号为(A )、(B )、(C )、(D )四个结论,其中只有一个是正确的.请考生用2B 铅笔在答题卷上将选定的答案标号涂黑. 考点:绝对值(初一上-有理数)。 2.如图1是由四个大小相同的正方体组成的几何体,那么它的主视图是( ). 答案:B 考点:简单几何体三视图(初三下-投影与视图)。 3.南宁快速公交(简称:BRT )将在今年年底开始动工,预计2016年下半年建成并投入试运营,首条BRT 西起南宁火车站,东至南宁东站,全长约为11300米,其中数据11300用科学记数法表示为( ). (A )510113.0? (B )41013.1? (C )3103.11? (D )210113? 答案:B 考点:科学计数法(初一上学期-有理数)。 4.某校男子足球队的年龄分布如图2条形图所示,则这些队员年龄的众 数是( ). (A )12 (B )13 (C )14 (D )15 答案:C 考点:众数(初二下 - 数据的分析)。 5.如图3,一块含30°角的直角三角板ABC 的直角顶点A 在直线DE 上,且BC//DE ,则∠CAE 等于( ). 正面 图1 ( A ) ( B ) ( C ) ( D )

图5 (A )30° (B )45° (C )60° (D )90° 答案:A 考点:平行线的性质(初一下-相交线与平行线)。 6.不等式132<-x 的解集在数轴上表示为( ). (A ) (B ) (C ) (D ) 答案:D 考点:解不等式(初一下-不等式)。 7.如图4,在△ABC 中,AB=AD=DC ,∠B=70°,则∠C 的度数为( ). (A )35° (B )40° (C )45° (D )50° 答案:A 考点:等腰三角形角度计算(初二上-轴对称)。 8.下列运算正确的是( ). (A )ab a ab 224=÷ (B )6329)3(x x = (C )743a a a =? (D )236=÷ 答案:C 考点:幂的乘方、积的乘方,整式和二次根式的化简(初二上-整式乘除,幂的运算;初二下-二次根式)。 9.一个正多边形的内角和为540°,则这个正多边形的每个外角等于( ). (A )60° (B )72° (C )90° (D )108° 答案:B 考点:正多边形内角和(初二上-三角形)。 10.如图5,已知经过原点的抛物线)0(2≠++=a c bx ax y 的对称轴是直线1-=x 下列 结论中:①0>ab ,②0>++c b a ,③当002<<<-y x 时,,正确的个数是( ). (A )0个 (B )1个 (C )2个 (D )3个 答案:D 考点:二次函数的图像和性质(初三上-二次函数)。 11.如图6,AB 是⊙O 的直径,AB=8,点M 在⊙O 上,∠MAB=20°,N 是弧MB 的中点,P 是 直径AB 上的一动点,若MN=1,则△PMN 周长的最小值为( ). (A )4 (B )5 (C )6 (D ) 7 图 3 图4

中考数学压轴题典型题型解析

中考数学压轴题精选精析 37.(09年黑龙江牡丹江)28.(本小题满分8分) 如图, 在平面直角坐标系中,若、的长是关于的一元二 次方程的两个根,且 (1)求的值. (2)若为轴上的点,且求经过、两点的直线的解析式,并判断与是否相似? (3)若点在平面直角坐标系内,则在直线上是否存在点使以、、、为顶点的四边形为菱形?若存在,请直接写出点的坐标;若不存在,请说明理 由. (09年黑龙江牡丹江28题解析)解:(1)解得 ·············································································· 1分 在中,由勾股定理有 ········································································ 1分 (2)∵点在轴上, ········································································ 1分 ABCD 6AD =,OA OB x 2 7120x x -+=OA OB >.sin ABC ∠E x 16 3 AOE S = △,D E AOE △DAO △M AB F ,A C F M F 2 7120x x -+=1243x x ==,OA OB >43OA OB ∴==,Rt AOB △225AB OA OB =+=4 sin 5 OA ABC AB ∴∠= =E x 163 AOE S = △11623AO OE ∴?=8 3 OE ∴= 880033E E ????∴- ? ????? ,或,x y A D B O C 28题图

