5.2.2 数值微分
设函数 f(x)在[a,b]上可导,已知 f(x)在 x j 的函数 值 y j f (x j ) ( j 0,1,, n) , a x0 x1 xn b . 如果 f(x)的解析表达式未知,问如何近似计算 f(x)在 某点 x=c 处的导数?特别是如何近似计算 f(x)在 x0, x1,, xn 的导数?
y4
未 知 函 数 f(x)
y3
已知结点
线 性 插 值 函 数 S41(x)
y2
y1
y0
y
0
x0
x1
x2
x3
x4
x
图5.9 复化梯形求积公式示意图
5.2.1 数值积分
容易求得
b a
Sn1
(
x)dx
的值为
1 n
Tn 2 j1 x j x j1 y j1 y j
(5.2.1)
如果划分 a x0 x1 xn b 将区间[a,b] n 等分,
b]为n等分,分点为 xk x0 kh k = 0, 1, 2,…, n
2)在区间 [xk, xk+1]上使用以上求积公式求得Ik 3)取和值,作为整个区间上的积分近似值。 这种求积方法称为复化求积方法。
j
值 y j f (x j ) ( j 0,1,, n) , a x0 x1 xn b ,
5.2.2 数值微分
先考虑简化的问题:设划分 a x0 x1 x2 b 将 区间[a,b]二等分,记 h (b a) 2 ,已知 f(x)在 x j 的函
数值 y j f (x j ) (j=0,1,2). 记
L2 (x) c1(x x1)2 c2 (x x1) c3 是由结点 (x j , y j ) (j=0,1,2)确定的至多二次插值多项