高中数学必修五学案:第12课时(等比数列的前N项和2)
- 格式:doc
- 大小:346.00 KB
- 文档页数:4
2.5 等比数列的前n 项和教学过程 推进新课 [合作探究]师 在对一般形式推导之前,我们先思考一个特殊的简单情形:1+q+q 2+…+q n =? 师 这个式子更突出表现了等比数列的特征,请同学们注意观察生 观察、独立思考、合作交流、自主探究师 若将上式左边的每一项乘以公比q ,就出现了什么样的结果呢? 生 q+q 2+…+q n +q n +1生 每一项就成了它后面相邻的一项师 对上面的问题的解决有什么帮助吗?师 生共同探索: 如果记S n =1+q+q 2+…+q n 那么qS n =q+q 2+…+q n +q n +1要想得到S n ,只要将两式相减,就立即有(1-q)S n =1-q n 师 提问学生如何处理,适时提醒学生注意q 的取值生 如果q≠1,则有qq S n--=11师 当然,我们还要考虑一下如果q =1问题是什么样的结果生 如果q =1,那么S n =n师 上面我们先思考了一个特殊的简单情形,那么,对于等比数列的一般情形我们怎样思考?课件展示: a 1+a 2+a 3+…+a n =? [教师精讲]师 在上面的特殊简单情形解决过程中,蕴含着一个特殊而且重要的处理问题的方法,那就是“错位相减,消除差别”的方法.我们将这种方法简称为“错位相减法师 在解决等比数列的一般情形时,我们还可以使用“错位相减法 如果记S n =a 1+a 2+a 3+…+a n 那么qS n =a 1q+a 2q+a 3q+…+a n要想得到Sn ,只要将两式相减,就立即有(1-q)S n =a 1-a n师 再次提醒学生注意q 的取值 如果q≠1,则有qq a a S n n --=11师 上述过程如果我们略加变化一下,还可以得到如下的过程:如果记S n =a 1+a 1q+a 1q 2+…+a 1q n -1 那么qS n =a 1q+a 1q 2+…+a 1q n -1+a 1q n要想得到S n ,只要将两式相减,就立即有(1-q)S n =a 1-a 1q n如果q≠1,则有qq a S n n --=1)1(1师 上述推导过程,只是形式上的不同,其本质没有什么差别,都是用的“错位相减法”.形式上,前一个出现的是等比数列的五个基本量:a 1,q,a n ,S n ,n 中a 1,q,a n ,S n 四个;后者出现的是a 1,q,S n ,n 四个,这将为我们今后运用公式求等比数列的前n 项的和提供了选择的余地. 值得重视的是:上述结论都是在“如果q≠1”的前提下得到的.言下之意,就是只有当等比数列的公比q≠1时,我们才能用上述公式师 现在请同学们想一想,对于等比数列的一般情形,如果q =1问题是什么样的结果呢?生 独立思考、合作交流生 如果q =1,S n =na 1师 完全正确如果q =1,那么S n =na n 正确吗?怎么解释?生 正确.q =1时,等比数列的各项相等,它的前n 项的和等于它的任一项的n 倍师 对了,这就是认清了问题的本质师 等比数列的前n 项和公式的推导还有其他的方法,下面我们一起再来探讨一下:[合作探究]思路一:根据等比数列的定义,我们有:q a a a a a a a a n n =====-1342312...再由合比定理,则得qa a a a a a a a n n=++++++++-1321432......即qa S a S nn n =--1从而就有(1-q)S n =a 1-a n(以下从略思路二:由S n =a 1+a 2+a 3+…+a n 得S n =a 1+a 1q+a 2q+…+a n -1q=a 1+q(a 1+a 2+…+a n -1)=a 1+q(S n -a n从而得(1-q)S n =a 1-an(以下从略师 探究中我们们应该发现,S n -S n -=a n 是一个非常有用的关系,应该引起大家足够的重视.在这个关系式中,n的取值应该满足什么条件? 生 n>师 对的,请同学们今后多多关注这个关系式:S n -S n -1=a n ,n >师 综合上面的探究过程,我们得出:⎪⎩⎪⎨⎧≠--==1,1)1(,1,11q q q a q na S n n 或者1,1,1,11≠⎪⎩⎪⎨⎧--=q q q a a q na n[例题剖析]【例题1】 求下列等比数列的前8项的和:(1)21,41,81,…; (2)a 1=27,a 9=2431,q<[合作探究] 师生共同分析:由(1)所给条件,可得211=a ,21=q ,求n =8时的和,直接用公式即可 由(2)所给条件,需要从24319=a 中获取求和的条件,才能进一步求n =8时的和.而a 9=a 1q 8,所以由条件可得q 8=19a a =272431⨯,再由q <0,可得31-=q ,将所得的值代入公式就可以了生 写出解答:(1)因为211=a ,21=q ,所以当n =8时,256255211)21(1[2188=--=S(2)由a 1=27,24319=a ,可得272431198⨯==a a q,又由q <0,可得31-=q 于是当n =8时,811640)31(1)2724311(2718=--⨯-=S【例题2】 某商场今年销售计算机5 000台,如果平均每年的销售量比上一年的销售量增加10%,那么从今年起,大约几年可使总销售量达到30 000台(结果保留到个位)?师 根据题意,从中发现等比关系,从中抽象出等比数列,并明确这是一个已知S n =30 000求n 的问题生 理解题意,从中发现等比关系,并找出等比数列中的基本量,列式,计算解:根据题意,每年的销售量比上一年增加的百分率相同,所以,从今年起,每年销售量组成一个等比数列{a n },其中a 1=5 000,q=1+10%=1.1,Sn于是得到300001.11)1.11(5000=--n整理得1.1n两边取对数,得n用计算器算得1.1lg 6.1lg =n ≈041.02.0≈5(年答:大约5年可以使总销售量达到30 000台练习:教材第66页,练习第1、2、3题课堂小结本节学习了如下内容:1.