八年级数学下册23中心对称和中心对称图形知识点运用素材湘教版!
- 格式:doc
- 大小:68.00 KB
- 文档页数:3
湘教版八年级数学下册知识点总结湘教版初二数学下册(义务教育教科书)第1章直角三角形1.1 直角三角形的性质和判定(I)1.2 直角三角形的性质和判定(II)1.3 直角三角形全等的判定1.4 角平分线的性质本章复习与测试第2章四边形2.1 多边形2.2 平行四边形2.3 中心对称和中心对称图形2.4 三角形的中位线2.5 矩形2.6 菱形2.7 正方形本章复习与测试第3章图形与坐标3.1 平面直角坐标系3.2 简单图形的坐标表示3.3 轴对称和平移的坐标表示本章复习与测试第4章一次函数4.1 函数和它的表示法4.2 一次函数4.3 一次函数的图象4.4 用待定系数法确定一次函数表达式4.5 一次函数的应用本章复习与测试第5章数据的频数分布5.1 频数与频率5.2 频数直方图本章复习与测试期末考点第一章直角三角形一、已学须用知识点回顾知识点1、等腰三角形的性质(bjvdhuibf )(1)对称性:等腰三角形是轴对称图形,等腰三角形底边上的中线所在的直线是它的对称轴,或底边上的高所在的直线是它的对称轴,或顶角的平分线所在的直线是它的对称轴. (2)三线合一:等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合. (3)等边对等角:等腰三角形的两个底角相等. 提示:“三线合一”是指对应的角平分线、中线、高线在画图时实际上只是一条线段,即是一条线段既是顶角的平分线,又是底边上的中线,还是底边上的高,不能混淆.三角形的高可能在三角形的内部,也有可能在三角形的外部,还有可能和三角形的边重合。
知识点2、等腰三角形的判定定理1、定理:如果一个三角形的两个角相等,那么这两个角所对的边也相等(简称:等角对等边). 2、提示:(1)定理题设中的两个角必须是同一个三角形中的两个内角,不能出现在两个三角形中;(2)结论中的两条边应是这两个内角的“对边”,这种对应关系不能混淆;(3)此定理的作用在于证明一个三角形为等腰三角形. 知识点3、等边三角形的性质与判定1、等边三角形的三个角都相等,并且每个角都等于60°.2、等边三角形具有等腰三角形的所有性质,并且在每条边上都有“三线合一”.因此等边三角形是轴对称图形,它有三条对称轴,而等腰三角形(非等边三角形)只有一条对称轴. 3、有一个角是60°的等腰三角形是等边三角形.拓展:等边三角形是一种特殊的三角形,容易知道等边三角形的三条高(或三条中线、三条角平分线)都相等.知识点4、等腰三角形性质的应用等腰三角形的性质除“三线合一”外,三角形中的主要线段之间也存在着特殊的性质,如:(1) 等腰三角形两底角的平分线相等;(2)等腰三角形两腰上的中线相等; (3)等腰三角形两腰上的高相等;(4)等腰三角形底边上的中点到两腰的距离相等.知识点5、全等三角形的判定1、三组对应边分别相等的两个三角形全等(简称SSS或“边边边”)。
《中心对称和中心对称图形》知识点运用一、基础知识归纳1.中心对称与中心对称图形的意义中心对称:把一个图形绕着某一个点旋转180°,如果它能与另一个图形重合,那么就说这两个图形关于这个点成中心对称,该点叫做对称中心.中心对称图形:把一个图形绕着中心旋转180°后能与自身重合,我们把这个图形叫做中心对称图形,这个中心点叫做对称中心.2.中心对称与中心对称图形的区别与联系(1)区别:①图形个数不同.中心对称涉及两个图形,是指两个全等图形之间的相互位置关系;而中心对称图形只对一个图形而言,是指具有特殊形状的一个图形.②对称点位置不同.成中心对称的两个图形中,其中一个图形上的所有点关于对称中心的对称点都在另一个图形上,反之亦然;而中心对称图形上所有点关于对称中心的对称点都在这个图形本身上,(2)联系:①如果把中心对称的两个图形看成一个整体(一个图形),那么这个图形是中心对称图形.②如果把一个中心对称图形中对称的部分看成是两个图形,那么它们是中心对称.二、知识运用例1、已知四边形ABCD和点O,画四边形A′B′C′D′,使它与已知四边形关于O点对称.分析:要画四边形ABCD关于点O的对称图形,只要画A、B、C、D四点关于点O的对称点,再顺次连接各点即可.