《直线、平面垂直的判定及其性质》教案3两条直线的位置关系新人教A版
- 格式:docx
- 大小:17.43 KB
- 文档页数:6
直线与平面垂直的判定【教材分析】《直线与平面垂直的判定》是人教版普通课程标准实验教科书必修二第二章第三节的内容。
本节课主要学习直线与平面垂直的定义、判定定理及其初步运用。
它是在学生学习了空间点、直线、平面之间的位置关系和直线、平面平行的判定及其性质之后进行的,直线与平面垂直是直线与平面相交中的一种特殊情况。
线面垂直的定义是线面垂直最基本的判定方法和性质,它是探究线面垂直判定定理的基础。
该定理是证明线面垂直的重要方法,体现了“直线与平面垂直”与“直线与直线垂直”互相转化的数学思想,在教材中起到了承上启下的作用。
【学情分析】本节课的学生是高一的学生,他们的空间想象能力、抽象概括能力属于中下水平。
而《课程标准》指出本节课学习目标是:通过直观感知、操作确认,归纳出线面垂直的判定定理;能运用判定定理证明一些空间位置关系的简单命题。
虽然学生在学习本节课之前,学生已经掌握了线线垂直的证明,并且学习了空间内直线与平面位置关系以及直线与平面平行的知识等有了一定的认知基础,但是学生对于理解线面垂直的定义有一定的困难,很容易由一条直线垂直于平面内一条直线或者垂直于无数条直线得出线面垂直。
由于平面内看不到直线,要让学生去体会“与平面内任意一条直线都垂直”就有一定困难,探究发现线面垂直判定定理的方法不易想到。
考虑到学生的基础知识和认知水平,把直线与平面所成的角安排到下一节课。
【教学目标】知识与技能:1通过对实例、图片的观察,归纳出直线与平面垂直的定义,并能正确理解和掌握直线与平面垂直的定义;2 通过直观感知,操作确认,归纳直线与平面垂直的判定定理,并能运用判定定理证明一些空间位置关系的简单命题;过程与方法:1通过教学活动,使学生了解、感受直线和平面垂直的形成过程。
2、探究判定直线与平面垂直的方法情感、态度与价值观:垂直关系在日常生活中有广泛的实例,在体验数学美的过程中激发学生学习兴趣,从而培养学生勤于思考,勤于动手的良好品质,培养学生学会从“感性认识”到“理性认识”过程中获取新知。
第三课时直线与平面垂直、平面与平面垂直的性质(一)教学目标1.知识与技能(1)使学生掌握直线与平面垂直,平面与平面垂直的性质定理;(2)能运用性质定理解决一些简单问题;(3)了解直线与平面、平面与平面垂直的判定定理和性质定理间的相互关系.2.过程与方法(1)让学生在观察物体模型的基础上,进行操作确认,获得对性质定理正确性的认识;3.情感、态度与价值观通过“直观感知、操作确认、推理证明”,培养学生空间概念、空间想象能力以及逻辑推理能力.(二)教学重点、难点两个性质定理的证明.(三)教学方法α⊥α=0b′是经过的直线∵a∥b′,2.例 1 设αβ=CD,ABα⊂AB⊥CD = B求证AB证明:在β内引直线,垂足为B,则∠A A A'=A⊥面ABCD故只需在黑板上作一直线与两个平面的交线垂直即可内作垂直于α与,β= c,内作直线b⊥c,根据平面与平面垂直的性质定垂合,因此aα⊂.判断下列命题是否正确,正确的在括号内画“√”错误的β=,那lABβ=,试判断直线a.平行、相交或在平面备选例题例1 把直角三角板ABC的直角边BC放置桌面,另一条直角边AC 与桌面所在的平面α垂直,a是α内一条直线,若斜边AB与a垂直,则BC是否与a垂直?【解析】a ACACa ABaAC AB Aαα⊥⎫⊥⎫⎪⇒⊥⎬⎬⊂⎭⎪=⎭a ⊥⎫⇒⎬⊂⎭平面ABC BC 平面ABC a BC ⇒⊥【评析】若BC 与α垂直,同理可得AB 与α也垂直,其实质是三垂线定理及逆定理,证明过程体现了一种重要的数学转化思想方法:“线线垂直→线面垂直→线线垂直” .例2 求证:如果两个平面都垂直于第三个平面,则它们的交线垂直于第三个平面.已知α⊥r ,β⊥r ,α∩β= l ,求证:l ⊥r .【分析】根据直线和平面垂直的判定定理可在r 内构造两相交直线分别与平面α、β垂直.或由面面垂直的性质易在α、β内作出平面r 的垂线,再设法证明l 与其平行即可.【证明】法一:如图,设α∩r = a ,β∩r = b ,在r 内任取一点P .过点P 在r 内作直线m ⊥a ,n ⊥b .∵α⊥r ,β⊥r ,∴m ⊥a ,n ⊥β(面面垂直的性质). 又α∩β= l ,∴l ⊥m ,l ⊥n .又m ∩n = P ,m ,n ⊂r ∴l ⊥r .法二:如图,设α∩r = a ,β∩r = b ,在α内作m ⊥a ,在β内作n ⊥b . ∵α⊥r ,β⊥r ,∴m ⊥r ,n ⊥r .∴m ∥n ,又n ⊂β,m ⊄β, ∴m ∥β,又α∩β= l ,m ⊂α, ∴m ∥l ,又m ⊥r ,∴l ⊥r .【评析】充分利用面面垂直的性质构造线面垂直是解决本题的关键.证法一充分利用面面垂直、线面垂直、线线垂直相互转化;证法二涉及垂直关系与平行关系之间的转化.此题是线线、面面垂直转化的典型题,通过一题多解,对沟通知识和方法,开拓解题思路是有益的.。
两条直线平行与垂直的判定【教学目标】(1)掌握直线与直线的位置关系。
(2)掌握用代数的方法判定直线与直线之间的平行与垂直的方法。
【教学重点难点】教学重点难点:两条直线的平行与垂直的判定方法又是教学难点。
【教学过程】一、引入:问题1:平面内两条直线的位置关系问题2:两条直线的平行和直线的倾斜角和斜率之间的关系二、新课问题探究1:(1)、如何判定两条不重合直线的平行?(2)、当两条直线斜率不存在,位置关系如何?(3)、直线l 1和直线l 2的斜率k 1=k 2,两条直线可能重合的情况下:两条直线位置关系怎样? 总结归纳直线与直线平行的判定方法例题1(课本87页的例题3)解答过程见课本变式:判断下列各小题中的直线1l 与2l 是否平行。
(1)1l 经过点A (-1,-2),B(2,1),2l 经过点M (3,4),N (-1,-1)答案:不平行(2)1l 经过点A (0,1),B(1,0),2l 经过点M (-1,3),N (2,0)答案:平行例题2(课本87页的例题4)解答过程见课本变式:判断下列各小题中的直线1l 与2l 是否垂直。
(1)1l 经过点A (-1,-2),B(1,2),2l 经过点M (-2,-1),N (2,1)答案:不垂直(2)1l 经过点A (3,4),B(3,100),2l 经过点M (-10,40),N (10,40)答案:垂直问题探究2(1)、如何利用直线的斜率判定两条直线的垂直?(2)、两条垂直的直线斜率有怎样的关系?总结直线与直线垂直的判定方法:例题3(课本87页的例题5)解答过程见课本变式:已知点A (-2,-5),B (6,6),点P 在x 轴上,且︒=∠90APB ,试求点P 的坐标。