等比数列前n 项和公式的推导;特别是在推导过程中,学到了“错位相减法2.等比数列前n 项和公式的应用.因为公式涉及到等比数列的基本量中的4个量,一般需要知道其中的3个,才能求出另外一个量.另外应该注意的是,由于公式有两个形式,在应用中应该根据题意所给的条件,适当选择运用哪一个公式在使用等比数列求和公式时,注意q 的取值是至关重要的一个环节,需要放在第一位来思考.布置作业课本第69页习题2.5 A组第1、2、3题板书设计等比数列前n项和公式的推导与应用等比数列的前n项和公式情境问题的推导一般情形的推导例1练习:(学生板演) 例2练习:(学生板演)第二课时教学过程推进新课[例题剖析]师出示投影胶片2:课本第70页B组题第4题:例1思考以下问题:(1)依教育储蓄的方式,每月存50元,连续存3年,到期(3年)或6年时一次可支取本息共多少元?(2)依教育储蓄的方式,每月存a元,连续存3年,到期(3年)或6年时一次可支取本息共多少元?(3)依教育储蓄的方式,每月存50元,连续存3年,到期(3年)时一次可支取本息比同档次的“零存整取”多收益多少元?(4)欲在3年后一次支取教育储蓄本息合计1万元,每月应存入多少元?(5)欲在3年后一次支取教育储蓄本息合计a万元,每月应存入多少元?(6)依教育储蓄方式,原打算每月存100元,连续存6年,可是到了4年时,学生需要提前支取全部本息,一次可支取本息共多少元?(7)依教育储蓄方式,原打算每月存a元,连续存6年,可是到了b年时,学生需要提前支取全部本息,一次可支取本息共多少元?(8)不用教育储蓄方式,而用其他的储蓄方式,以每月可存100元,6年后使用为例,探讨以现行的利率标准可能的最大收益,将得到的结果与教育储蓄比较.[合作探究]师 要解决上面的这些问题,我们必须要了解一点银行的业务知识,据调查,银行整存整取定期储蓄存款利率计算公式是这样的:若每月固定存a 元,连续存n 个月,则计算利息的公式为2)1(nn a +×月利率师 你能解释这个公式的含义吗? 生 独立思考、合作交流、自主探究师 (在学生充分探究后揭示)设月利率为q ,则这个公式实际上是数列:a q,2a q,3a q,…,na q,…的前n 项和这个数列的项不正是依次月数的利息数?这个数列具有什么特征呢? 生 发现等差关系师 用我们的数学语言来说,这是个首项为a q ,公差为a q 的等差数列,而不是一个等比数列.从这个公式中我们知道,银行整存整取定期储蓄存款利率计算不是按复利(利生息——利滚利)计算的我们把这样的计算利息的方法叫做按单利(利不生息——利不滚利)计算这是我们在计算时必须弄明白的,否则,我们计算的结果就会与银行计算的实际结果不一致. 师 我们还需要了解银行的三年期、五年期的整存整取的存款利率,以及三年期零存整取的存款利率和利息税率:三年期整存整取存款年利率为2.52%,月利率为0.21%;五年整存整取存款年利率为2.79%,月利率为0.232 5%; 三年期零存整取存款年利率为1.89%,月利率为0.157 5%; 利息税率为师 下面我们来看第一个问题的结果生 计算,报告结果师 生共同解答:(1)解:因为三年期整存整取存款年利率为2.52%,月利率为0.21%,故依教育储蓄的方式,每月存50元,连续存3年,到期一次可支取本息共236)365050(⨯⨯+×0.21%+1 800=1 869.93(元因为五年整存整取存款年利率为2.79%,月利率为0.232 5%,故依教育储蓄的方式,若每月存入每月存50元,连续存6年,到期一次可支取本息共272)725050(⨯⨯+×0.232 5%+3 600=3 905.50(元(2)每月存入每月存a 元,连续存3年,到期一次可支取本息共236)36(⨯⨯+a a ×0.21%+36a (元若每月存入每月存a 元,连续存6年,到期一次可支取本息共272)72(⨯⨯+a a ×0.232 5%+72a (元(3)因为三年期零存整取存款年利率为1.89%,月利率为0.157 5%,故每月存50元,连续存3年,到期一次可支取本息共236)365050(⨯⨯+×0.157 5%×80%+1 800=1 841.96(元比教育储蓄的方式少收益27.97(元(4)设每月应存入x 元,由教育储蓄的计算公式得236)36(⨯⨯+x x ×0.21%+36x =解得x≈267.39(元),即每月应存入267.39(元(5)设每月应存入x 元,由教育储蓄的计算公式得236)36(⨯⨯+x x ×0.21%+36x =10 000a解得x=3986.3710000a=267.39a ,即每月应存入267.39a (元(6)根据银行出台的教育储蓄《管理办法》,需要提前支取的,在提供证明的情况下,按实际存期和开户日同期同档次整存整取定期储蓄存款利率计付利息,并免征储蓄存款利息所得税.故该学生支取时,应按照三年期整存整取存款年利率为2.52%,月利率为0.21%进行计算.由计算公式得248)48100100(⨯⨯+×0.21%+4 800=5 046.96(元(7)与第6小题类似,应根据实际存期进行同档次计算一到两年的按一年期整存整取计息.一年期整存整取存款年利率为1.98%,月利率为,故当b =1或2时,由计算公式得212)12(bb a a ⨯⨯+×0.165%+12ab (元当b =3或4或5时,应按照三年期整存整取存款年利率为2.52%,月利率为0.21%进行计算.根据计算公式得212 )12(bbaa⨯⨯+×0.21%+12ab(元(8)此题可以选择多种储蓄方式,学生可能提供多个结果,只要他们计算方式符合规定的储蓄方式即可.教师可以组织学生讨论,然后选择一个最佳答案[概括总结]师在我们上述探究问题的过程中,我们学到了许多课本上没有的东西,增长了一些银行存款的知识.