画法:1、连接AO并延长到A',使OA'=OA得到点A的对称点A'(如图1).图12、同样画B、C、D的对称点B'、C'、D'3、顺次连接A'、B'、C'、D'各点,四边形A′B′C′D′就是所求的四边形小结:从本例可看出,画与已知图形成中心对称的图形的问题,思路较为简捷,只需画出多边形的各个顶点关于点O的对称点,也就是将问题转化为点关于点的对称点问题.例2﹑下列说法:(1)全等的两个图形成中心对称;(2)成中心对称的两个图形必须重合;(3)成中心对称的两个图形全等;(4)旋转后能够重合的两个图形成中心对称,其中说法正确的序号是____________.分析:本题主要考查中心对称的概念、性质和判定,由中心对称的判定知,全等的两个图形不一定成中心对称,故(1)错;成中心对称的两个图形旋转1800后能重合,但未旋转时它们不是必须重合,故(2)错;旋转后能重合的两个图形,也不一定成中心对称,关键是要旋转1800后能重合,故4)错;由中心对称的性质知(3)对.[答案](3)小结:解此题易出现下列思维障碍:①中心对称与中心对称图形不分;②不会灵活运用中心对称的判定和性质.排除障碍采取下列方法:①熟悉定义,中心对称是针对两个图形而言,中心对称图形是一个图形内部的性质;②深刻理解中心对称的判定和性质,分清定理的条件和结论.熟能生巧.例3、如图2:在△ABC中,D是AB的中点,点E、F分别在AC、BC上,则S△DEF与S△ADE+S△BDF 的大小关系为 .分析:利用图形转换,作△ADE关于D点的对称图形.解:将△ADE绕D逆时针旋转180°到△BDH ,则H、D、E共线,且D是EH中点,四边形HBFD是凸四边形,于是S△DEF =S△DHF < S四边形HBFD=S△BDH+S△BDF=S△ADE+S△BDF图2例4、已知:图A,图B分别是6×6正方形网格上的两个轴对称图形(阴影部分),其面积分别是S A,S B(网格中最小的正方形面积为一个平方单位),请观察图形并解答下列问题.(1)填空:S A:S B的值是________________;(2)请在图C的网格上画出一个面积为8个平方单位的中心对称图形.分析(1)因为每张图的上、下成轴对称图形,所以只要数出每张图的上半部的阴影部分占有格子的数目即可.图A为9格,图B为11格,故S A:S B=9:11;(2)图3为参考答案.小结:利用轴对称、中心对称设计图案是十分有趣的实践活动.本题给了学生充分发挥主动性和创造性的机会,让他们有创意地设计漂亮的图案,真切地感受图形变换的乐趣和数学的美感,同时也考查了数学的基础知识.图3。
湘教版八下数学2.3.1《中心对称和中心对称图形(一)》教学设计一. 教材分析《中心对称和中心对称图形(一)》是湘教版八年级下册数学第二单元第三节的内容。
本节内容主要介绍了中心对称和中心对称图形的概念,以及它们之间的联系和区别。
通过学习本节内容,学生能够理解中心对称和中心对称图形的定义,并能够运用这些知识解决实际问题。
二. 学情分析学生在学习本节内容之前,已经学习了平面几何的基本概念和性质,具备了一定的几何思维能力。
但是,对于中心对称和中心对称图形的概念,学生可能还比较陌生,需要通过具体的实例和操作来理解和掌握。
三. 教学目标1.知识与技能目标:学生能够理解中心对称和中心对称图形的概念,并能够运用这些知识解决实际问题。
2.过程与方法目标:通过观察、操作和思考,学生能够培养自己的几何思维能力和解决问题的能力。
3.情感态度与价值观目标:学生能够积极参与课堂活动,与老师和同学进行良好的互动,增强对数学学科的兴趣和自信心。
四. 教学重难点1.重点:中心对称和中心对称图形的概念及其性质。
2.难点:理解中心对称和中心对称图形之间的联系和区别,以及如何运用这些知识解决实际问题。
五. 教学方法1.引导发现法:通过问题和实例的引导,让学生主动发现中心对称和中心对称图形的性质和规律。
2.操作实践法:通过实际的操作和观察,让学生亲身体验和理解中心对称和中心对称图形的概念。
3.合作交流法:通过小组合作和讨论,让学生分享自己的理解和思路,培养合作和沟通能力。
六. 教学准备1.教具准备:几何画板、幻灯片等教学工具。
2.教材准备:湘教版八年级下册数学教材。