分析:利用两直线的条件建立点p 的坐标满足的方程与关系式。
答案;P 的坐标为(0,-6)或(0,7)。
过程略例题4(课本87页的例题6)解答过程见课本变式:已知定点A (-1,3),B (4,2),以A 、B 为直径的端点,作圆与x 轴有交点C ,求交点C 的坐标。
8.6.2《直线与平面垂直》教案一、教学目标1.理解直线与平面垂直的定义。
2.理解直线与平面垂直的判定定理。
3.理解直线与平面垂直的性质定理,并能够证明。
4.能运用判定定理证明直线与平面垂直的简单命题。
5.能运用性质定理证明一些空间位置关系的简单命题。
二、教学重难点1.教学重点直观感知、操作确认,概括出直线与平面垂直的判定定理、性质定理。
2.教学难点直线与平面垂直的判定定理的应用、性质定理的证明。
黑色是讲话内容,红色是回答内容,蓝色是课件内容,紫色是动作内容上课,同学们好!请坐!三、教学准备1.《直线与平面垂直》PPT2.每人发一张三角形纸片四、教学过程黑色是讲话内容,红色是回答内容,蓝色是课件内容,紫色是动作内容上课,同学们好!请坐!【提问】有同学认识它吗?(手指着日晷)(学生:认识)(学生:不认识)可能有同学不认识,它叫日晷。
【PPT演示】日晷日晷是中国古代用来测定时间的仪器,日晷通常由晷针指到和晷盘组成(手指着部位)。
如果我们把晷针看成一条直线,晷面看成一个平面,这里就体现了直线与平面的一种非常特殊的位置关系。
同学们知道是什么位置关吗?(学生:垂直)对,直线与平面重直,这就是我们今天所要学习的内容——《直线与平面垂直》【PPT演示图片】课题《8.6.2直线与平面垂直》【板书】8.6.2直线与平面垂直在我们的实际生活中,有许多场景都能给我们以直线与平面重直的直观形象。
同学们你能举出几个例子吗?(让学生多举几个)如:①把老师我看成一条直线,把讲台看成一个平面;②教室里相邻墙面的交线与地面的位置关系【PPT演示图片】③旗杆所在直线与地面的位置关系④港珠澳大桥雄伟壮观,桥墩所在直线与海面所在平面的位置关系⑤美丽的上海东方明珠塔,如果把塔身看成一条直线,海面看成一个平面。
这些都能给我们以直线与平面重直的形象。
⑥意大利萨斜塔,它能体现直线与平面垂直的形象吗?(学生:不能)对,不能,塔身所在直线与地面所在平面是不重直的。
数学 2.3.1直线与平面垂直的判定与性质教案新人教A版必修2一、教学目标1、知识与技能(1)掌握直线和平面垂直的定义及判定定理、性质定理;(2)掌握判定直线和平面垂直的方法;掌握直线和平面垂直的性质。
(3)培养学生的几何直观能力,使他们在直观感知,操作确认的基础上学会归纳、概括结论。
2、过程与方法(1)感受直线和平面垂直的定义的形成过程;(2)探究判定直线与平面垂直的方法。
3、情感态度与价值观:培养学生学会从“感性认识”到“理性认识”过程中获取新知。
二、教学重点、难点:直线与平面垂直的定义和判定定理的探究。
三、教学设计(一)创设情景,揭示课题举例:旗杆与地面,大桥的桥柱和水面等的位置关系。
模型演示:直棱柱的侧棱与底面的位置关系。
(二)研探新知1、直线与平面垂直的定义:直线l与平面内α的任意一条直线都垂直。
记作:l ⊥α。
直线l叫做平面α的垂线,平面α叫做直线l的垂面,垂线与平面的交点P叫做垂足。
2、直线与平面垂直的判定:(1)探究:准备一块三角形纸片。
过△ABC的顶点A翻折纸片,得到折痕AD,将翻折后的纸片竖起放置在桌面上(BD、DC与桌面接触)。
①折痕AD与桌面所在平面α垂直吗?②如何翻折才能使折痕AD与桌面所在平面α垂直?(AD是BC边上的高)(2)思考:①有人说,折痕AD所在直线已桌面所在平面α上的一条直线垂直,就可以判断AD垂直平面α,你同意他的说法吗?②如图,由折痕AD⊥BC,翻折之后垂直关系不变,即AD⊥CD,AD⊥BD,由此你能得到什么结论?(3)归纳结论:(直线与平面垂直的判定定理)一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直。
符号语言:ααα⊥⇒⊥⊥=⊂⊂l b l a l A b a b a ,,,,I 。
作用:由线线垂直得到线面垂直。
(线不在多,相交就行。
)强调:① 定理中的“两条相交直线”这一条件不可忽视;② 定理体现了“直线与平面垂直”与“直线与直线垂直”互相转化的数学思想。
2019-2020学年新人教A版必修一直线、平面垂直的判定及性质教案第五节直线、平面垂直的判定及性质垂直的判定与性质(1)掌握直线与平面垂直的判定定理和性质定理.(2)掌握两个平面垂直的判定定理和性质定理.知识点一直线与平面垂直1.直线与平面垂直的判定定理(1)自然语言:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直.(2)图形语言:如图1所示.(3)符号语言:a⊂α,b⊂α,a∩b=P,l⊥a,l⊥b⇒l⊥α.2.直线与平面垂直的性质定理自然语言:垂直于同一个平面的两条直线平行.图形语言:如图2所示.符号语言:a⊥α,b⊥α⇒a∥b.易误提醒斜线在平面上的射影是过斜足和垂足的一条直线,而不是线段.必记结论(1)直线与平面垂直的定义常常逆用,即a⊥α,b⊂α⇒a⊥b.(2)若平行直线中一条垂直于平面,则另一条也垂直于该平面.(3)垂直于同一条直线的两个平面平行.(4)过一点有且只有一条直线与已知平面垂直.(5)过一点有且只有一个平面与已知直线垂直.[自测练习]1.设a,b是平面α内两条不同的直线,l是平面α外的一条直线,则“l⊥a,且l⊥b”是“l⊥α”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件解析:由线面垂直的判定定理知,充分性不成立,由线面垂直的性质定理知,必要性成立,故选C.答案:C2.已知直线a,b和平面α,且a⊥b,a⊥α,则b与α的位置关系为()A.b⊂αB.b∥αC.b⊂α或b∥αD.b与α相交解析:由a⊥b,a⊥α知b⊂α或b∥α,但直线b不与α相交.答案:C知识点二平面与平面垂直1.平面与平面垂直的判定(1)两个平面垂直的定义如果两个相交平面所成的二面角是直二面角,那么就说这两个平面互相垂直.平面α与β垂直,记作α⊥β.