我们可以用这些知识去规划一下自己将来接受教育的存款计划,并与家长商量,看能不能付诸于现实;我们也可以为身边的亲朋好友当个小参谋,把你学到的知识讲解给他们听一听,看他们能不能接受你的意见和建议从生产实际和社会生活中,我们还能寻找到更多的探究题材,只要我们做个有心人,我们学到的知识就能与生产实际与社会生活紧密的结合起来说明:此例文字量大,阅读理解能力要求较高,但是弄通问题的基本含义后,因为其蕴含的数学知识和方法并不深奥,计算量也不大,所以可以说是一个非常好的探究性问题.可以猜想,这也是普通高中新课程标准推崇它作为一个典型例题的理由师下面的问题需要我们用更多的数学知识才能解决它出示投影胶片3:例2你能估计函数y=9-x2在第一象限的图象与x轴、y轴围成的区域的面积吗?出示多媒体图片1:师如图,为了估计函数y=9-x2在第一象限的图象与x轴、y轴围成的区域的面积x,把x轴上的区间[0,3]分成n等份.从各分点作y轴平行线与图象相交,再从各交点向左作x轴平行线,构成(n-1)个矩形.下面用程序来计算这(n-1)个矩形的面积的和I N请输入将[0,3]分成的份数n:”;NWHILE k<=N-AN -(k*3/n )^2)*3/NSUM=SUM=ANPRI N T k,ANWE NDE ND阅读程序,回答下列问题:(1)程序中的AN ,SUM 分别表示什么,为什么?(2)请根据程序分别计算当n =6,11,16时,各个矩形的面积的和(不必在计算机上运行程序).师 你能回答第一个问题吗?生 AN 表示第k个矩形的面积,SUM 表示前k个矩形面积的和生 当把x 轴上的区间[0,3]分成n 等份时,各等份的长都是n3理由是:各分点的横坐标分别是n 3,n 23⨯ ,…,nn )1(3-⨯从各分点作y 轴平行线与y=9-x 2图象相交,交点的纵坐标分别是2)3(9n -,2)23(9n ⨯- , (2))1(3[9nn -⨯-它们分别是各个相应矩形的高,所以各个矩形面积分别是nn 3])3(9[2⨯-,n n 3])23(9[2⨯⨯-,…,nn n 3)])1(3[(92⨯⎭⎬⎫⎩⎨⎧-⨯-师 对学生的思考给予高度的赞扬师 当我们把x 轴上的区间[0,3]分成n 等份时,按照上面的作图方法,我们得到了函数y=9-x 2在第一象限的图象与x 轴、y 轴围成的区域内的n -1个矩形师 想一想,这个由各个矩形面积组成的数列的前n -1项和如何求生 自主探究列式:nn n n n n n S n 3])1(3[9...3])23(9[3])3(9[2221⨯⎭⎬⎫⎩⎨⎧-⨯-++⨯⨯-+⨯-=-=⎭⎬⎫⎩⎨⎧-⨯-++⨯-+-]))1(3(9[...])23(9[])3(9[3222n n n n n=⎭⎬⎫⎩⎨⎧-+++--])1(...21[)3()1(932222n n n n师 引导学生整理所列出的式子,得到上述最后一道式子师 求和时遇到了12+22+…+n 2的计算问题,这也是一个求数列前n 项和的问题关于这个问题,我们只要求大家知道,这是求数列:12,22,32,…,n 2,…的前n 项和的问题.由于这个数列不是等差数列,也不是等比数列,因此不能用已经推导出来的等差数列前n 项和公式与等比数列前n 项和公式.而这个和的计算,要求同学们记得它的计算公式即要求记住:12+22+…+n 2=6)12)(1(++n n n关于这个公式的推导过程,我们可以作为知识拓展的材料,放在课外进行探究性学习师 运用这个公式,请把上面的n -1个矩形面积的和计算出来生 继续运算S n -1=n 3 {9(n -1)-( n 3)2[12+22+…+(n -1)2]}=n 3[9(n -1)-( n 3)26)12()1(--n n n ] =222)134(9n n n --师 明确一下计算结果,再继续带领学生一起理解第2小题的含义并得出结果师 根据程序,当n =6时,5个矩形的面积的和就是输入N =6,SUM 的最后一个输出值那么当n =11时,10个矩形的面积的和就是N =11时,SUM 的最后一个输出值,即;当n =16时,我们就得到15个矩形面积的和当n =17时,SUM 的最后一个输出值是多少? 生 n =17时,SUM 的最后一个输出值师 你是怎么计算n =17时,SUM 的最后一个输出值的呢?生 是用上面推导出来的计算公式:2212)134(9n n n S n --=-当n =500时,SUM 的最后一个输出值当n =1 000时,SUM 的最后一个输出值生 用公式2212)134(9n n n S n --=-,不难算出n =500时,SUM=17.973;n =1 000时,SUM=17.986. 师 在计算n =500与n =1 000时的最后一个输出值SUM 时,为什么用上面推导出来的公式而不用程序中的步骤呢?师 这是因为公式2212)134(9nn n S n --=-用起来很方便,只要给出上一个n 的值,就可以代入公式,一下子得出结果.另一方面,程序设计的是一个递推的循环结构.它在上机运行时,对于每个给定的n ,都要从k=1依次循环到k=N -1,这是同学们在没有上机条件时很难做到而又没有必要做到的事师 至此,你能估计出函数y=9-x 2在第一象限的图象与x 轴、y 轴围成的区域的面积了? 生 由n =500与n =1 000时的最后一个输出值SUM ,可以估计,这个面积大约是师 一个非常准确的结果! [教师精讲]师 通过本例的探索,我们来归纳一下收获:1.本例中,程序使用了S n 的递推公式,即⎩⎨⎧+==-)1(,111>n a S S a S n n n这个递推公式的推导,同学们可以自己去思考一下;2.需要同学们必须想到的是,这个公式还有一个非常重要的作用,那就是:它给我们提供了求数列的首项和第n 项的办法,即⎩⎨⎧+==-)1(,111>n S S a S a n n n 3.关于估计函数y=9-x 2在第一象限的图象与x 轴、y 轴围成的区域的面积,这里采用的是无限逼近的思想,即[0,3]区间分得越细,前k 个矩形面积的和SUM 就越接近函数y=9-x 2在第一象限的图象与x 轴、y 轴围成的区域的面积.教材中已经在用旁白告诉我们,用微积分的知识可得x =18,而我们的估计值也是18,可见我们的估计非常准确课堂小结本节学习了如下内容:1.教育储蓄中的有关计算2.用计算机程序计算数列的和布置作业课本第69页习题2.5第4、5题板书设计。