3.课件准备:制作相应的课件和教学素材。
七. 教学过程1.导入(5分钟)通过一个具体的实例,如一个圆形图案,引导学生观察和思考,引出中心对称和中心对称图形的概念。
2.呈现(10分钟)利用幻灯片或课件,呈现中心对称和中心对称图形的定义和性质,让学生直观地理解和掌握。
3.操练(10分钟)让学生通过实际的操作和观察,验证中心对称和中心对称图形的性质,加深对概念的理解。
课时教案第节总序第节课题中心对称与中心对称图形编写时间月日执行时间月日教学目标1、经历观察、操作、分析等数学活动过程,通过具体实例认识中心对称,知道中心对称的性质.2、比照轴对称与轴对称图形的关系,认识中心对称图形,知道中心对称图形的性质.重点、难点重点:中心对称的概念难点:中心对称和中心对称图形的区别学具准备书本、笔、草稿纸、课堂点睛教具准备Ppt、教案、课本、三角板、圆规教学设计备注一、活动探索活动一比照轴对称与轴对称图形的关系,认识中心对称图形.课本通过思考“轴对称与轴对称图形有怎样的联系与区别?比照轴对称与轴对称图形的关系,你认为什么样的图形是中心对称图形?”引人中心对称图形的概念.轴对称和轴对称图形是两个不同的概念,轴对称是指两个图形关于一条直线的对称,也就是对于任何一个图形,都可以画出它关于某条直线对称的图形.而轴对称图形是指对于一个图形,存在着一条(或多条)直线,以这条直线为轴,把这个图形翻折过去,能使两边完全重合.同样,中心对称是对两个图形来说的,它表示两个图形之间的对称关系.中心对称图形是对一个图形来说的,它表示某个图形的性质.对中心对称图形概念的教学,要帮助学生理解如下几点:(1)中心对称图形有一个对称中心,将这个图形绕对称中心旋转180°,旋转后的图形能与原来的图形重合;(2)中心对称图形是对一个图形来说的,是一个图形所具有的性质;(3)中心对称与中心对称图形既有区别又有联系:如果将成中心对称的两个图形看成一个图形,那么这个图形的整体就是中心对称图形;反过来,如果将一个中心对称图形沿过对称中心的任一条直线分成两个图形,那么这两个图形成中心对称.活动二(1)引导学生通过观察、思考,判断所给图形,哪些是中心对称图形?哪些是轴对称图形?并画出对称中心或对称轴.中心对称图形和轴对称图形都是指一个图形所具有的特殊性质,教学中,要发挥学生的主体作用,引导学生通过独立思考和合作交流加以解决,并引导学生将中心对称图形与轴对称图形进行类比.(2)举出生活中的中心对称图形.对学生举出的生活中的中心对称图形,教师要引导学生充分观察,鼓励学生用自己的语言描述出这些图形的共同特征。
湘教版初中数学重点知识精选掌握知识点,多做练习题,基础知识很重要!湘教版初中数学和你一起共同进步学业有成!2.3 中心对称和中心对称图形一、选择题(本大题共8小题)1. 下列既是轴对称图形又是中心对称图形的是( )A. B. C. D.2. 为了迎接杭州G20峰会,某校开展了设计“YJG20”图标的活动,下列图形中既是轴对称图形又是中心对称图形的是( )A. B. C. D.3.已知点P关于x轴的对称点P1的坐标是(2,3),那么点P关于原点的对称点P2的坐标是( )A.(-3,-2)B.(2,-3)C.(-2,-3)D.(-2,3)4. 在线段、平行四边形、矩形、等腰三角形、圆这几个图形中既是轴对称图形又是中心对称图形的个数是( )A.2个 B.3个 C.4个 D.5个5. 用四块形如的正方形瓷砖拼成如下四种图案,其中成中心对称图形的是( )A.①②B.②③C.②④D.①④6. 如图,△ABC与△A′B′C′关于O成中心对称,下列结论中不成立的是( )A.OC=OC′B.OA=OA′C.BC=B′C′D.∠ABC=∠A′C′B′7. 如图,若要添加一条线段,使之既是轴对称图形又是中心对称图形,正确的添加位置是( )A.B.C.D.8. 如图,直线l与⊙O相交于点A、B,点A的坐标为(4,3),则点B的坐标为( )A.(-4,3)B.(-4,-3)C.(-3,4)D.(-3,-4)二、填空题(本大题共6小题)9. 平行四边形是_____图形,它的对称中心是_____.10. 下列图形中:①圆;②等腰三角形;③正方形;④正五边形,既是轴对称图形又是中心对称图形的有 个.11. 