轴类零件的测量
- 格式:ppt
- 大小:2.93 MB
- 文档页数:46
轴孔类零件同轴度的检测与误差分析摘要:同轴度的检测直接影响着相关工业产品的质量和互换性。
本文针对轴孔类零件,主要探讨了其同轴度误差的检测方法,给出了检测的改进方法,并分析了引起测量误差的主要原因,为检测人员的检测操作提供指导。
关键词:轴孔类零件;同轴度;检测;误差分析引言现代工业大批量和高效率的生产对产品质量以及互换性要求越来越高。
轴孔类零件作为工业产品中最为常见的一类,其形位公差检测的主要内容就是同轴度的检测,在已有检测方法的基础上加以改进,保证测量结果的真实和准确性,才能反应产品的真实状态从而保证产品的质量。
1.相关概念(1)同轴度:控制轴孔类零件的被测轴线相对于基准轴线的同轴度误差大小。
(2)同轴度误差:被测轴线位置相对于基准轴线位置的变化量。
如图1.1所示,φd就是同轴度误差。
图1.1 同轴度误差(3)同轴度公差:控制理论上本应该同轴的被测轴线与基准轴线的不同轴程度。
如图1.2所示,φf就是同轴度公差。
图1.2 同轴度公差2.同轴度误差的检测依照形位误差的界定,运用一定精度的测量仪和合适的测试方法来测量零件实际要素,从而获取数据的过程就是同轴度的检测。
轴孔类零件在实际生产中具有不同的结构形式,同轴度的要求在不同的使用场合也各有不同,所以相应的同轴度误差的检测方法也就不同。
2.1 轴类零件的同轴度误差检测对于轴类零件,测量时调整基准轴线和仪器的旋转轴线同轴,使仪器的旋转轴成为参考基准,这时测量所得被测轴线相对于参考基准的误差值就是该轴类零件的同轴度。
轴类零件同轴度的检测方法通常有:三坐标测量机测量法、圆度仪测量法、打表法(对径差法)测量。
下面主要介绍对径差法测量。
如图2.1所示装置,在测量以公共轴线为基准的同轴度误差时,平板面作为测量基准,由V形块模拟体现公共基准轴线。
首先放置被测零件要素的中截面在两个同等高度的V形块上,安装指示表,保证两个指示表和被测轮廓要素轴线铅垂界面内的上下母线分别接触,一端调零后平行于基准线在平板上拉动测量架,使测量架从被测元素轮廓一端测到另一端,同时记录记录表读数M a和M b,那么这两个截面上的同轴度误差就是两记录表数值差值的绝对值f=|M a-M b|,即,再转动被测零件,按上述方法测量若干对截面上的同轴度误差值,选取其中最大的值作为最终该被测零件的同轴度误差。
实验四 轴类零件的综合测量一.实验目的1.了解常用轴类零件的检测项目,会根据要求选用相应的测量仪器和测量方法;2.了解轴类零件常用测量形位误差的仪器设备原理、使用方法及数据处理方法;3. 掌握常用表面粗糙度的检测方法及主要仪器的结构、工作原理和测量方法。
二.实验内容介绍对于轴类零件,检测项目一般包括尺寸、形位误差、表面粗糙度等项目。
图4-1为某车床传动轴的零件图,要求通过实验选择合适的测量器具,将该轴零件图中标注的各项技术参数进行测量评定。
图4-1 某车床传动轴简图三.测量仪器及测量方法(一) 尺寸测量。
尺寸测量方法及仪器选用参照实验一。
(二)形位误差测量圆度、圆柱度、径向跳动误差的测量方法很多,本实验介绍用两中心孔的轴线为公共基准,直接测量圆柱体横截面轮廓上各点到基准轴线的半径差,然后按最少区域法或最少二乘法计算出圆度误差值。
这种测量原理是根据测量跳动的原则。
1.测量仪器及原理XW-250型多功能形位误差测量仪配接电感测微仪、数据采集器及计算机半自动采集数据测量轴类零件的径向跳动、端面跳动、圆度误差和圆柱度误差。
测量装置的外形如图4-2所示。
它由底座、导轨、测量支架、顶针等主要部分组成,配接不同仪器可用来测量轴类、盘类零件的圆度、圆柱度、直线度、平行度、径向跳动、端面跳动及全跳动等。