《等比数列的前n项和》教案一、教材分析从教材的编写顺序上来看,等比数列的前n项和是人教A版高中数学必修5第二章“数列”第五节的内容,它是“等差数列的前n项和”与“等比数列”内容的延续、与前面学习的函数等知识也有着密切的联系.就知识的应用价值上来看,它是从大量数学问题和现实问题中抽象出来的一个模型,在公式推导中所蕴涵的数学思想方法如分类讨论等在各种数列求和问题中有着广泛的应用;另外它在如“分期付款”等实际问题的计算中也经常涉及到.就内容的人文价值上来看,等比数列的前n项和公式的探究与推导需要学生观察、分析、归纳、猜想,有助于培养学生的创新思维和探索精神,是培养学生应用意识和数学能力的良好载体.教师教学用书安排“等比数列的前n项和”这部分内容授课时间2课时,本节课作为第一课时,重在研究等比数列的前n项和公式的推导及简单应用,教学中注重公式的形成推导过程并充分揭示公式的结构特征和内在联系.二、教学目标依据课程标准,结合学生的认知水平和年龄特点,确定本节课的教学目标如下:知识与技能目标:理解等比数列的前n项和公式的推导方法;掌握等比数列的前n项和公式并能运用公式解决一些简单问题.过程与方法目标:通过公式的推导过程,提高学生的建模意识及探究问题、分析与解决问题的能力,体会公式探求过程中从特殊到一般的思维方法,渗透方程思想、分类讨论思想及转化思想,优化思维品质.情感与态度目标:通过经历对公式的探索,激发学生的求知欲,鼓励学生大胆尝试、勇于探索、敢于创新,磨练思维品质,从中获得成功的体验,感受思维的奇异美、结构的对称美、形式的简洁美、数学的严谨美.三、教学重点和难点重点:等比数列的前n项和公式的推导及其简单应用.从教材体系来看,它为后继学习提供了知识基础,具有承上启下的作用;从知识特点而言,蕴涵丰富的思想方法;就能力培养来看,通过公式推导教学可培养学生的运用数学语言交流表达的能力.突出重点方法:“抓三线、突重点”,即(一)知识技能线:问题情境→公式推导→公式运用;(二)过程与方法线:特殊到一般、猜想归纳→错位相减法等→转化、方程思想;(三)能力线:观察能力→数学思想解决问题能力→灵活运用能力及严谨态度.难点:等比数列的前n项和公式的推导.从学生认知水平来看,学生的探究能力和用数学语言交流的能力还有待提高.从知识本身特点来看,等比数列前n项和公式的推导方法和等差数列的的前n项和公式的推导方法可比性低,无法用类比的方法进行,它需要对等比数列的概念和性质能充分理解并融会贯通,而知识的整合对学生来说恰又是比较困难的,而且错位相减法是第一次碰到,对学生来说是个新鲜事物.突破难点手段:“抓两点,破难点”,即一抓学生情感和思维的兴奋点,激发他们的兴趣,鼓励学生大胆猜想、积极探索,及时地给以鼓励,使他们知难而进;二抓知识选择的切入点,从学生原有的认知水平和所需的知识特点入手,教师在学生主体下给予适当的提示和指导.四、教学方法利用计算机和实物投影等辅助教学,采用启发和探究-建构教学相结合的教学模式.六、教学设计说明1.情境设置生活化.本着新课程的教学理念,考虑到高一学生的心理特点以及初、高中教学的衔接,让学生学生初步了解“数学来源于生活”,采用动漫故事的形式创设问题情景,意在营造和谐、积极的学习气氛,激发学生的探究欲.2.问题探究活动化.教学中本着以学生发展为本的理念,充分给学生想的时间、说的机会以及展示思维过程的舞台,通过他们自主学习、合作探究,展示学生解决问题的思想方法,共享学习成果,体验数学学习成功的喜悦.通过师生之间不断合作和交流,发展学生的数学观察能力和语言表达能力,培养学生思维的发散性和严谨性.3.辨析质疑结构化.在理解公式的基础上,及时进行正反两方面的“短、平、快”填空和判断是非练习.通过总结、辨析和反思,强化了公式的结构特征,促进学生主动建构,有助于学生形成知识模块,优化知识体系.4.巩固提高梯度化.例1采用表格形式,突出表现五个基本量“知三求二”的关系,通过公式的正用和逆用进一步提高学生运用知识的能力;例2由教科书中的例题改编而成,并进行适当的变式,可以提高学生的模式识别的能力,培养学生思维的深刻性和灵活性.5.思路拓广数学化.从整理知识提升到强化方法,由课内巩固延伸到课外思考,变“知识本位”为“学生本位”,使数学学习成为提高学生素质的有效途径.以生活中的实例作为思考,让学生认识到数学来源于生活并应用于生活,生活中处处有数学.6.作业布置弹性化.通过布置弹性作业,为学有余力的学生提供进一步发展的空间.介绍相关网站让学生查阅有关资料,有利于丰富学生的知识,拓展学生的视野,提高学生的数学素养.。
1. 进一步熟练掌握等比数列的通项公式和前项和公式;复习2:等比数列的通项公式. n a = = .二、新课导学 ※ 学习探究探究任务:等比数列的前n 项和与通项关系 问题:等比数列的前n 项和 n S =1231n n a a a a a -+++++, 1n S -=1231n a a a a -++++ (n ≥2),∴ 1n n S S --= , 当n =1时,1S = .反思:等比数列前n 项和n S 与通项n a 的关系是什么?※ 典型例题例1. 等比数列前n 项,前2n 项,前3n 项的和分别是n S , 2n S ,3n S ,求证:n S ,2n n S S -,32n n S S -也成等比.变式:在等比数列中,已知248,60n n S S ==,求3n S . ※ 动手试试练1. 等比数列{}n a 中,301013S S =,1030140S S +=,求20S . 练2. 求数列1,1+2,1+2+22,1+2+22+23,…的前n 项和S n . 三、当堂检测1. 等比数列{}n a 中,33S =,69S =,则9S =( ). A. 21 B. 12 C. 18 D. 242. 