(2)两个平面垂直的判定定理自然语言:一个平面过另一个平面的垂线,则这两个平面垂直.图形语言:如图1所示.符号语言:AB⊥β,AB⊂α⇒α⊥β.图12.平面与平面垂直的性质自然语言:两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直.图形语言:如图2所示.图2符号语言:α⊥β,α∩β=CD,AB⊂α,AB⊥CD⇒AB⊥β.易误提醒平面和平面垂直的判定定理的两个条件:l⊂α,l⊥β,缺一不可.必记结论(1)两个平面互相垂直是两个平面相交的特殊情况,正方体中任意相邻的两个面都是互相垂直的;(2)由定理可知,要证明平面与平面垂线,可转化为从现有直线中寻找平面的垂线,即证明线面垂直;(3)面面垂直的判定定理提供了找出垂直于一个平面的另一个平面的依据.[自测练习]3.若m,n是两条不同的直线,α,β,γ是三个不同的平面,则下列命题正确的是() A.若m⊂β,α⊥β,则m⊥αB.若α∩γ=m,β∩γ=n,m∥n,则α∥βC.若m⊥β,m∥α,则α⊥βD.若α⊥γ,α⊥β,则β⊥γ解析:利用相关定理逐个判断.A中m与α的位置关系不确定,故错误;B中α,β可能平行或相交,故错误;由面面垂直的判定定理可知C正确;D中β,γ平行或相交,故错误,选C.答案:C4.四棱锥P-ABCD中,底面ABCD是矩形,P A⊥底面ABCD,则这个四棱锥的五个面中两两垂直的共有________对.解析:因为AD⊥AB,AD⊥P A且P A∩AB=A,可得AD⊥平面P AB.同理可得BC⊥平面P AB、AB⊥平面P AD、CD⊥平面P AD,由面面垂直的判定定理可得,平面P AD⊥平面P AB,平面PBC ⊥平面P AB,平面PCD⊥平面P AD,平面P AB⊥平面ABCD,平面P AD⊥平面ABCD,共有5对.答案:5考点一直线与平面垂直的判定与性质|1.在空间中,l,m,n,a,b表示直线,α表示平面,则下列命题正确的是()A.若l∥α,m⊥l,则m⊥αB.若l⊥m,m⊥n,则m∥nC.若a⊥α,a⊥b,则b∥αD .若l ⊥α,l ∥a ,则a ⊥α解析:易知选项A 不正确;选项B ,从m ⊥n 就可以看出结论是错误的;选项C 中,若b ⊂α,则C 不正确;选项D 是正确的.答案:D2.(2016·丽水一模)在四面体ABCD 中,下列条件不能得出AB ⊥CD 的是( ) A .AB ⊥BC 且AB ⊥BD B .AD ⊥BC 且AC ⊥BD C .AC =AD 且BC =BD D .AC ⊥BC 且AD ⊥BD解析:A.∵AB ⊥BD ,AB ⊥BC ,BD ∩BC =B ,∴AB ⊥平面BCD ,∵CD ⊂平面BCD ,∴AB ⊥CD .B.设A 在平面BCD 内的射影为O ,则AO ⊥平面BCD ,∵AD ⊥BC ,AC ⊥BD ,∴O 为△BCD 的垂心,连接BO ,则BO ⊥CD ,又AO ⊥CD ,AO ∩BO =O ,∴CD ⊥平面ABO ,∵AB ⊂平面ABO ,∴AB ⊥CD .C.取CD 中点G ,连接BG ,AG .∵AC =AD 且BC =BD ,∴CD ⊥BG ,CD ⊥AG , ∵BG ∩AG =G ,∴CD ⊥平面ABG ,∵AB ⊂平面ABG ,∴AB ⊥CD ,故选D. 答案:D3.(2015·高考重庆卷)如图,三棱锥P -ABC 中,平面P AC ⊥平面ABC ,∠ABC =π2,点D ,E 在线段AC 上,且AD =DE =EC =2,PD =PC =4,点F 在线段AB 上,且EF ∥BC .(1)证明:AB ⊥平面PFE ;(2)若四棱锥P -DFBC 的体积为7,求线段BC 的长.解:(1)证明:由DE =EC ,PD =PC 知,E 为等腰△PDC 中DC 边的中点,故PE ⊥AC . 又平面P AC ⊥平面ABC ,平面P AC ∩平面ABC =AC ,PE ⊂平面P AC ,所以PE ⊥平面ABC ,从而PE ⊥AB .因∠ABC =π2,EF ∥BC ,故AB ⊥EF .从而AB 与平面PFE 内两条相交直线PE ,EF 都垂直,所以AB ⊥平面PFE . (2)设BC =x ,则在Rt △ABC 中, AB =AC 2-BC 2=36-x 2,从而S △ABC =12AB ·BC =12x36-x 2.由EF ∥BC 知,AF AB =AE AC =23,得△AFE ∽△ABC ,故S △AFES △ABC =⎝⎛⎭⎫232=49,即S △AFE =49S △ABC . 由AD =12AE ,得S △AFD =12S △AFE =12·49S △ABC =29S △ABC =19x36-x 2,从而四边形DFBC 的面积为S DFBC =S △ABC -S △AFD =12x36-x 2-19x36-x 2=718x36-x 2.由(1)知,PE ⊥平面ABC ,所以PE 为四棱锥P -DFBC 的高. 在Rt △PEC 中,PE =PC 2-EC 2=42-22=2 3.V P -DFBC =13·S DFBC ·PE =13·718x 36-x 2·23=7,故得x 4-36x 2+243=0,解得x 2=9或x 2=27,由于x >0,可得x =3或x =3 3. 所以,BC =3或BC =3 3.证明直线和平面垂直的常用方法(1)利用判定定理.(2)利用平行线垂直于平面的传递性(a ∥b ,a ⊥α⇒b ⊥α). (3)利用面面平行的性质(a ⊥α,α∥β⇒a ⊥β). (4)利用面面垂直的性质.考点二 平面与平面垂直的判定与性质|(2015·高考全国卷Ⅰ)如图,四边形ABCD 为菱形,G 为AC与BD的交点,BE⊥平面ABCD.(1)证明:平面AEC⊥平面BED;(2)若∠ABC=120°,AE⊥EC,三棱锥E-ACD的体积为63,求该三棱锥的侧面积.[解](1)证明:因为四边形ABCD为菱形,所以AC⊥BD. 因为BE⊥平面ABCD,所以AC⊥BE.故AC⊥平面BED.又AC⊂平面AEC,所以平面AEC⊥平面BED.(2)设AB=x,在菱形ABCD中,由∠ABC=120°,可得AG=GC=32x,GB=GD=x2.因为AE⊥EC,所以在Rt△AEC中,可得EG=3 2x.由BE⊥平面ABCD,知△EBG为直角三角形,可得BE=2 2x.由已知得,三棱锥E-ACD的体积V E-ACD=13×12AC×GD×BE=624x3=63.故x=2.从而可得AE=EC=ED= 6.所以△EAC的面积为3,△EAD的面积与△ECD的面积均为 5.