5.1时序电路的基本分析和设计方法
- 格式:ppt
- 大小:1.13 MB
- 文档页数:30
第5章时序逻辑电路学习要点5.1 概述数字电子技术的两个重要组成部分:所以时序逻辑电路必须含有具有记忆能力的存储元件,最常用的存储元件是触发器。
在时序逻辑电路中既包含输出信号只取决于输入信号的门电路部分,又包含能实现存储功能的触发器部分。
&Q 时序逻辑电路示意图按照时序逻辑电路中触发器触发方式的不同,时序逻辑电路可以分为:同步时序逻辑电路&Q1Q该电路位为同步时序逻辑电路常用的时序逻辑电路描述方法有方程式、状态表、状态图和时序图。
例时序逻辑电路的输出逻辑表达式。
各触发器输入端的逻辑表达式。
&Q 1Q Q X1K Q==--将驱动方程代入相应触发器的特性方程中,所得到的该触发器的次态方程。
时序逻辑电路状态表00/0000/Z X 1n Q 10n Q +11n Q+0n Q--描述触发器的动态行为,显示了触发器如何根据当前所处的状态对不同的情况做出反应。
当X=1时,“00”、“01”、“10”、“11”这四个状态构成一个循环,称为“主循环”或如果每个无效状态在若干个时钟作用后都能够转入有效状态,进入“有效循环”,那么,称这个电路具有自启动能力;否则电路就不具有自启动能力。
器,并且不具有自启动能力。
--描述在时钟源CP作用下时序逻辑电路的状态及输出随输入和时间变化的波形,通常指有效循环的波形图。
作用下,各个触发器状态的变化情况。
5.2 时序逻辑电路的分析电路图同步时序逻辑5.2.2 同步时序逻辑电路分析举例例1 分析图示电路实现的逻辑功能。
各触发器初始状态为0。
Q 0Q 1Q 1Q 即各触发器的输入逻辑表达式:n Q Q 01=)输出方程:n QZ 0=(3)把驱动方程代入D 触发器的特征方程得状态方程:1n Q D +=10n n QQ+=n n n n n QQ Q Q Q10111+=+信号的作下,各触发可以看到,电路在时钟脉冲的作用下,每经过4个CP,电路状态循环一次,并且按照“11”、“10”、“01”、“00”降序排列。
时序逻辑电路设计
时序电路设计又称时序电路综合,它是时序电路分析的逆过程,即依据给定的规律功能要求,选择适当的规律器件,设计出符合要求的时序规律电路,对时序电路的设计除了设计方法的问题还应留意时序协作的问题。
时序规律电路可用触发器及门电路设计,也可用时序的中规模的集成器件构成,以下我们分别介绍它们的设计步骤。
1.用SSI器件设计时序规律电路
用触发器及门电路设计时序规律电路的一般步骤如图所示。
(1)由给定的规律功能求出原始状态图:首先分析给定的规律功能,从而求出对应的状态转换图。
这种直接由要求实现的规律功能求得的状态转换图叫做原始状态图。
(2)状态化简:依据给定要求得到的原始状态图很可能包含有多余的状态,需要进行状态化简或状态合并。
状态化简是建立在状态等价这个概念的基础上的。
(3)状态编码、并画出编码形式的状态图及状态表:在得到简化的状态图后,要对每一个状态指定1个二进制代码,这就是状态编码(或称状态安排)。
(4)选择触发器的类型及个数:
(5)求电路的输出方程及各触发器的驱动方程:依据编码后的状态表及触发器的驱动表可求得电路的输出方程和各触发器的驱动方程。
(6)画规律电路,并检查自启动力量。
2.用MSI中规模时序规律器件构成时序规律电路
用中规模时序规律器件构成的时序功能电路主要是指用集成计数器构成任意进制计数器。
构成任意进制计数器的方法有两种:一种是置数法,另一种是归零法。
时序逻辑电路的设计与实现时序逻辑电路是数字电路中的一种重要类型,它可以根据输入信号的变化和先后顺序,产生相应的输出信号。
本文将介绍时序逻辑电路的设计与实现,并探讨其中的关键步骤和技术。
一、概述时序逻辑电路是根据时钟信号的变化产生输出信号的电路,它可以存储信息并根据特定的时序条件进行信号转换。
常见的时序逻辑电路包括触发器、计数器、移位寄存器等。
二、时序逻辑电路的设计步骤1. 确定需求:首先需要明确所要设计的时序逻辑电路的功能和性能需求,例如输入信号的种类和范围、输出信号的逻辑关系等。
2. 逻辑设计:根据需求,进行逻辑设计,确定逻辑门电路的组合方式、逻辑关系等。
可以使用真值表、状态转换图、状态表等方法进行设计。
3. 时序设计:根据逻辑设计的结果,设计时序电路,确定触发器的类型和触发方式,确定时钟信号的频率和相位,以及信号的启动和停止条件等。
4. 电路设计:将逻辑电路和时序电路整合,并进行布线设计。
通过选择合适的器件和元器件,设计稳定可靠的电路。
5. 功能验证:对设计的时序逻辑电路进行仿真验证,确保电路的功能和性能符合设计要求。
三、时序逻辑电路的实现技术1. 触发器:触发器是时序逻辑电路的基本组成部分,常见的触发器有RS触发器、D触发器、T触发器等。
通过组合和串联不同类型的触发器,可以实现不同的功能。
2. 计数器:计数器是一种特殊的时序逻辑电路,用于计数和记录输入脉冲信号的次数。
常见的计数器有二进制计数器、十进制计数器等。
3. 移位寄存器:移位寄存器是一种能够将数据向左或向右移位的时序逻辑电路。
它可以在输入端输入一个位串,随着时钟信号的变化,将位串逐位地向左或向右移位,并将移出的位存储起来。
四、时序逻辑电路的应用领域时序逻辑电路广泛应用于数字系统中,例如计算机中的控制单元、存储器等。
它们在数据处理、信息传输、控制信号处理等方面发挥着重要作用。
总结:时序逻辑电路的设计与实现是一项复杂而重要的任务。
在设计过程中,需明确需求、进行逻辑设计和时序设计,并通过合适的触发器、计数器和移位寄存器等元件来实现功能。