在等比数列中,14a =,q =2,使4000n S >的最小n 值是( ). A. 11 B. 10 C. 12 D. 93. 计算机是将信息转换成二进制数进行处理的,二进制即“逢二进一”.如(1101)2表示二进制的数, 将它转换成十进制的形式是32101212021213⨯+⨯+⨯+⨯=,那么将二进制数 A. 922- B. 821- C. 822- D. 721-4. 在等比数列中,11a =,512n a =-,341n S =-,则q = ,n = .5. 等比数列的前n 项和12nn s =-,求通项n a .6. 设a 为常数,求数列a ,2a 2,3a 3,…,na n,…的前n 项和;中国书法艺术说课教案今天我要说课的题目是中国书法艺术,下面我将从教材分析、教学方法、教学过程、课堂评价四个方面对这堂课进行设计。
人教版高中必修5(B版)2.3.2等比数列的前n项和教学设计一、教学目标1.掌握等比数列的概念和性质,能够判断一个数列是否为等比数列;2.掌握等比数列的通项公式和求和公式;3.能够应用等比数列的公式解决实际问题。
二、教学重点和难点1.等比数列的通项公式和求和公式的推导;2.解决实际问题时对问题的转化和数据的分析。
三、教学过程设计1. 导入环节通过引入一些实际应用问题,比如生态链问题、财务问题等,介绍等比数列的应用场景,引发学生对等比数列的兴趣,并激发学生的求知欲望。
2. 概念讲解1.定义等比数列,列举等比数列的性质;2.推导等比数列的通项公式和求和公式,并简单讲解推导过程,引导学生理解公式;3.通过实例讲解公式的应用方法,强化学生的运用能力。
3. 练习与巩固1.利用课堂时间进行一些基础题型的演示和讲解,使学生对基础概念和公式更加熟悉;2.在课后布置一些练习,提高学生对等比数列的掌握程度;3.在下次课时进行讲解和答疑,帮助学生发现和纠正错误。
4. 实际应用通过一些实际问题的讲解和分析,如金融投资、人口增长等,让学生发现等比数列在实际问题中的应用,丰富学生的实际运用能力。
四、教学方法1.讲授法:通过讲述概念和公式,并通过例题让学生掌握解题方法;2.互动式教学:通过提问、讨论、闯关等方式,增强学生的参与性,让学生主动探究;3.多媒体教学:通过使用电子教具或多媒体课件辅助教学,让学生更加生动和直观地了解概念和公式。
五、教学反思1.整体教学效果良好,学生对等比数列的掌握程度得到了很大提高;2.需要针对性更强的练习来巩固学生的理论知识和应用技巧;3.可以结合实际应用更多的案例,让学生更加深入理解等比数列的实际应用。
2.5 等比数列的前n 项和(二)[学习目标] 1.熟练应用等比数列前n 项和公式的有关性质解题.2.应用方程的思想解决与等比数列前n 项和有关的问题.知识点一 等比数列前n 项和的变式1.等比数列{a n }的前n 项和为S n ,当公比q ≠1时,S n =a 1(1-q n )1-q =a 1(q n -1)q -1=a 1-a n q1-q =a 1q n q -1-a 1q -1; 当q =1时,S n =na 1.2.当公比q ≠1时,等比数列的前n 项和公式是S n =a 1(1-q n )1-q ,它可以变形为S n =-a 11-q·q n+a 11-q,设A =a 11-q,上式可写成S n =-Aq n+A .由此可见,非常数列的等比数列的前n 项和S n 是由关于n 的一个指数式与一个常数的和构成的,而指数式的系数与常数项互为相反数. 当公比q =1时,因为a 1≠0,所以S n =na 1是n 的正比例函数(常数项为0的一次函数). 思考 在数列{a n }中,a n +1=ca n (c 为非零常数)且前n 项和S n =3n -1+k ,则实数k 等于________. 答案 -13解析 由题{a n }是等比数列, ∴3n的系数与常数项互为相反数, 而3n的系数为13,∴k =-13.知识点二 等比数列前n 项和的性质1.连续m 项的和(如S m ,S 2m -S m ,S 3m -S 2m )仍构成等比数列.(注意:q ≠-1或m 为奇数) 2.S m +n =S m +q mS n (q 为数列{a n }的公比). 3.若{a n }是项数为偶数、公比为q 的等比数列,则S 偶S 奇=q . 思考 在等比数列{a n }中,若a 1+a 2=20,a 3+a 4=40,则S 6等于( ) A .140 B .120 C .210 D .520 答案 A解析 S 2=20,S 4-S 2=40,∴S 6-S 4=80, ∴S 6=S 4+80=S 2+40+80=140.题型一 等比数列前n 项和的性质例1 (1)等比数列{a n }中,S 2=7,S 6=91,则S 4=______.(2)等比数列{a n }共有2n 项,其和为-240,且(a 1+a 3+…+a 2n -1)-(a 2+a 4+…+a 2n )=80,则公比q =____. 答案 (1)28 (2)2解析 (1)∵数列{a n }是等比数列, ∴S 2,S 4-S 2,S 6-S 4也是等比数列, 即7,S 4-7,91-S 4也是等比数列, ∴(S 4-7)2=7(91-S 4), 解得S 4=28或S 4=-21.又∵S 4=a 1+a 2+a 3+a 4=a 1+a 2+a 1q 2+a 2q 2=(a 1+a 2)(1+q 2)=S 2·(1+q 2)>0, ∴S 4=28.(2)由题S 奇+S 偶=-240,S 奇-S 偶=80, ∴S 奇=-80,S 偶=-160, ∴q =S 偶S 奇=2. 反思与感悟 解决有关等比数列前n 项和的问题时,若能恰当地使用等比数列前n 项和的相关性质,常常可以避繁就简.不仅可以减少解题步骤,而且可以使运算简便,同时还可以避免对公比q 的讨论.解题中把握好等比数列前n 项和性质的使用条件,并结合题设条件寻找使用性质的切入点,方可使“英雄”有用武之地.