故三棱锥E-ACD的侧面积为3+2 5.证明面面垂直的主要方法①利用判定定理.在审题时要注意直观判断哪条直线可能是垂线,充分利用等腰三角形底边上的中线垂直于底边,勾股定理的逆定理等.②用定义证明.只需判定两平面所成二面角为直二面角.③客观题中,也可应用:两个平行平面中的一个垂直于第三个平面,则另一个也垂直于第三个平面.(2015·佛山一中期中考试)如图,在三棱锥P-ABC中,P A⊥底面ABC,∠BCA=90°,AP =AC,点D,E分别在棱PB,PC上,且BC∥平面ADE.(1)求证:DE ⊥平面P AC ;(2)当二面角A -DE -P 为直二面角时,求A -BCED 与P -AED 的体积比.解:(1)证明:∵BC ∥平面ADE ,BC ⊂平面PBC ,平面PBC ∩平面ADE =DE ,∴BC ∥ED , ∵P A ⊥底面ABC ,BC ⊂底面ABC ,∴P A ⊥BC , 又∠BCA =90°,∴AC ⊥BC ,∵P A 与AC 是平面P AC 内的两条相交直线, ∴BC ⊥平面P AC ,又BC ∥ED , ∴DE ⊥平面P AC .(2)由(1)知,DE ⊥平面P AC , ∵AE ⊂平面P AC ,PE ⊂平面P AC , ∴DE ⊥AE ,DE ⊥PE ,∴∠AEP 为二面角A -DE -P 的平面角, ∴∠AEP =90°,即AE ⊥PC , ∵AP =AC ,∴E 是PC 的中点, ∴ED 是△PBC 的中位线,DE ⊥AC , 又PC ∩DE =E ,∴AE ⊥平面PCD , ∴V A -BCEDV A -PDE =13S 四边形BCED ·AE 13S △PED ·AE =S 四边形BCED S △PED =3.考点三 平行与垂直的综合问题|空间线、面的平行与垂直的综合考查一直是高考必考热点,归纳起来常见的命题探究角度有:1.以多面体为载体考查平行与垂直的证明.2.探索性问题中的平行与垂直问题.3.折叠问题中的平行垂直问题.探究一平行与垂直关系的证明1.如图,在正方体ABCD-A1B1C1D1中,E,F,P,Q,M,N分别是棱AB,AD,DD1,BB1,A1B1,A1D1的中点.求证:(1)直线BC1∥平面EFPQ;(2)直线AC1⊥平面PQMN.证明:(1)连接AD1,由ABCD-A1B1C1D1是正方体,知AD1∥BC1,因为F,P分别是AD,DD1的中点,所以FP∥AD1.从而BC1∥FP.而FP⊂平面EFPQ,且BC1⊄平面EFPQ,故直线BC1∥平面EFPQ.(2)连接AC,BD,则AC⊥BD.由CC1⊥平面ABCD,BD⊂平面ABCD,可得CC1⊥BD.又AC∩CC1=C,所以BD⊥平面ACC1.而AC1⊂平面ACC1,所以BD⊥AC1.因为M,N分别是A1B1,A1D1的中点,则易知MN∥BD,从而MN⊥AC1.同理可证PN⊥AC1.又PN∩MN=N,所以直线AC 1⊥平面PQMN .探究二 探索性问题中的平行与垂直问题2.如图,直三棱柱ABC -A 1B 1C 1中,AC ⊥BC ,AC =BC =CC 1=2,M ,N 分别为AC ,B 1C 1的中点.(1)求线段MN 的长; (2)求证:MN ∥平面ABB 1A 1;(3)线段CC 1上是否存在点Q ,使A 1B ⊥平面MNQ ?说明理由. 解:(1)连接CN .因为ABC -A 1B 1C 1是直三棱柱, 所以CC 1⊥平面ABC , 所以AC ⊥CC 1. 因为AC ⊥BC , 所以AC ⊥平面BCC 1B 1.因为MC =1,CN =CC 21+C 1N 2=5,所以MN = 6.(2)证明:取AB 中点D ,连接DM ,DB 1.在△ABC 中,因为M 为AC 中点,所以DM ∥BC ,DM =12BC .在矩形B 1BCC 1中,因为N 为B 1C 1中点,所以B 1N ∥BC ,B 1N =12BC .所以DM ∥B 1N ,DM =B 1N .所以四边形MDB 1N 为平行四边形,所以MN ∥DB 1. 因为MN ⊄平面ABB 1A 1,DB 1⊂平面ABB 1A 1, 所以MN ∥平面ABB 1A 1.(3)线段CC 1上存在点Q ,且Q 为CC 1中点时,有A 1B ⊥平面MNQ . 证明如下:连接BC 1.在正方形BB 1C 1C 中易证QN ⊥BC 1.又A 1C 1⊥平面BB 1C 1C ,所以A 1C 1⊥QN ,从而NQ ⊥平面A 1BC 1. 所以A 1B ⊥QN .同理可得A 1B ⊥MQ ,所以A 1B ⊥平面MNQ .故线段CC1上存在点Q,使得A1B⊥平面MNQ.探究三折叠问题中的平行与垂直关系3.(2015·高考四川卷)一个正方体的平面展开图及该正方体的直观图的示意图如图所示.(1)请将字母F,G,H标记在正方体相应的顶点处(不需说明理由);(2)判断平面BEG与平面ACH的位置关系,并证明你的结论;(3)证明:直线DF⊥平面BEG.解:(1)点F,G,H的位置如图所示.(2)平面BEG∥平面ACH,证明如下:因为ABCD-EFGH为正方体,所以BC∥FG,BC=FG,又FG∥EH,FG=EH,所以BC∥EH,BC=EH,于是四边形BCHE为平行四边形,所以BE∥CH.又CH⊂平面ACH,BE⊄平面ACH,所以BE∥平面ACH.同理BG∥平面ACH.又BE∩BG=B,所以平面BEG∥平面ACH.(3)证明:连接FH.因为ABCD-EFGH为正方体,所以DH⊥平面EFGH.因为EG⊂平面EFGH,所以DH⊥EG.又EG⊥FH,DH∩FH=H,所以EG⊥平面BFHD.又DF⊂平面BFHD,所以DF⊥EG.同理DF⊥BG.又EG∩BG=G,所以DF⊥平面BEG.平行与垂直的综合应用问题的处理策略(1)探索性问题一般是先根据条件猜测点的位置再给出证明,探索点存在问题,点多为中点或三等分点中某一个,也可以根据相似知识建点.(2)折叠问题中的平行与垂直关系的处理关键是结合图形弄清折叠前后变与不变的数量关系,尤其是隐含量的垂直关系.7.平行与垂直综合问题的答题模板【典例】(12分)(2015·高考山东卷)如图,三棱台DEF-ABC中,AB=2DE,G,H分别为AC,BC的中点.(1)求证:BD∥平面FGH;(2)若CF⊥BC,AB⊥BC,求证:平面BCD⊥平面EGH.[思维点拨](1)法一:证明四边形DFCG为平行四边形,结合H为BC的中点可得HM ∥BD,进而得BD∥平面FGH;法二:利用四边形HBEF为平行四边形,证明平面ABED ∥平面FGH,进而得BD∥平面FGH.