分枝定界法的步骤
- 格式:docx
- 大小:36.58 KB
- 文档页数:2
分支定界 (branch and bound) 算法是一种在问题的解空间树上搜索问题的解的方法。
但与回溯算法不同,分支定界算法采用广度优先或最小耗费优先的方法搜索解空间树,并且,在分支定界算法中,每一个活结点只有一次机会成为扩展结点。
利用分支定界算法对问题的解空间树进行搜索,它的搜索策略是:1 .产生当前扩展结点的所有孩子结点;2 .在产生的孩子结点中,抛弃那些不可能产生可行解(或最优解)的结点;3 .将其余的孩子结点加入活结点表;4 .从活结点表中选择下一个活结点作为新的扩展结点。
如此循环,直到找到问题的可行解(最优解)或活结点表为空。
从活结点表中选择下一个活结点作为新的扩展结点,根据选择方式的不同,分支定界算法通常可以分为两种形式:1 . FIFO(First In First Out) 分支定界算法:按照先进先出原则选择下一个活结点作为扩展结点,即从活结点表中取出结点的顺序与加入结点的顺序相同。
2 .最小耗费或最大收益分支定界算法:在这种情况下,每个结点都有一个耗费或收益。
如果要查找一个具有最小耗费的解,那么要选择的下一个扩展结点就是活结点表中具有最小耗费的活结点;如果要查找一个具有最大收益的解,那么要选择的下一个扩展结点就是活结点表中具有最大收益的活结点。
又称分支定界搜索法。
过程系统综合的一类方法。
该法是将原始问题分解,产生一组子问题。
分支是将一组解分为几组子解,定界是建立这些子组解的目标函数的边界。
如果某一子组的解在这些边界之外,就将这一子组舍弃(剪枝)。
分支定界法原为运筹学中求解整数规划(或混合整数规划)问题的一种方法。
用该法寻求整数最优解的效率很高。
将该法原理用于过程系统综合可大大减少需要计算的方案数日。
分支定界法的思想是:首先确定目标值的上下界,边搜索边减掉搜索树的某些支,提高搜索效率。
在竞赛中,我们有时会碰到一些题目,它们既不能通过建立数学模型解决,又没有现成算法可以套用,或者非遍历所有状况才可以得出正确结果。
分支定界法的步骤包含一下下面是分支定界法的主要步骤:1.问题建模:将原始问题转化为数学模型。
定义问题的目标函数和约束条件,明确问题的优化目标和可行解空间。
2.创建树:将问题空间表示为一棵树。
根节点表示问题的初始状态,每个子节点表示一次决策。
根据问题的性质和约束条件,确定树的分支方式。
3.定义目标函数上界:问题的目标函数上界是指在问题的可行解空间内,一个节点的任何子节点的目标函数值不会超过上界。
目标函数上界可以通过问题的性质进行估计,或者通过启发式信息进行估计,以便在过程中及时剪枝。
4.定义目标函数下界:问题的目标函数下界是指在问题的可行解空间内,一个节点的任何子节点的目标函数值都不会低于下界。
目标函数下界可以通过问题的性质、启发式信息或剩余问题的优化程度进行估计。
5.选择分支变量:根据树的结构和上下界的估计,选择一个最有希望的分支变量。
分支变量的选择一般按照某种启发规则进行,以期能够尽快找到最优解。
6.分支处理:对于选择的分支变量,根据其取值的可能性进行分支处理。
创建该分支的子节点,并更新子节点的上下界。
7.剪枝处理:根据子节点的上下界信息,对树中的节点进行剪枝处理。
如果一个节点的目标函数上界小于当前找到的最优解,或者一个节点的目标函数下界大于当前找到的最优解,可以放弃该节点的子树。
8.更新最优解:在过程中,及时更新当前找到的最优解。
如果一个节点的子节点的目标函数值小于当前最优解,则将最优解更新为子节点的值。
9.结束:当树中没有可扩展的节点或所有可扩展节点都被剪枝时,结束。
此时,当前最优解即为问题的最优解。
分支定界法通过使用上下界信息来指导过程,能够有效地减小空间,提高问题求解效率。
但需要注意的是,分支定界法对问题的求解结果依赖于上下界的估计准确性和分支变量的选择策略,因此在实践中需要根据具体问题进行合理的建模和启发规则的设计。
分枝定界法的步骤
分枝定界法是一种求解组合优化问题的方法,其步骤如下:
1. 确定问题的目标函数以及约束条件:首先需要明确问题的目标函数是什么,以及有哪些约束条件需要满足。
2. 构造初始问题:根据问题的要求,构造一个初始问题,并计算初始问题的目标函数值。
3. 分枝:在初始问题的基础上,对其中的某个变量(或几个变量)进行分枝操作。
将问题划分为多个子问题,每个子问题代表了某个变量取值的一个分支。
4. 计算下界:对于每个子问题,计算出一个下界值。
下界值是一个目标函数值的估计,它不会高于目标函数的最小值。
5. 判断分支:根据计算出的下界值,选择一个最有希望的子问题进行分支,即选择一个下界值最小的子问题。
6. 回溯:从步骤5选择的分支开始,回溯到父问题,跳过部分分支。
7. 重复:重复步骤3到步骤6,直到找到一个满足问题要求的解,或者找到一个可行解的上界值。
8. 定解:通过进一步确定上界值,并进行剪枝操作,选择最优解。
9. 输出:输出最优解及其对应的目标函数值。
需要注意的是,分枝定界法的关键在于如何计算下界值和进行剪枝操作,以减少问题的搜索空间。
常用的技巧有线性规划松弛、最小生成树、割集等。