跟踪训练1 (1)设等比数列{a n }的前n 项和为S n ,若S 6S 3=3,则S 9S 6等于( ) A .2 B.73C.83 D .3 答案 B解析 方法一 因为数列{a n }是等比数列,所以S 6=S 3+q 3S 3,S 9=S 6+q 6S 3=S 3+q 3S 3+q 6S 3,于是S 6S 3=(1+q 3)S 3S 3=3,即1+q 3=3,所以q 3=2.于是S 9S 6=1+q 3+q 61+q 3=1+2+41+2=73. 方法二 由S 6S 3=3,得S 6=3S 3.因为数列{a n }是等比数列,且由题意知q ≠-1,所以S 3,S 6-S 3,S 9-S 6也成等比数列,所以(S 6-S 3)2=S 3(S 9-S 6),解得S 9=7S 3,所以S 9S 6=73.(2)一个项数为偶数的等比数列,各项之和为偶数项之和的4倍,前3项之积为64,求通项公式.解 设数列{a n }的首项为a 1,公比为q ,全部奇数项、偶数项之和分别记为S 奇、S 偶,由题意知S 奇+S 偶=4S 偶,即S 奇=3S 偶.∵数列{a n }的项数为偶数,∴q =S 偶S 奇=13. 又a 1·a 1q ·a 1q 2=64,∴a 31·q 3=64,即a 1=12.故所求通项公式为a n =12·⎝ ⎛⎭⎪⎫13n -1.题型二 等比数列前n 项和的实际应用例2 小华准备购买一台售价为5 000元的电脑,采用分期付款方式,并在一年内将款全部付清.商场提出的付款方式为:购买2个月后第1次付款,再过2个月后第2次付款,…,购买12个月后第6次付款,每次付款金额相同,约定月利率为0.8%,每月利息按复利计算,求小华每期付款金额是多少.解 方法一 设小华每期付款x 元,第k 个月末付款后的欠款本利为A k 元,则:A 2=5 000×(1+0.008)2-x =5 000×1.0082-x , A 4=A 2(1+0.008)2-x =5 000×1.0084-1.0082x -x ,…A 12=5 000×1.00812-(1.00810+1.0088+…+1.0082+1)x =0,解得x = 5 000×1.008121+1.0082+1.0084+…+1.00810=5 000×1.008121-(1.0082)61-1.0082≈880.8. 故小华每期付款金额约为880.8元.方法二 设小华每期付款x 元,到第k 个月时已付款及利息为A k 元,则:A 2=x ;A 4=A 2(1+0.008)2+x =x (1+1.0082);A 6=A 4(1+0.008)2+x =x (1+1.0082+1.0084);…A 12=x (1+1.0082+1.0084+1.0086+1.0088+1.00810).∵年底付清欠款,∴A 12=5 000×1.00812,即5 000×1.00812=x (1+1.0082+1.0084+…+1.00810), ∴x = 5 000×1.008121+1.0082+1.0084+…+1.00810≈880.8.故小华每期付款金额约为880.8元.反思与感悟 分期付款问题是典型的求等比数列前n 项和的应用题,此类题目的特点是:每期付款数相同,且每期间距相同.解决这类问题有两种处理方法,如本题中方法一是按欠款数计算,由最后欠款为0列出方程求解;而方法二是按付款数计算,由最后付清全部欠款列方程求解.跟踪训练2 从社会效益和经济效益出发,某地投入资金进行生态环境建设,并以此发展旅游产业.根据规划,本年度投入800万元,以后每年投入将比上年减少15,本年度当地旅游收入估计为400万元,由于该项建设对旅游业的促进作用,预计今后的旅游业收入每年会比上年增长14.设n 年内(本年度为第一年)总投入为a n 万元,旅游业总收入为b n 万元,写出a n ,b n的表达式.解 第1年投入800万元,第2年投入800×⎝ ⎛⎭⎪⎫1-15万元,…,第n 年投入800×⎝ ⎛⎭⎪⎫1-15n -1万元,所以总投入a n =800+800×⎝ ⎛⎭⎪⎫1-15+ (800)⎝ ⎛⎭⎪⎫1-15n -1=4 000×⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫45n (万元).同理,第1年收入400万元,第2年收入400×⎝ ⎛⎭⎪⎫1+14万元,…,第n 年收入400×⎝ ⎛⎭⎪⎫1+14n -1万元.所以总收入b n =400+400×⎝ ⎛⎭⎪⎫1+14+ (400)⎝ ⎛⎭⎪⎫1+14n -1=1 600×⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫54n -1.综上,a n =4 000×⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫45n ,b n =1 600×⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫54n -1.题型三 新情境问题例3 定义:若数列{A n }满足A n +1=A 2n ,则称数列{A n }为“平方数列”.已知数列{a n }中,a 1=2,点(a n ,a n +1)在函数f (x )=2x 2+2x 的图象上,其中n 为正整数. (1)证明:数列{2a n +1}是“平方数列”,且数列{lg(2a n +1)}为等比数列;(2)设(1)中“平方数列”的前n 项之积为T n ,则T n =(2a 1+1)(2a 2+1)·…·(2a n +1),求数列{a n }的通项及T n 关于n 的表达式;(3)对于(2)中的T n ,记b n =log2a n +1T n ,求数列{b n }的前n 项和S n ,并求使S n >4 024的n 的最小值.(1)证明 由条件得a n +1=2a 2n +2a n , 2a n +1+1=4a 2n +4a n +1=(2a n +1)2. ∴数列{2a n +1}是“平方数列”.