(2)先证明CB⊥平面ECH,进而得平面BCD⊥平面EGH.[规范解答](1)证明:法一:连接DG,CD,设CD∩GF=M,连接MH.在三棱台DEF-ABC 中,AB=2DE,G为AC的中点,可得DF∥GC,DF=GC,所以四边形DFCG为平行四边形,(3分)则M为CD的中点,又H为BC的中点,所以HM∥BD.又HM⊂平面FGH,BD⊄平面FGH,(4分)所以BD∥平面FGH.(5分)法二:在三棱台DEF-ABC中,由BC=2EF,H为BC的中点,可得BH∥EF,BH=EF,所以四边形HBEF为平行四边形,可得BE∥HF.(2分)在△ABC中,G为AC的中点,H为BC的中点.所以GH∥AB.(3分)又GH∩HF=H,所以平面FGH∥平面ABED.(4分) 因为BD⊂平面ABED,所以BD∥平面FGH.(5分)(2)连接HE,GE.因为G,H分别为AC,BC的中点,所以GH∥AB,由AB⊥BC,得GH⊥BC.(7分)又H为BC的中点,所以EF∥HC,EF=HC,因此四边形EFCH是平行四边形(9分)所以CF∥HE.又CF⊥BC,所以HE⊥BC.又HE,GH⊂平面EGH,HE∩GH=H,所以BC⊥平面EGH.(11分)又BC⊂平面BCD,所以平面BCD⊥平面EGH.(12分)[模板形成]由图形特征分析平行条件↓创设线面平行的条件↓利用判定定理或面面平行证明线面平行↓分析条件中平行与垂直的关系↓选定并证明线面垂直↓利用面面垂直的判定证明面面垂直A组考点能力演练1.已知直线m,l,平面α,β,且m⊥α,l⊂β,给出下列命题:①若α∥β,则m⊥l;②若α⊥β,则m∥l;③若m⊥l,则α⊥β;④若m∥l,则α⊥β,其中正确的命题的个数是()A.1B.2C.3 D.4解析:①中,α∥β,且m⊥α,则m⊥β,因为l⊂β,所以m⊥l,所以①正确;②中,α⊥β,且m⊥α,则m∥β或m⊂β,又l⊂β,则m与l可能平行,可能异面,可能相交,所以②不正确;③中,m⊥l,且m⊥α,l⊂β,则α与β可能平行,可能相交,所以③不正确;④中,m∥l,且m⊥α,则l⊥α,因为l⊂β,所以α⊥β,所以④正确,故选B.答案:B2.设α,β,γ为不同的平面,m、n、l为不同的直线,则m⊥β的一个充分条件为() A.α⊥β,α∩β=l,m⊥lB.α∩γ=m,α⊥γ,β⊥γC.α⊥γ,β⊥γ,m⊥αD.n⊥α,n⊥β,m⊥α解析:对于A,α⊥β,α∩β=l,m⊥l,根据面面垂直的性质定理可知,缺少条件m⊂α,故不正确;对于B,α∩γ=m,α⊥γ,β⊥γ,而α与β可能平行,也可能相交,则m与β不一定垂直,故不正确;对于C,α⊥γ,β⊥γ,m⊥α,而α与β可能平行,也可能相交,则m与β不一定垂直,故不正确;对于D,n⊥α,n⊥β,则α∥β,又m⊥α,则m⊥β,故正确,故选D.答案:D3.如图,在三棱锥D-ABC中,若AB=CB,AD=CD,E是AC的中点,则下列命题中正确的是()A.平面ABC⊥平面ABDB.平面ABD⊥平面BCDC.平面ABC⊥平面BDE,且平面ACD⊥平面BDED.平面ABC⊥平面ACD,且平面ACD⊥平面BDE解析:因为AB=CB,且E是AC的中点,所以BE⊥AC,同理,DE⊥AC,由于DE∩BE =E,于是AC⊥平面BDE.因为AC⊂平面ABC,所以平面ABC⊥平面BDE.又AC⊂平面ACD,所以平面ACD⊥平面BDE.故选C.答案:C4.如图,正方体AC1的棱长为1,过点A作平面A1BD的垂线,垂足为H,则以下命题中,错误的是()A.点H是△A1BD的垂心B.AH垂直于平面CB1D1C.AH的延长线经过点C1D.直线AH和BB1所成角为45°解析:A中,△A1BD为等边三角形,∴其四心合一,∵AB=AA1=AD,∴H到△A1BD各顶点的距离相等,∴A正确;∵CD1∥BA1,CB1∥DA1,CD1∩CB1=C,BA1∩DA1=A1,∴平面CB1D1∥平面A1BD,∴AH ⊥平面CB1D1,∴B正确;连接AC1,则AC1⊥B1D1,∵B1D1∥BD,∴AC1⊥BD,同理,AC1⊥BA1,∴AC1⊥平面A1BD,∴A、H、C1三点共线,∴C正确,故选D.答案:D5.如图所示,在斜三棱柱ABC-A1B1C1中,∠BAC=90°,BC1⊥AC,则C1在底面ABC 上的射影H必在()A.直线AB上B.直线BC上C.直线AC上D.△ABC内部解析:∵∠BAC=90°,∴AB⊥AC,又AC⊥BC1,BC1∩AB=B,∴AC⊥平面ABC1,又AC⊂平面ABC,∴平面ABC⊥平面ABC1.∵平面ABC1∩平面ABC=AB,∴点C1在平面ABC上的射影H必在两平面的交线AB上,故选A.答案:A6.四棱锥P-ABCD的顶点P在底面ABCD上的投影恰好是A,其三视图如图所示,其中正视图与侧视图都是腰长为a的等腰三角形,则在四棱锥P-ABCD的任意两个顶点的连线中,互相垂直的异面直线共有________对.解析:由题意可得P A⊥BC,P A⊥CD,AB⊥PD,BD⊥P A,BD⊥PC,AD⊥PB,即互相垂直的异面直线共有6对.答案:67.如图所示,在四棱锥P -ABCD 中,P A ⊥底面ABCD ,且底面各边都相等,M 是PC 上的一动点,当点M 满足________时,平面MBD ⊥平面PCD .(只要填写一个你认为是正确的条件即可)解析:连接AC ,BD ,则AC ⊥BD ,∵P A ⊥底面ABCD ,∴P A ⊥BD . 又P A ∩AC =A ,∴BD ⊥平面P AC , ∴BD ⊥PC .∴当DM ⊥PC (或BM ⊥PC )时,即有PC ⊥平面MBD . 而PC ⊂平面PCD , ∴平面MBD ⊥平面PCD . 答案:DM ⊥PC (或BM ⊥PC 等)8.已知△ABC 的三边长分别为AB =5,BC =4,AC =3,M 是AB 边上的点,P 是平面ABC 外一点.给出下列四个命题:①若P A ⊥平面ABC ,则三棱锥P -ABC 的四个面都是直角三角形; ②若PM ⊥平面ABC ,且M 是AB 边的中点,则有P A =PB =PC ; ③若PC =5,PC ⊥平面ABC ,则△PCM 面积的最小值为152;④若PC =5,P 在平面ABC 上的射影是△ABC 内切圆的圆心,则点P 到平面ABC 的距离为23.其中正确命题的序号是________.