如图,点C是线段AB的中点,点B是线段CD的中点,线段AB的对称中心是点_____,点C关于点B成中心对称的对称点是点_____.12. 在圆、平行四边形、矩形、菱形、正方形、等腰三角形等图形中,是中心对称图形但不是轴对称图形的是 .13. 已知点P(x,-3)和点Q(4,y)关于原点对称,则x+y等于_____.14. 如图,如果正方形CDEF旋转后能与正方形ABCD重合,那么图形所在平面上可以作为旋转中心的点有_______个.三、计算题(本大题共4小题)15. 如图,D是△ABC边BC的中点,连接AD并延长到点E,使DE=AD,连接BE.(1)图中哪两个图形成中心对称?(2)若△ADC的面积为4,求△ABE的面积.16. 如图①,已知△ABC与△ADE关于点A成中心对称,∠B=50°,△ABC的面积为24,BC边上的高为5,若将△ADE向下折叠,如图②点D落在BC的G点处,点E落在CB 的延长线的H点处,且BH=4,则∠BAG是多少度,△ABG的面积是多少.17. 已知六边形ABCDEF是以O为中心的中心对称图形(如图),画出六边形ABCDEF的全部图形,并指出所有的对应点和对应线段.18. 如图,正方形ABCD于正方形A1B1C1D1关于某点中心对称,已知A,D1,D三点的坐标分别是(0,4),(0,3),(0,2).湘教版初中数学(1)求对称中心的坐标.(2)写出顶点B,C,B1,C1的坐标.参考答案:一、选择题(本大题共8小题)1. A分析:结合选项根据轴对称图形与中心对称图形的概念求解即可.解:A、是轴对称图形,也是中心对称图形;B、是轴对称图形,不是中心对称图形;C、是轴对称图形,不是中心对称图形;D、不是轴对称图形,也不是中心对称图形.故选A.2.D分析:根据轴对称图形与中心对称图形的概念求解.解:A、是轴对称图形.不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义.故错误;B、不是轴对称图形,因为找不到任何这样的一条直线,沿这条直线对折后它的两部分能够重合;即不满足轴对称图形的定义.也不是中心对称图形.故错误;C、不是轴对称图形,因为找不到任何这样的一条直线,沿这条直线对折后它的两部分能够重合;即不满足轴对称图形的定义.也不是中心对称图形.故错误;D、是轴对称图形,又是中心对称图形.故正确.故选:D.3.D分析:平面直角坐标系中任意一点P(x,y),关于x轴的对称点的坐标是(x,-y),关于y轴的对称点的坐标是(-x,y),关于原点的对称点是(-x,-y).解:∵点P关于x轴的对称点P1的坐标是(2,3),∴点P的坐标是(2,-3).∴点P关于原点的对称点P2的坐标是(-2,3).故选D.4. B分析:根据轴对称图形与中心对称图形的概念进行判断即可.解:线段、矩形、圆既是轴对称图形又是中心对称图形,平行四边形不是轴对称图形是中心对称图形,等腰三角形是轴对称图形不是中心对称图形,故选:B.5. D分析:结合用瓷砖拼成的图案,根据中心对称图形的概念求解.解:根据中心对称图形的概念,可知第①④是中心对称图形.故选D.6. D分析:根据中心对称的性质即可判断.解:对应点的连线被对称中心平分,A,B正确;成中心对称图形的两个图形是全等形,那么对应线段相等,C正确.故选D.7. A分析:根据轴对称图形与中心对称图形的概念求解.解:A、是轴对称图形,也是中心对称图形;B、不是轴对称图形,也不是中心对称图形;C、不是轴对称图形,也不是中心对称图形;D、是轴对称图形,不是中心对称图形.故选A.8. B分析:根据关于原点对称的点的坐标特点:两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点O的对称点是P′(-x,-y).解:由图可以发现:点A与点B关于原点对称,∵点A的坐标为(4,3),∴点B的坐标为(-4,-3),故选:B.二、填空题(本大题共6小题)9. 分析:画出图形后连接AC、BD,交于O,根据平行四边形的性质得出OA=OC,OD=OB,根据中心对称图形的定义判断即可.解:连接BD、AC,AC和BD交于O,∵平行四边形ABCD,∴OA=OC,OD=OB,即平行四边形ABCD是中心对称图形,对称中心是两对角线的交点O.10.