∵lg(2a n +1+1)=lg(2a n +1)2=2lg(2a n +1), 且lg(2a 1+1)=lg 5≠0, ∴lg (2a n +1+1)lg (2a n +1)=2,∴{lg(2a n +1)}是首项为lg 5,公比为2的等比数列. (2)解 ∵lg(2a 1+1)=lg 5,∴lg(2a n +1)=2n -1lg 5.∴2a n +1=52n -1,∴a n =12(52n -1-1).∵lg T n =lg(2a 1+1)+lg(2a 2+1)+…+lg(2a n +1) =lg 5(1-2n)1-2=(2n-1)lg 5, ∴T n =52n-1.(3)解 ∵b n =log2a n +1T n =lg T n lg (2a n +1)=(2n-1)lg 52n -1lg 5=2n-12n -1=2-⎝ ⎛⎭⎪⎫12n -1,∴S n =2n -⎣⎢⎡⎦⎥⎤1+12+⎝ ⎛⎭⎪⎫122+…+⎝ ⎛⎭⎪⎫12n -1=2n -1-⎝ ⎛⎭⎪⎫12n1-12=2n -2+2⎝ ⎛⎭⎪⎫12n.由S n >4 024,得2n -2+2⎝ ⎛⎭⎪⎫12n>4 024, 即n +⎝ ⎛⎭⎪⎫12n>2 013. 当n ≤2 012时,n +⎝ ⎛⎭⎪⎫12n<2 013; 当n ≥2 013时,n +⎝ ⎛⎭⎪⎫12n>2 013. ∴n 的最小值为2 013.反思与感悟 数列创新题的特点及解题关键 特点:叙述复杂,关系条件较多,难度较大. 解题关键:读清条件要求,理清关系,逐个分析.跟踪训练3 记U ={1,2,…,100}.对数列{a n }(n ∈N *)和U 的子集T ,若T =∅,定义S T =0;若T ={t 1,t 2,…,t k },定义S T =at 1+at 2+…+at k .例如:T ={1,3,66}时,S T =a 1+a 3+a 66.现设{a n }(n ∈N *)是公比为3的等比数列,且当T ={2,4}时,S T =30.(1)求数列{a n }的通项公式;(2)对任意正整数k (1≤k ≤100),若T ⊆{1,2,…,k },求证:S T <a k +1; (3)设C ⊆U ,D ⊆U ,S C ≥S D ,求证:S C +S C ∩D ≥2S D . (1)解 当T ={2,4}时,S T =a 2+a 4=a 2+9a 2=30, ∴a 2=3,a 1=a 23=1,故a n =a 1qn -1=3n -1.(2)证明 对任意正整数k (1≤k ≤100). 由于T ⊆{1,2,…,k },则S T ≤a 1+a 2+a 3+…+a k =1+3+32+…+3k -1=3k-12<3k =a k +1.(3)证明 设A =∁C (C ∩D ),B =∁D (C ∩D ), 则A ∩B =∅,S C =S A +S C ∩D ,S D =S B +S C ∩D ,S C +S C ∩D -2S D =S A -2S B ,∴S C +S C ∩D ≥2S D 等价于S A ≥2S B . 由条件S C ≥S D 可得S A ≥S B .①若B =∅,则S B =0,所以S A ≥2S B 成立, ②若B ≠∅,由S A ≥S B 可知A ≠∅,设A 中的最大元素为I ,B 中的最大元素为m , 若m ≥I +1,则由(2)得S A <S I +1≤a m ≤S B ,矛盾. 又∵A ∩B =∅,∴I ≠m ,∴I ≥m +1,∴S B ≤a 1+a 2+…+a m =1+3+32+…+3m -1<a m +12≤a I 2≤S A2, 即S A >2S B 成立.综上所述,S A ≥2S B . 故S C +S C ∩D ≥2S D 成立.1.等比数列{a n }中,a 1a 2a 3=1,a 4=4,则a 2+a 4+a 6+…+a 2n 等于( ) A .2n-1 B.4n-13C.1-(-4)n 5D.1-(-2)n3答案 B解析 由a 1a 2a 3=1得a 32=1,∴a 2=1, 又∵a 4=4,∴a 4a 2=4.∴数列a 2,a 4,a 6,…,a 2n 是首项为1, 公比为4的等比数列.∴a 2+a 4+a 6+…+a 2n =1-4n 1-4=4n-13.2.某住宅小区计划植树不少于100棵,若第一天植2棵,以后每天植树的棵数是前一天的2倍,则需要的最少天数n (n ∈N *)等于( ) A .3 B .4 C .5 D .6 答案 D解析 设每天植树棵数为{a n },则{a n }是等比数列, ∴a n =2n (n ∈N *,n 为天数). 由题意得2+22+23+ (2)≥100, ∴2n -1≥50,∴2n≥51, ∴n ≥6.∴需要的最少天数n =6.3.等比数列{a n }的前m 项和为4,前2m 项和为12,则它的前3m 项和是( ) A .28 B .48 C .36 D .52 答案 A解析 易知S m =4,S 2m -S m =8, ∴S 3m -S 2m =16,∴S 3m =12+16=28.4.已知数列{a n }是等比数列,S n 是其前n 项的和,a 1,a 7,a 4成等差数列.求证:2S 3,S 6,S 12-S 6成等比数列.证明 设等比数列{a n }的公比为q ,由题意得2a 7=a 1+a 4, 即2a 1·q 6=a 1+a 1·q 3, ∴2q 6-q 3-1=0.令q 3=t ,则2t 2-t -1=0, ∴t =-12或t =1,即q 3=-12或q3=1.当q 3=1时,2S 3=6a 1,S 6=6a 1,S 12-S 6=6a 1, ∴S 26=2S 3·(S 12-S 6),∴2S 3,S 6,S 12-S 6成等比数列.