(把你认为正确命题的序号都填上)解:由题意知AC ⊥BC ,对于①,若P A ⊥平面ABC ,则P A ⊥BC ,又P A ∩AC =A ,∴BC ⊥平面P AC ,∴BC ⊥PC ,因此该三棱锥P -ABC 的四个面均为直角三角形,①正确;对于②,由已知得M 为△ABC 的外心,所以MA =MB =MC .∵PM ⊥平面ABC ,则PM ⊥MA ,PM ⊥MB ,PM ⊥MC ,由三角形全等可知P A =PB =PC ,故②正确;对于③,要使△PCM 的面积最小,只需CM 最短,在Rt △ABC 中,(CM )min =125,∴(S △PCM )min =12×125×5=6,故③错误;对于④,设P 点在平面ABC 内的射影为O ,且O 为△ABC 的内心,由平面几何知识得△ABC 的内切圆半径r =1,且OC =2,在Rt △POC 中,PO =PC 2-OC 2=23,∴点P 到平面ABC 的距离为23,故④正确.答案:①②④9.(2016·扬州中学模拟)如图1,在边长为4的菱形ABCD中,∠DAB=60°,点E,F 分别是边CD,CB的中点,AC∩EF=O.沿EF将△CEF翻折到△PEF,连接P A,PB,PD,得到如图2的五棱锥P-ABFED,且PB=10.(1)求证:BD⊥平面POA;(2)求四棱锥P-BFED的体积.解:(1)证明:∵点E,F分别是边CD,CB的中点,∴BD∥EF.∵ABCD是菱形,∴BD⊥AC,∴EF⊥AC,∴翻折后EF⊥AO,EF⊥PO,∵AO⊂平面POA,PO⊂平面POA,AO∩PO=O,∴EF⊥平面POA,∴BD⊥平面POA.(2)设AO∩BD=H,连接BO,∵ABCD是菱形,∴AB=AD,∵∠DAB=60°,∴△ABD为等边三角形,∴BD=4,BH=2,HA=23,HO=PO=3,在Rt△BHO中,BO=BH2+HO2=7,在△PBO中,BO2+PO2=10=PB2,∴PO⊥BO,∵PO⊥EF,EF∩BO=O,EF⊂平面BFED,BO⊂平面BFED,∴PO⊥平面BFED,又梯形BFED的面积为S=12(EF+BD)·HO=33,∴四棱锥P-BFED的体积V=13S·PO=13×33×3=3.10.如图,已知四棱锥P-ABCD中,底面ABCD是直角梯形,AB∥CD,∠ABC=45°,DC=1,AB=2,P A⊥平面ABCD,P A=1.(1)求证:AB∥平面PCD;(2)求证:BC⊥平面P AC;(3)若M是PC的中点,求三棱锥M-ACD的体积.解:(1)证明:∵AB∥CD,CD⊂平面PDC,AB⊄平面PDC,∴AB∥平面PDC.(2)证明:在直角梯形ABCD中,过点C作CE⊥AB于点E,则四边形ADCE为矩形,∴AE=DC=1,又AB=2,∴BE=1,在Rt△BEC中,∠EBC=45°,∴CE=BE=1,CB=2,在Rt△ACE中,AC=AE2+CE2=2,∴AC2+BC2=AB2,∴BC⊥AC.又P A⊥平面ABCD,BC⊂平面ABCD,∴BC⊥P A,而P A∩AC=A,∴BC⊥平面P AC.(3)∵M是PC的中点,∴M到平面ADC的距离是P到平面ADC的距离的一半.∴V M-ACD=13S△ACD×⎝⎛⎭⎫12P A=13×⎝⎛⎭⎫12×1×1×12=112.B组高考题型专练1.(2015·高考安徽卷)已知m,n是两条不同直线,α,β是两个不同平面,则下列命题正确的是()A .若α,β垂直于同一平面,则α与β平行B .若m ,n 平行于同一平面,则m 与n 平行C .若α,β不平行...,则在α内不存在...与β平行的直线D .若m ,n 不平行...,则m 与n 不可能...垂直于同一个平面 解析:A 中,垂直于同一个平面的两个平面可能相交也可能平行,故A 错误;B 中,平行于同一个平面的两条直线可能平行、相交或异面,故B 错误;C 中,若两个平面相交,则一个平面内与交线平行的直线一定和另一个平面平行,故C 错误;D 中,若两条直线垂直于同一个平面,则这两条直线平行,所以若两条直线不平行,则它们不可能垂直于同一个平面,故D 正确.答案:D2.(2014·高考广东卷)如图(1),四边形ABCD 为矩形,PD ⊥平面ABCD ,AB =1,BC =PC =2.按图(2)折叠:折痕EF ∥DC ,其中点E ,F 分别在线段PD ,PC 上,沿EF 折叠后点P 叠在线段AD 上的点记为M ,并且MF ⊥CF.(1)证明:CF ⊥平面MDF ; (2)求三棱锥M -CDE 的体积.解:(1)证明:PD ⊥平面ABCD ,PD ⊂平面PCD ,∴平面PCD ⊥平面ABCD , 平面PCD ∩平面ABCD =CD ,MD ⊂平面ABCD ,MD ⊥CD , ∴MD ⊥平面PCD ,CF ⊂平面PCD ,∴CF ⊥MD ,又CF ⊥MF ,MD ,MF ⊂平面MDF ,MD ∩MF =M ,∴CF ⊥平面MDF .(2)∵CF ⊥平面MDF ,∴CF ⊥DF ,又易知∠PCD =60°,∴∠CDF =30°,从而CF =12CD=12, ∵EF ∥DC ,∴DE DP =CF CP ,即DE 3=122,∴DE =34,∴PE =334,S △CDE =12CD ·DE =38,MD =ME 2-DE 2=PE 2-DE 2=⎝⎛⎭⎫3342-⎝⎛⎭⎫342=62,∴V M -CDE =13S △CDE ·MD =13·38·62=216. 3.(2015·高考陕西卷)如图1,在直角梯形ABCD 中,AD ∥BC ,∠BAD =π2,AB =BC=12AD =a ,E 是AD 的中点,O 是AC 与BE 的交点.将△ABE 沿BE 折起到图2中△A 1BE 的位置,得到四棱锥A 1-BCDE .(1)证明:CD ⊥平面A 1OC ;(2)当平面A 1BE ⊥平面BCDE 时,四棱锥A 1-BCDE 的体积为362,求a 的值. 解:(1)证明:在图1中,因为AB =BC =12AD =a ,E 是AD 的中点,∠BAD =π2,所以BE ⊥AC .即在图2中,BE ⊥A 1O ,BE ⊥OC ,从而BE ⊥平面A 1OC ,又CD ∥BE ,所以CD ⊥平面A 1OC . (2)由已知,平面A 1BE ⊥平面BCDE , 且平面A 1BE ∩平面BCDE =BE ,又由(1)可得A 1O ⊥BE ,所以A 1O ⊥平面BCDE , 即A 1O 是四棱锥A 1-BCDE 的高. 由图1知,A 1O =22AB =22a ,平行四边形BCDE 的面积S =BC ·AB =a 2. 从而四棱锥A 1-BCDE 的体积为V =13×S ×A 1O =13×a 2×22a =26a 3,由26a 3=362,得a =6.4.