2017年河南省中考数学试卷及解析

2017年省中考数学试卷 一、选择题(每小题3分,共30分) 1.(3分)下列各数中比1大的数是() A.2 B.0 C.﹣1 D.﹣3 2.(3分)2016年,我国国生产总值达到74.4万亿元,数据“74.4万亿”用科学记数法表示() A.74.4×1012B.7.44×1013C.74.4×1013D.7.44×1015 3.(3分)某几何体的左视图如图所示,则该几何体不可能是() A.B.C.D. 4.(3分)解分式方程﹣2=,去分母得() A.1﹣2(x﹣1)=﹣3 B.1﹣2(x﹣1)=3 C.1﹣2x﹣2=﹣3 D.1﹣2x+2=3 5.(3分)八年级某同学6次数学小测验的成绩分别为:80分,85分,95分,95分,95分,100分,则该同学这6次成绩的众数和中位数分别是() A.95分,95分B.95分,90分C.90分,95分D.95分,85分 6.(3分)一元二次方程2x2﹣5x﹣2=0的根的情况是() A.有两个相等的实数根B.有两个不相等的实数根 C.只有一个实数根D.没有实数根 7.(3分)如图,在?ABCD中,对角线AC,BD相交于点O,添加下列条件不能判定?ABCD 是菱形的只有() A.AC⊥BD B.AB=BC C.AC=BD D.∠1=∠2 8.(3分)如图是一次数学活动可制作的一个转盘,盘面被等分成四个扇形区域,并分别标

有数字﹣1,0,1,2.若转动转盘两次,每次转盘停止后记录指针所指区域的数字(当指针价好指在分界线上时,不记,重转),则记录的两个数字都是正数的概率为() A.B.C.D. 9.(3分)我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形ABCD的边AB在x轴上,AB的中点是坐标原点O,固定点A,B,把正方形沿箭头方向推,使点D落在y轴正半轴上点D′处,则点C的对应点C′的坐标为() A.(,1)B.(2,1)C.(1,)D.(2,) 10.(3分)如图,将半径为2,圆心角为120°的扇形OAB绕点A逆时针旋转60°,点O,B的对应点分别为O′,B′,连接BB′,则图中阴影部分的面积是() A. B.2﹣C.2﹣D.4﹣ 二、填空题(每小题3分,共15分) 11.(3分)计算:23﹣= . 12.(3分)不等式组的解集是. 13.(3分)已知点A(1,m),B(2,n)在反比例函数y=﹣的图象上,则m与n的大小

中考数学试题及答案解析

2019-2020年中考数学试题及答案解析 一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一.个.是符合题意的 1.(3分)(xx?北京)截止到xx年6月1日,北京市已建成34个地下调蓄设施,蓄水能力达到140000立方米,将140000用科学记数法表示应为()A.14×104B.1.4×105C.1.4×106D.14×106 考 点: 科学记数法—表示较大的数. 专 题: 计算题. 分 析: 将140000用科学记数法表示即可. 解答:解:140000=1.4×105,故选B. 点评:此题考查了科学记数法﹣表示较大的数,较小的数,以及近似数与有效数字,科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.

2.(3分)(xx?北京)实数a,b,c,d在数轴上的对应点的位置如图所示,这四个数中,绝对值最大的是() A.a B.b C.c D.d 考点:实数大小比较. 分析:首先根据数轴的特征,以及绝对值的含义和性质,判断出实数a,b,c,d的绝对值的取值范围,然后比较大小,判断出这四个数中,绝对值最大的是哪个数即可. 解答:解:根据图示,可得 3<|a|<4,1<|b|<2,0<|c|<1,2<|d|<3, 所以这四个数中,绝对值最大的是a. 故选:A. 点评:此题主要考查了实数大小的比较方法,以及绝对值的非负性质的应用,要熟练掌握,解答此题的关键是判断出实数a,b,c,d的绝对值的取值范围. 3.(3分)(xx?北京)一个不透明的盒子中装有3个红球,2个黄球和1个绿球,这些球除了颜色外无其他差别,从中随机摸出一个小球,恰好是黄球的概率为()A.B.C.D. 考点:概率公式. 专题:计算题. 分析:直接根据概率公式求解. 解答:解:从中随机摸出一个小球,恰好是黄球的概率==. 故选B. 点评:本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.

相关主题
文本预览
相关文档 最新文档