分析:根据轴对称图形与中心对称图形的概念求解.解:①既是轴对称图形又是中心对称图形,符合题意;②是轴对称图形,不是中心对称图形,不符合题意;③既是轴对称图形又是中心对称图形,符合题意;④是轴对称图形,不是中心对称图形,不符合题意;故既是轴对称图形又是中心对称图形的是①③共2个.故答案为:2.11. 分析:根据中心对称图形的对称中心的定义求解,即可得出答案.解:根据题意得:点C是线段AB的中点,点B是线段CD的中点,线段AB的对称中心是点C;点C关于点B成中心对称的对称点是点D12.分析:根据轴对称图形与中心对称图形的概念结合几何图形的特点进行判断.解:矩形、菱形、正方形、圆是轴对称图形,也是中心对称图形,不符合题意;等腰三角形是轴对称图形,不是中心对称图形,不符合题意;平行四边形不是轴对称图形,是中心对称图形,符合题意13.分析:平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y),即关于原点的对称点,横纵坐标都变成相反数.根据点P和点Q关于原点对称就可以求出x,y的值,即可得出x+y.解:∵点P(x,-3)和点Q(4,y)关于原点对称,∴x=-4,y=3,∴x+y=-4+3=-114.分析:分别以C,D,CD的中点为旋转中心进行旋转,都可以使正方形ABCD旋转后能与正方形CDEF重合.解:以C为旋转中心,把正方形ABCD顺时针旋转90°,可得到正方形CDEF;以D为旋转中心,把正方形ABCD逆时针旋转90°,可得到正方形CDEF;以CD的中点为旋转中心,把正方形ABCD旋转180°,可得到正方形CDEF.故选C.三、计算题(本大题共4小题)15. 分析:(1)直接利用中心对称的定义写出答案即可;(2)根据成中心对称的图形的两个图形全等确定三角形BDE的面积,根据等底同高确定ABD的面积,从而确定ABE的面积.解:(1)图中△ADC和三角形EDB成中心对称;(2)∵△ADC和三角形EDB成中心对称,△ADC的面积为4,∴△EDB的面积也为4,∵D为BC的中点,∴△ABD的面积也为4,所以△ABE的面积为8.16. 分析:根据中心对称的性质和折叠的性质计算即可,同时运用了三角形的面积公式.解:依题意有AD=AB=AG,AE=AH=AC.又∠B=50°,则∠BAG=180°-50°×2=80°;作AD⊥BC于D,根据三角形的面积公式得到BC=9.6.根据等腰三角形的三线合一,可以证明CG=BH=4,则BG=5.6.根据三角形的面积公式得△ABG的面积是14.17. 分析:画中心对称图形,要确保对称中心是对应点所连线段的中点,即B,O,E共线,并且OB=OE,C,O,F共线,并且OC=OF.解:作法如下:图中A的对应点是D,B的对应点是E,C的对应点是F;AB对应线段是DE,BC对应线段是EF,CD对应线段是AF.18. 分析:(1)根据对称中心的性质,可得对称中心的坐标是D1D的中点,据此解答即可.(2)首先根据A,D的坐标分别是(0,4),(0,2),求出正方形ABCD与正方形A1B1C1D1的边长是多少,然后根据A,D1,D三点的坐标分别是(0,4),(0,3),(0,2),判断出顶点B,C,B1,C1的坐标各是多少即可.解:(1)根据对称中心的性质,可得对称中心的坐标是D1D的中点,∵D1,D的坐标分别是(0,3),(0,2),∴对称中心的坐标是(0,2.5).(2)∵A,D的坐标分别是(0,4),(0,2),∴正方形ABCD与正方形A1B1C1D1的边长都是:4﹣2=2,∴B,C的坐标分别是(﹣2,4),(﹣2,2),∵A1D1=2,D1的坐标是(0,3),∴A1的坐标是(0,1),∴B1,C1的坐标分别是(2,1),(2,3),综上,可得顶点B,C,B1,C1的坐标分别是(﹣2,4),(﹣2,2),(2,1),(2,3).湘教版初中数学TB:小初高题库相信自己,就能走向成功的第一步教师不光要传授知识,还要告诉学生学会生活。
《中心对称和中心对称图形》知识点运用
一、基础知识归纳
1.中心对称与中心对称图形的意义
中心对称:把一个图形绕着某一个点旋转180°,如果它能与另一个图形重合,那么就说这两个图形关于这个点成中心对称,该点叫做对称中心.