实验中用到的电感测微仪是一种精度高,测量范围大,稳定性好,配接传感器侧头能够准确测出微小尺寸变化的精密仪器。
其外形如图4-3所示。
电感测微仪和计算机之间的连接是通过便携式形位数据采集器完成的,各部分之间的接线如下图4-4所示。
采集器有一个12位的显示窗和一个32键的键盘,其主要功能是选择档位、配接仪器、设置测量参数,与多种测量仪适配对各有关项目形位误差的测量进行数据采集,将测量结果保存或用通讯的方式将采得的数据实时送入计算机进行计算评定处理,最后得出相应形位误差项目的测量评定结果。
测量时,工件安装在分度头与尾架的两顶尖上,两顶尖之间的距离可根据工件的长度,移动尾架来调整。
实验(实训)轴类零件的测绘
一、实验(实训)目的:
1、掌握外径千分尺的工作原理
2、掌握外径千分尺的正确使用方法
3、掌握外径千分尺的读数原理
二、实验(实训)内容:
1、测量各部位的实际尺寸
2、正确处理轴径测量数据
3、标注各部位的实际尺寸
三、实验(实训)要求:
1、标注尺寸处不得有涂改现象
2、测微类量具的维护
3、根据测量数据,用正确方法标注在图中
四、实验(实训)学时: 4学时
五、实验(实训)步骤:
1、擦净被测零件
2、校对“零”位
3、测量并记录数据
4、测量结束,将量具复位
5、完成实训内容实训报告并标注尺寸
六、实验报告
班级姓名学号被测件编号
注:H用有外径千分尺测量L用游标卡尺测量
实训日期评价教师签名。
详解轴类零件的尺寸测量方法摘要:机械行业中,轴类零件是最常用的零件之一,应用于各种运动场合,一般常用通用量具如游标卡尺、千分尺等来测量轴类零件尺寸。
看似简单的测量方法里,包含着如尺寸公差知识、常用量具读数原理、测量技术原理、数据计算等多学科知识,测量前,应先进行测量工具和测量方法的选择,测量时,应保持被测部位和量具清洁,保障测量表面的接触紧实,保证刻度读数的准确,测量完毕后,依据图纸或设计要求要对被测数据进行分析和处理,得出后续处理方案。
关键词:尺寸测量;读数方法;测量误差;数据处理机械行业中,几乎所有运动机构都需要进行动力的转换和传输,在传输过程中一个重要的部件就是传动轴,它可以起到支撑、传动、传递转矩等作用,轴的尺寸精度是衡量其是否合格的首要条件,因此,本论文就来探讨典型轴类零件的尺寸测量方法。
在进行测量之前要学习一些相关的基础知识,如掌握尺寸公差的基础知识、测量技术基本原理、常用测量工具的读数原理。
还要了解一些技能知识,如能够计算零件尺寸的极限偏差值和标准偏差,会查询标准公差数值表等。
通用量具的具体读数方法是:①游标卡尺的读数方法是在主尺上读出副尺零线以左的刻度值,找到副尺上与主尺刻线对齐的格数,乘以精度0.02mm,最后两数相加得出测量值。
②千分尺的读数方法:先读取固定套筒左边露出的刻度值,再以固定套筒基准线读取微分套筒上的刻度,最后将两数值相加,即为测量值。
图1掌握了基本的读数方法后,就要对图纸进行分析,对以上图纸分析结果如下:1.根据传动轴在实际中的使用要求,分析图纸不同部位的尺寸公差,找出一般尺寸(公差带≧0.02)和重要关键尺寸(公差带<0.02,小数点后3位数值)。
2.依据分析结果,选择合适的测量工具,一般尺寸选用游标卡尺,重要尺寸选择外径千分尺进行测量。
用游标卡尺测量图纸中一般尺寸,主要包括长度尺寸、非配合尺寸和轴肩部位尺寸,测量步骤:①将卡尺的外侧量爪擦拭干净,将两量爪紧密贴合,检查有无缝隙,且主尺和游标尺的零位刻度相互对齐,俗称零位校准②将测量部位用棉布擦拭干净③测量时,右手握住尺身,大拇指移动游标尺,左手拿住传动轴,使被测部位在两外测量爪之间,当与量爪紧密相贴时,即可读数④为获得较正确的测量结果,应在轴的同一截面的不同方向进行多次测量,一般3~5次。