(2015·高考广东卷)如图,三角形PDC 所在的平面与长方形ABCD 所在的平面垂直,PD =PC =4,AB =6,BC =3.(1)证明:BC ∥平面PDA ; (2)证明:BC ⊥PD ;(3)求点C 到平面PDA 的距离.解:(1)证明:∵长方形ABCD 中,BC ∥AD ,又BC ⊄平面PDA ,AD ⊂平面PDA ,∴BC ∥平面PDA .(2)证明:取CD 的中点H ,连接PH ,∵PD =PC ,∴PH ⊥CD .又∵平面PDC ⊥平面ABCD ,平面PDC ∩平面ABCD =CD ,∴PH ⊥平面ABCD . 又∵BC ⊂平面ABCD ,∴PH ⊥BC .又∵长方形ABCD 中,BC ⊥CD ,PH ∩CD =H ,∴BC ⊥平面PDC .又∵PD ⊂平面PDC ,∴BC ⊥PD .(3)连接AC .由(2)知PH 为三棱锥P -ADC 的高.∵PH =PD 2-⎝⎛⎭⎫12CD 2=42-32=7,S △ADC =12·AD ·CD =12×3×6=9, ∴V P -ADC =13·S △ADC ·PH =13×9×7=37. 由(2)知BC ⊥PD ,又∵AD ∥BC ,∴AD ⊥PD ,∴S △PDA =12·PD ·AD =12×4×3=6. 设点C 到平面PDA 的距离为h .∵V C -PDA =V P -ADC ,∴13·S △PDA·h =37,∴h=371 3·S△PDA =3713×6=372.。
教学准备1. 教学目标掌握两平面垂直的判定和性质,并用以解决有关问题.2. 教学重点/难点掌握两平面垂直的判定和性质,并用以解决有关问题.3. 教学用具4. 标签教学过程【知识梳理】1.定义两个平面相交,如果所成的二面角是直二面角,就说这两个平面互相垂直.2.两个平面垂直的判定和性质重要提示1.两个平面垂直的性质定理,即:“如果两个平面垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面”是作点到平面距离的依据,要过平面外一点P作平面a的垂线,通常是先作(找)一个过点P并且和a垂直的平面b,设bIa=l,在b内作直线a^l,则a^a.2.三种垂直关系的证明(1)线线垂直的证明①利用“两条平行直线中的一条和第三条直线垂直,那么另一条也和第三条直线垂直”;②利用“线面垂直的定义”,即由“线面垂直Þ线线垂直”;③利用“三垂线定理或三垂线定理的逆定理”.(2)线面垂直的证明①利用“线面垂直的判定定理”,即由“线线垂直Þ线面垂直”;②利用“如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于同一个平面”;③利用“面面垂直的性质定理”,即由“面面垂直Þ线面垂直”;④利用“一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面”.(3)面面垂直的证明①利用“面面垂直的定义”,即证“两平面所成的二面角是直二面角;②利用“面面垂直的判定定理”,即由“线面垂直Þ面面垂直”.【知识方法总结】1. 证面面垂直一般先从现有的直线中找平面的垂线;否则用作辅助线解决之,要过平面外一点P作平面a的垂线,通常是先作(找)一个过点P并且和a垂直的平面b,设bIa=l,在b内作直线a^l,则a^a.2.注意线线垂直、线面垂直、面面垂直之间的转化条件和转化应用。
【作业】优化设计。
平面与平面垂直的判定教学要求:掌握二面角和两个平面垂直的定义,理解平面与平面垂直的判定定理并会用判定定理证明平面与平面垂直的关系,会用所学知识求两平面所成的二面角.教学重点:平面与平面垂直的判定定理.教学难点:判定定理的应用及二面角的求法.教学过程:一、复习准备:1.复习直线与平面垂直的判定(定理、图形、符号语言).2.探究:已知三棱锥P-ABC ,作PO ⊥底面ABC ,垂足为O ,当给定什么已知条件时,O 分别是三角形ABC 的外心、垂心?(参考教材P74 练习2)3.实际需要引出二面角的定义:修筑水坝、发射人造地球卫星.二、讲授新课:1.教学二面角的定义:①定义:从一条直线出发的两个半平面所组成的图形叫二面角(dihedral angle ). 这条直线叫做二面角的棱,这两个半平面叫做二面角的面. 记作二面角A B αβ--. (简记P A B Q --)②二面角的平面角:在二面角αβ-l -的棱l 上任取一点O ,以点O 为垂足,在半平面,αβ内分别作垂直于棱l 的射线O A 和O B ,则射线O A 和O B 构成的A O B ∠叫做二面角的平面角.作用:衡量二面角的大小;范围:000180θ<<.2.教学平面与平面垂直的判定:①定义:两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直. 记作αβ⊥. (能用定义来判定两个平面是否垂直?)②判定定理:一个平面过另一个平面的垂线,则这两个平面垂直. (线面垂直→面面垂直) ③出示例1:如图,A B 是O 的直径,P A 垂直于O 所在的平面,C 是圆周上不同于,A B 的任意一点,求证:平面P A C ⊥平面P B C .(讨论→师生共析→学生试写证明步骤→归纳:线线垂直→线面垂直→面面垂直)④练习:教材P77页探究题⑤出示例2:已知空间四边形ABCD 的四条边和对角线都相等,求平面ACD 和平面BCD 所在二面角的大小. (分析→学生自练)⑥练习:如图,已知三棱锥D A B C -的三个侧面与底面全等,且2A B A C B C ===,求以B C 为棱,以面B C D 与面B C A 为面的二面角的大小?3. 小结:二面角的定义、二面角的平面角、二面角平面角的求法、平面与平面垂直的判定.三、巩固练习:1、 如图,A B C D 是正方形,O 是正方形的中心,P O A B C D ⊥底面,E P C 是的中点,求证:(1)//P C B D E 平面;(2).P A C B D E ⊥平面平面2、在正方体''''A B C D A B C D -中,二面角'A 'D -C -B 的余弦值.3、作业:教材P77-78页第4、7题.。
《直线、平面垂直的判定及其性质》教案3(两条直线的位置关系)(新人教A版必
修2)
3.1.2两条直线的平行与垂直(教案)
一.三维目标:
1.知识与技能:理解并掌握两条直线平行与垂直的条件,会运用条件判定两直线是否平行或垂直;培养学生运用已有知识解决新问题的能力, 以及数形结合能力.
