数值分析 8
- 格式:pdf
- 大小:132.01 KB
- 文档页数:3
第八章习题解答1、已知方程3210x x --=在 1.5x =附近有根,将方程写成以下三种不同的等价形式:①211x x=+;②x =x =试判断以上三种格式迭代函数的收敛性,并选出一种较好的格式。
解:①令121()1x x ϕ=+,则'132()x x ϕ=-,'132(1.5)0.592611.5ϕ=≈<,故迭代收敛;②令2()x ϕ=2'2322()(1)3x x x ϕ-=+,'2(1.5)0.45581ϕ≈<,故迭代收敛;③令3()x ϕ='3()x ϕ=,'3(1.5) 1.41421ϕ≈>,故迭代发散。
以上三中以第二种迭代格式较好。
2、设方程()0f x =有根,且'0()m f x M <≤≤。
试证明由迭代格式1()k k k x x f x λ+=-(0,1,2,)k = 产生的迭代序列{}0k k x ∞=对任意的初值0(,)x ∈-∞+∞,当20Mλ<<时,均收敛于方程的根。
证明:设()()x x f x ϕλ=-,则''()1()x f x ϕλ=-,故'1()1M x m λϕλ-<<-,进而可知, 当20Mλ<<时,'1()1x ϕ-<<,即'()1x ϕ<,从而由压缩映像定理可知结论成立。
3、试分别用Newton 法和割线法求以下方程的根cos 0x x -=取初值010.5,4x x π==,比较计算结果。
解:Newton 法:1230.75522242,=0.73914166,=0.73908513x x x =;割线法:23450.73638414,=0.73905814,=0.73908515,=0.73908513x x x x =; 比较可知Newton 法比割线法收敛速度稍快。
牛顿迭代法及其应用[摘要]本文研究应用泰勒展开式构造出牛顿迭代法,论证了它的局部收敛性和收敛阶。
分别讨论了单根情形和重根情形,给出了实例应用。
最后给出了离散牛顿法的具体做法。
[关键词] 关键词:泰勒展开式,牛顿迭代法及其收敛性,重根,离散牛顿法。
1.牛顿法及其收敛性求方程f(x)=0的根,如果已知它的一个近似,可利用Taylor展开式求出f(x)在附近的线性近似,即,ξ在x与之间忽略余项,则得方程的近似右端为x的线性方程,若,则解,记作,它可作为的解的新近似,即(2.4.1)称为解方程的牛顿法.在几何上求方程的解,即求曲线y=f(x)与x轴交点.若已知的一个近似,通过点(,f())作曲线y=f(x)的切线,它与x轴交点为,作为的新近似,如图1所示图1关于牛顿法收敛性有以下的局部收敛定理.定理1设是f(x)=0的一个根,f(x)在附近二阶导数连续,且,则牛顿法(2.4.1)具有二阶收敛,且(2.4.2)证明由式(2.4.1)知迭代函数,,,而,由定理可知,牛顿迭代(2.4.1)具有二阶收敛,由式可得到式(2.4.2).证毕.定理表明牛顿法收敛很快,但在附近时才能保证迭代序列收敛.有关牛顿法半局部收敛性与全局收敛定理.此处不再讨论.例1用牛顿法求方程的根.,牛顿迭代为取即为根的近似,它表明牛顿法收敛很快.例2设>0,求平方根的过程可化为解方程.若用牛顿法求解,由式(2.4.1)得(2.4.3)这是在计算机上作开方运算的一个实际有效的方法,它每步迭代只做一次除法和一次加法再做一次移位即可,计算量少,又收敛很快,对牛顿法我们已证明了它的局部收敛性,对式(2.4.3)可证明对任何迭代法都是收敛的,因为当时有即,而对任意,也可验证,即从k=1开始,且所以{}从k=1起是一个单调递减有下界的序列,{}有极限.在式(2.4.3)中令k→∞可得,这就说明了只要,迭代(2.4.3)总收敛到,且是二阶收敛.在例2.4的迭代法(3)中,用式(2.4.3)求只迭代3次就得到=1.732 051,具有7位有效数字.求非线性方程f(x)=0的根x*,几何上就是求曲线y=f(x)与x轴交点x*,若已知曲线上一点过此点作它的切线。
北京航空航天大学数值分析大作业八学院名称自动化专业方向控制工程学号学生姓名许阳教师孙玉泉日期2014 年11月26 日一.题目关于x , y , t , u , v , w 的方程组(A.3)⎪⎪⎩⎪⎪⎨⎧=-+++=-+++=-+++=-+++79.0sin 5.074.3cos 5.007.1cos sin 5.067.2cos 5.0y w v u t x w v u t y w v u t x w v u t (A.3) 以及关于z , t , u 的二维数表(见表A-1)确定了一个二元函数z =f (x , y )。