教案实习训练二轴类零件的检测姓名:班级:学号:一、实训目的掌握千分尺、百分表的使用方法,测量轴类零件尺寸及径向圆跳动误差。
二、被测工件三、量具、工具千分尺、百分表、偏摆仪等四、量具的维护与保养(1)不可以把千分尺拿在手中任意挥动或摇转,这样会使精密的测微螺杆受到损伤。
(2)不能用千分尺测量正在旋转的工件或带有磁性的工件。
(3)百分表要轻拿轻放,上上好防锈油,放入指定的盒内(4)使用时表架要放稳,以免百分表跌落损坏。
(5)严防水、油等进入表内,不允许随便拆卸表的后盖。
(6)如果不是长期不用,测量杆不准涂凡士林或其他油类,以免影响测量杆移动的灵活性。
五、测量方法及步骤六、完成测量,判断零件合格性生产实习课题化教学教案首页教学环节教学内容与过程师生活动教学方法设计目的课堂组织:检查学生出勤、装束、精神状态。
师生互相问候。
调动学生激情,调节课堂气氛师生互动提醒学生做好上课准备一、复习旧知识1、游标卡尺的作用?答:可以测量外形尺寸、内径、深度。
2、万能角度尺组合测量范围有哪些?(1) 由基尺、角尺、直尺组合,可以测量可测量0°~50°(2) 由基尺、直尺组合,可以测量可测量50°~140°(3) 由基尺、角尺组合,可以测量可测量140°~230°(4) 由基尺可以测量可测量230°~320°二、导入新课1、播放视频2、思考一、轴类零件的用途是什么?思考二、如何判断轴类零件的合格性?思考问题回答提问积极响应启发式教学巩固已学知识,使学生在掌握旧知的基础上,拓展知识面,加强对旧知的应用,并由旧知导入新课,给学生设置悬念,明确新学知识的作用。
5一、外径千分尺1.外径千分尺结构外径千分尺如图所示,主要由尺架、固定测砧、测微螺杆、固定套筒、微分筒、测力装置、隔热片、锁紧装置等组成。
2. 刻线原理千分尺应用螺旋副的传动原理,将角位移转变为直线位移。
关于提高测量轴类零件内外圆同轴度精度的操作方法一,简介随着集团制造的机床加工精度越来越高,主轴转速越来越快,,对其机床内部主要零件的加工要求也越来越严格。
镗杆,作为镗床最核心的零件。
在高速切屑时,要保证机床运行精度,只有严格控制镗轴内孔与外圆的同轴度,才能保证在其高速旋转中,旋转中产生较小的偏心力,同时减小主轴箱的震动。
通过对超声波脉冲反射原理的理解,用超声波测厚仪测量镗杆内外圆的壁厚并标识偏心方向后及时反馈给加工车间,在保证测量精度的同时也提高了生产效率,而且对传统的带有局限性的电感仪测量方法,也是一个技术上的革新。
二,应用领域超声波测厚仪采用最新的高性能、低功耗微处理器技术,基于超声波测量原理,可以测量金属及其它多种材料的厚度,并可以对材料的声速进行测量,也可以对各种板材和各种加工零件作精确测量。
通过利用不同工作频率的探头,可以测量内外圆壁厚150mm以下的所有轴类零件。
三,与国内外行业对比在传统的轴类零件内外圆同轴度的测量领域中,常常利用现将零件临床找正其外圆于公差要求内,打表检测其外圆和内孔的圆跳动后,计算出同轴度误差和偏心方向。
四、技术原理超声波测厚仪是根据超声波脉冲反射原理来进行厚度测量的,当探头发射的超声波脉冲通过被测物体到达材料分界面时,脉冲被反射回探头通过精确测量超声波在材料中传播的时间来确定被测材料的厚度。
凡能使超声波以一恒定速度在其内部传播的各种材料均可采用此原理测量。
同时,MMX6/MMX6DL型超声波测厚仪,还增加了涂层穿透功能,当发射的超声波脉冲穿过耦合剂与金属并从底部反射。
反射回波在金属中往复反射,每次只有一小部分回波穿过涂层返回。