中心对称图形:把一个图形绕着中心旋转180°后能与自身重合,我们把这个图形叫做中心对称图形,这个中心点叫做对称中心.
2.中心对称与中心对称图形的区别与联系
(1)区别:
①图形个数不同.中心对称涉及两个图形,是指两个全等图形之间的相互位置关系;而中心对称图形只对一个图形而言,是指具有特殊形状的一个图形.
②对称点位置不同.成中心对称的两个图形中,其中一个图形上的所有点关于对称中心的对称点都在另一个图形上,反之亦然;而中心对称图形上所有点关于对称中心的对称点都在这个图形本身上,
(2)联系:
①如果把中心对称的两个图形看成一个整体(一个图形),那么这个图形是中心对称图形.
②如果把一个中心对称图形中对称的部分看成是两个图形,那么它们是中心对称.
二、知识运用
例1、已知四边形ABCD和点O,画四边形A′B′C′D′,使它与已知四边形关于O点对称.
分析:要画四边形ABCD关于点O的对称图形,只要画A、B、C、D四点关于点O的对称点,再顺次连接各点即可.
画法:1、连接AO并延长到A',使OA'=OA得到点A的对称点A'(如图1).
图1
2、同样画B、C、D的对称点B'、C'、D'
3、顺次连接A'、B'、C'、D'各点,
四边形A′B′C′D′就是所求的四边形
小结:从本例可看出,画与已知图形成中心对称的图形的问题,思路较为简捷,只需画出多边形的各个顶点关于点O的对称点,也就是将问题转化为点关于点的对称点问题.
例2﹑下列说法:(1)全等的两个图形成中心对称;(2)成中心对称的两个图形必须重合;(3)成中心对称的两个图形全等;(4)旋转后能够重合的两个图形成中心对称,其中说法正确的序号是____________.
分析:本题主要考查中心对称的概念、性质和判定,由中心对称的判定知,全等的两个图形不一定成中心对称,故(1)错;成中心对称的两个图形旋转1800后能重合,但未旋转时它们不是必须重合,故(2)错;旋转后能重合的两个图形,也不一定成中心对称,关键是要旋转1800后能重合,故4)错;由中心对称的性质知(3)对.
[答案](3)
小结:解此题易出现下列思维障碍:①中心对称与中心对称图形不分;②不会灵活运用中心对称的判定和性质.排除障碍采取下列方法:①熟悉定义,中心对称是针对两个图形而言,中心对称图形是一个图形内部的性质;②深刻理解中心对称的判定和性质,分清定理的条件和结论.熟能生巧.
例3、如图2:在△ABC中,D是AB的中点,点E、F分别在AC、BC上,则S△DEF与S△ADE+S△BDF 的大小关系为 .
分析:利用图形转换,作△ADE关于D点的对称图形.
解:将△ADE绕D逆时针旋转180°到△BDH ,则H、D、E共线,且D是EH中点,四边形HBFD是凸四边形,于是S△DEF =
S△DHF < S四边形HBFD=S△BDH+S△BDF=S△ADE+S△BDF
图2
例4、已知:图A,图B分别是6×6正方形网格上的两个轴对称图形(阴影部分),其面积分别是S A,S B(网格中最小的正方形面积为一个平方单位),请观察图形并解答下列问题.(1)填空:S A:S B的值是________________;
(2)请在图C的网格上画出一个面积为8个平方单位的中心对称图形.
分析(1)因为每张图的上、下成轴对称图形,所以只要数出每张图的上半部的阴影部分占有格子的数目即可.图A为9格,图B为11格,故S A:S B=9:11;
(2)图3为参考答案.
小结:利用轴对称、中心对称设计图案是十分有趣的实践活动.本题给了学生充分发挥主动性和创造性的机会,让他们有创意地设计漂亮的图案,真切地感受图形变换的乐趣和数学的美感,同时也考查了数学的基础知识.
图3。