表A-1 二维数表1. 试用数值方法求出f (x , y ) 在区域}5.15.0,8.00|), {≤≤≤≤=y x y x D (上的近似表达式∑∑===k i kj s r rs y x c y x p 00),(要求p (x , y )以最小的k 值达到以下的精度∑∑==-≤-=100207210)],(),([i j i i i i y x p y x f σ其中j y i x i i 05.05.0,08.0+==。
2. 计算),(),,(****j i j i y x p y x f (i =1,2,…,8 ; j =1,2,…,5) 的值,以观察p (x , y ) 逼近f (x , y )的效果,其中j y i x j i 2.05.0,1.0**+==。
二.算法设计(一)总体思路1.题目要求∑∑===ki kj s r rs y x c y x p 00),(对f(x, y) 进行拟合,可选用乘积型最小二乘拟合。
),(i i y x 与),(i i y x f 的数表由方程组与表A-1得到。
2.),(**j i y x f 与1使用相同方法求得,),(**j i y x p 由计算得出的p(x,y)直接带入),(**j i y x 求得。
(二)算法实现1. ),(i i y x 与),(i i y x f 的数表的获得对区域}5.15.0,8.00|), {≤≤≤≤=y x y x D (上的f (x , y )值可由方程组及二维数表得到。
武汉科技学院2006年招收硕士学位研究生试卷答案与评分标准科目代号 411科目名称 数值分析考试时间2006年1月15日下午报考专业纺织材料与纺织品设计1、试题内容不得超过画线范围,试题必须打印,图表清晰,标注准确。
2、试题之间不留空格。
3、答案请写在答题纸上,在此试卷上答题无效。
一、填空题(每小题3分,共30分)(1) 设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=283012251A ,则∞A = ___13_____. (2) 对于方程组⎩⎨⎧=-=-341015 22121x x x x , Jacobi 迭代法的迭代矩阵是J G =⎥⎦⎤⎢⎣⎡05.25.20 。
(3)3*x 的相对误差约是*x 的相对误差的__1/3___ 倍.(4) 求方程)(x f x =根的牛顿迭代格式是)(1)('1n n n n n x f x f x x x +--=+ 。
(5) 设1)(3-+=x x x f ,则差商[]3 ,2 ,1 ,0f =____1______。
(6) 设n n ⨯矩阵G 的特征值是n λλλ,,,21 , 则矩阵G 的谱半径)(G ρ=_i ni λ≤≤1max 。
(7) 已知⎥⎦⎤⎢⎣⎡=1021A , 则条件数)(A Cond ∞____9_____。
(8) 为了提高数值计算精度, 当正数x 充分大时, 应将)1ln(2--x x 改写为)1ln(2++-x x 。
(9) n 个求积节点的插值型求积公式的代数精确度至少为 1-n 次.(10) 拟合三点())(,11x f x , ())(,22x f x , ())(,33x f x 的水平直线是∑==31)(31i i x f y 。
二. (15分) 证明: 方程组⎪⎩⎪⎨⎧=-+=++=+-12112321321321x x x x x x x x x 使用Jacobi 迭代法求解不收敛. 证明 Jacobi 迭代法的迭代矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=05.05.01015.05.00J G (5分) J G 的特征多项式为)25.1(5.05.0115.05.0)det(2+=---=-λλλλλλJ G I (5分)J G 的特征值为01=λ,i 25.12=λ,i 25.13-=λ,故125.1)(>=J G ρ,因而Jacobi 迭代法不收敛。