两个小回波之间的时间即是声波在金属中的传播时间,与金属厚度相对应。
回波不需要是连续的,仪器可以自动判断回波并计算出厚度值。
每次确认最小的三个回波,即自动测量验证系统(AMVS)。
利用此技术,可以消除测量时,内孔附有涂层而带来的测量数据的偏差。
轴类零件的综合测量预习报告
1 实验目的
1. 掌握常用零件外尺寸测量仪器的选用及其主要结构、工作原理和测量方法;
2. 掌握常用零件几何误差测量仪器的选用和测量方法
2.掌握表面粗糙度常用测量仪器的主要结构、工作原理和测量方法。
2 实验仪器设备
1. 千分尺
2.跳动检查仪
3.精密粗糙度测量仪
3 实验内容及实验操作步骤:
常用零件的综合技术测量,一般指对轴类、套类和箱体类零件的尺寸、形状和位置误差、表面粗糙度参数的测量,它在制造业中占有非常重要的地位。
测量的准确与否,将直接影响零件配合的质量,产品的使用性能,甚至于企业的发展。
本实验主要对下图所示轴类零件的尺寸、几何误差、表面粗糙度参数进行测量。
实验操作步骤:
(1)根据零件各部分的尺寸及极限偏差选择长度尺寸的测量仪器;根据形位公差要求选择形位误差的测量仪器;根据零件表面粗糙度的要求选择表面粗糙度的测量仪器。
(2)掌握各测量仪器的工作原理及测量使用方法。
(3)进行零件尺寸的测量、形位误差的测量和表面粗糙度参数的测量,并将测量数据记录、整理和进行处理。
(4)将测量结果与图样上的技术要求进行比较,判断其合格与否。
(5)写出实验报告。
轴的综合测量。
实验六轴类零件跳动误差的测量一、实验目的1.熟悉百分表、偏摆仪(跳动检查仪)的使用方法。
2.掌握轴类零件径向圆跳动和全跳动的测量原理及数据处理方法。
二、实验设备和器材齿轮轴、偏摆仪(跳动检查仪)百分表、千分表图1 径向跳动检查仪外形结构1-手柄;2-手轮;3-滑板;4-底座;5-转动手柄;6-千分表架;7-升降螺母三、实验内容及步骤图一图二(一)实验内容1)φd圆柱面对基准轴线(A-B公共轴线)的径向圆跳动公差为25μm(8级)。
2)圆柱齿轮右端面对基准轴线(A-B公共轴线)的轴向(端面)圆跳动公差为30μm(8级)。
3)φd圆柱面对基准轴线(A-B公共轴线)的径向全跳动公差为25μm (8级)。
(二)实验步骤1.被测工件及量具擦净,按说明安装在仪器的两顶尖上。
2.按图示要求分别在A、B、C三个截面上测量径向圆跳动误差。
3. 调整指示表位置,按图示要求测量端面圆跳动4. 转动被测工件,同时让指示表沿基准轴线方向作直线运动,测量径向全跳动误差。
5.分别将测量结果填入实验报告中,根据被测零件的公差值,作出合格性结论。
四、实验说明1)φd圆柱面绕基准轴线作无轴向移动回转时,在任一垂直于基准轴线的测量面内,径向圆跳动均不大于公差值8级(25μm)实验时将被测工件安装在两顶尖之间,让指示表的测量头置于被测件的外轮廓,并垂直于基准轴线,调整指示表压缩一圈左右,然后慢慢转动被测工件,在被测工件回转一周过程中,指示表读数的最大差值即为所测工件的径向圆跳动误差。
2) 圆柱齿轮右端面绕基准轴线作无轴向移动回转时,在任一平行于基准轴线的测量面内,轴向圆跳动均不大于公差值8级(30μm)调整指示表测头让其平行于被测件基准轴线,重复上述动作,被测工件回转一周过程中,指示表读数的最大差值即为所测工件的端面圆跳动误差。
3)φd圆柱面绕基准轴线作无轴向移动回转时,在任一垂直于基准轴线的测量面内,径向圆跳动均不大于公差值8级(25μm)调整指示表测头垂直于被测件基准轴线,在被测工件连续回转过程中,同时让指示表沿基准轴线方向作直线运动,在整个测量过程中指示表读数的最大差值即为所测零件的径向全跳动误差。