2.过程与方法:通过实例及图形探究两直线平行或垂直的条件,从而得到一般性的结论,再应用结论解决一些应用题;通过数量关系,研究几何性质。
3.情感与价值观:进一步提高对斜率的认识,体验通过数量关系对研究几何性质的重要性,提高学生的探究热情。
二.重点:两条直线平行和垂直的条件及其应用。
三.难点:把研究两条直线的平行或垂直问题, 转化为研究两条直线的斜率的关系问题;直线的斜率不存在时,两条直线的平行或垂直关系的探究。
四.教学过程:
(一)创设情景、导入课题
1.复习回顾:
直线的倾斜角斜率斜率公式定义范围
2.问题导入:己知直线l1过点A(0,0) 、B(2,-1),直线l2过点C(4,2) 、D(2,-2),直线l3过点M(3,-5) 、N(-5,-1), 你能在同一个坐标系内画出这三条直线,并根据图形判断三直线之间的位置关系吗?它们的斜率之间又有什么关系? (二)自主学习、合作探究
1.阅读理解课本P86思考--例3上面一段,探究两条直线互相平行(不重合)时,它们的斜率间有什么关系?
如果L1∥L2(图1-29),那么它们的倾斜角相等:
α1=α2.∴tgα1=tgα2.
即 k1=k2.
反过来,如果两条直线的斜率相等: 即k1=k2,那么
tgα1=tgα2.
由于0°≤α1<180°,0°≤α<180°,
∴α1=α2.
又∵两条直线不重合,
∴L1∥L2.
结论: 两条直线都有斜率而且不重合,如果它们平行,那么它们的斜率相等;反之,如果它们的斜率相等,那么它们平行,即
注意: 上面的等价是在两条直线不重合且斜率存在的前提下才成立的,缺少这个前提,结论并不成立.即如果k1=k2, 那么一定有L1∥L2 ;反之则不一定.
2. 阅读理解课本P88思考--例5上面一段,探究两条直线互相垂直(斜率都存在)时,它们的斜率间有什么关系?
下面我们研究两条直线垂直的情形.
如果L1⊥L2,这时α1≠α2,否则两直线平行.
设α2<α1(图1-30),甲图的特征是L1与L2的交点在x轴上方;乙图的特征是L1与L2的交点在x轴下方;丙图的特征是L1与L2的交点在x轴上,无论哪种情况下都有
α1=90°+α2.
因为L1、L2的斜率分别是k1、k2,即α1≠90°,所以
α2≠0°.,可以推出: α1=90°+α2.L1⊥L2.
结论: 两条直线都有斜率,如果它们互相垂直,那么它们的斜率互为负倒数;反之,如果它们的斜率互为负倒数,那么它们互相垂直,即。
注意: 结论成立的条件. 即如果k1·k2 = -1, 那么一定有L1⊥L2;反之则不一定.
(三)知识拓展、技能培养
例1.已知A(2,3), B(-4,0), P(-3,1), Q(-1,2), 试判断直线BA与PQ的位置关系, 并证明你的结论.
分析:作图, 通过观察猜想:BA∥PQ, 再通过计算加以验证.(图略)
解:直线BA的斜率k1=(3-0)/(2-(-4))=0.5,
直线PQ的斜率k2=(2-1)/(-1-(-3))=0.5,
因为 k1=k2=0.5, 所以直线BA∥PQ.
例2 已知四边形ABCD的四个顶点分别为A(0,0), B(2,-1), C(4,2), D(2,3), 试判断四边形ABCD的形状,并给出证明. 例3 已知A(-6,0), B(3,6), P(0,3), Q(-2,6), 试判断直线AB与PQ的位置关系.
解: 直线AB的斜率k1= (6-0)/(3-(-6))=2/3,
直线PQ的斜率k2= (6-3)(-2-0)=-3/2,
因为k1·k2 = -1 所以AB⊥PQ.
例4 已知A(5,-1), B(1,1), C(2,3), 试判断三角形ABC的形状.
分析: 借助计算机作图, 通过观察猜想: 三角形ABC是直角三角形, 其中AB⊥BC, 再通过计算加以验证.(图略)
(四)实践与探究
1.判断题:(1) 若两条直线的斜率相等,这两条直线一定平行。
()
(2)若两条直线平行,则它们的斜率一定相等。
()
(3)若两条不重合的直线的斜率都不存在, 则它们平行。
()
(4)若两条直线的斜率之积为 -1, 则两条直线一定垂直。
()
(5)若两条直线垂直, 则它们的斜率之积一定为-1。
()2. 己知三点A(1,2),B(-1,0),C(3,4)这三点是
否在同一条直线上,为什么?
3.求证: 顺次连接A(2, -3), B(5, ), C(2, 3), D(-4,
4)四点所得的四边形是梯形.
4.判断下列各对直线是平行还是垂直:
(1)经过两点,的直线,与经过点P(1,0)且斜率为1的直线;(2)经过两点,的直线,与经过点M(1,2)且斜率为-5的直线.
5.试确定m的值,使过点A(m,1),B(-1, m)的直线与经
过点P(1,2),Q(-5,0)
(1)平行;(2)垂直。
(五)成果展示、汇报交流
(六)课堂总结:
1.平行:对于两条不重合的直线l1、l2,其斜率分别为k1、k2,有
l1∥l2 k1=k2 条件:不重合、都有斜率
2.垂直:如果两条直线l1、l2都有斜率,且分别为k1、k2,则有
l1⊥l2 ⊥ k1k2= -1
条件:都有斜率
3.利用斜率相等,判断三点共线、平行四边形。
4.利用k1k2= -1判断直角三角形。
(七)课下练习:《市学案》P58页1--9题
(八)分层作业:甲层:习题3.1 A组 6, 7, 8题乙层:习题3.1 A组 6, 7题。