当q 3=-12时,2S 3=2×a 1(1-q 3)1-q =2a 1×321-q =3a 11-q ,S 6=a 1(1-q 6)1-q =3a 141-q,S 12-S 6=a 7(1-q 6)1-q =a 1·q 6(1-q 6)1-q =a 14×341-q,∴S 26=2S 3·(S 12-S 6),∴2S 3,S 6,S 12-S 6成等比数列. 综上可知,2S 3,S 6,S 12-S 6成等比数列.等比数列中用到的数学思想1.分类讨论的思想:(1)利用等比数列前n 项和公式时要分公比q =1和q ≠1两种情况讨论; (2)研究等比数列的单调性时应进行讨论:当a 1>0,q >1或a 1<0,0<q <1时为递增数列;当a 1<0,q >1或a 1>0,0<q <1时为递减数列;当q <0时为摆动数列;当q =1时为常数列.2.函数的思想:等比数列的通项a n =a 1q n -1=a 1q·q n(q >0且q ≠1)常和指数函数相联系;等比数列前n 项和S n =a 1q -1·(q n-1)(q ≠1).设A =a 1q -1,则S n =A (q n-1)也与指数函数相联系.3.整体思想:应用等比数列前n 项和时,常把q n,a 11-q当成整体求解.。
2.3.2 等比数列的前n 项和(二)明目标、知重点 1.熟练应用等比数列前n 项和公式的有关性质解题.2.应用方程的思想方法解决与等比数列前n 项和有关的问题.1.等比数列的前n 项和的变式(1)等比数列{a n }的前n 项和为S n ,当公比q ≠1时,S n =a 1(1-q n )1-q =a 1(q n -1)q -1=a 1-a n q 1-q =a 1q nq -1-a 1q -1; 当q =1时,S n =na 1.(2)当公比q ≠1时,等比数列的前n 项和公式是S n =a 1(1-q n )1-q ,它可以变形为S n =-a 11-q ·qn+a 11-q ,设A =a 11-q,上式可写成S n =-Aq n +A .由此可见,非常数列的等比数列的前n 项和S n 是由关于n 的一个指数式与一个常数的和构成的,而指数式的系数与常数项互为相反数. 当公比q =1时,因为a 1≠0,所以S n =na 1是n 的正比例函数(常数项为0的一次函数). 2.等比数列前n 项和的性质(1)连续m 项的和(如S m 、S 2m -S m 、S 3m -S 2m ),仍构成等比数列.(注意:q ≠-1或m 为奇数) (2)S m +n =S m +q m S n (q 为数列{a n }的公比).(3)若{a n }是项数为偶数、公比为q 的等比数列,则S 偶S 奇=q .上一节我们学习了等比数列的前n 项和的公式,那么该公式与相应的函数有怎样的关系?等比数列的前n 项和又有怎样的性质?如何利用这些性质解题?这是我们本节研究的主要内容.探究点一 等比数列前n 项和S n 的函数特征思考1 设等比数列{a n }的前n 项和为S n ,当公比q =1时,S n 对应怎样的函数?其函数图象又如何?答 当公比q =1时,因为a 1≠0,所以S n =na 1,S n 与n 成正比.当q =1时,数列S 1,S 2,S 3,…,S n ,…的图象是正比例函数y =a 1x 图象上一些孤立的点.思考2 设等比数列{a n }的前n 项和为S n ,当公比q ≠1时,S n 对应怎样的函数?其函数图象又如何?答 当公比q ≠1时,等比数列的前n 项和公式是S n =a 11-q (1-q n )=a 1q -1(q n -1).设A =a 1q -1,则上式可以写为S n =A (q n -1).由此可见,q ≠1时,由等比数列前n 项和S n 构成的点列(1,S 1),(2,S 2),(3,S 3),…,(n ,S n )位于函数y =A (q x -1)的图象上.思考3 数列{a n }的前n 项和S n 构成了一个新的数列:S 1,S 2,S 3,…,S n ,….你能完成这个新数列的递推关系⎩⎪⎨⎪⎧S 1=S n =S n -1+ (n >1)吗?答 S 1=a 1,当n >1时,S n =S n -1+a n .小结 思考3中的递推关系,变式可得a n =⎩⎪⎨⎪⎧S 1 (n =1),S n -S n -1 (n ≥2).就是前面学过的已知S n 求通项a n .例1 设f (n )=2+24+27+…+23n +1 (n ∈N +),则f (n )等于( ) A.27(8n -1) B.27(8n +1-1) C.27(8n +2-1) D.27(8n +3-1) 答案 B解析 f (n )=2+24+27+…+23n +1=2(1-8n +1)1-8=27(8n +1-1). 反思与感悟 数列是一个特殊的函数,数列的通项公式和数列前n 项和公式都是关于n 的函数.所以利用函数的思想解题,是解决数列问题的基本方法.跟踪训练1 若{a n }是等比数列,且前n 项和为S n =3n -1+t ,则t =________. 答案 -13解析 显然q ≠1,此时应有S n =A (q n -1), 又S n =13·3n +t ,∴t =-13.探究点二 等比数列前n 项和的性质思考1 等比数列{a n }的前n 项和为S n ,公比为q ,S m +n 与S m 及S n 有怎样的关系?为什么? 答 S m +n =S m +q m S n .证明如下:左边=S m +n =(a 1+a 2+…+a m )+(a m +1+a m +2+…+a m +n )=S m +(a 1q m +a 2q m +…+a n q m ) =S m +(a 1+a 2+…+a n )q m =S m +q m S n =右边, ∴S m +n =S m +q m S n .思考2 在等比数列{a n }中,若连续m 项的和不等于0,则它们仍组成等比数列.即S m ,S 2m -S m ,S 3m -S 2m ,…仍组成等比数列.怎样证明这个关系? 答 ∵在等比数列{a n }中有a m +n =a m q n , ∴S m =a 1+a 2+…+a m ,S 2m -S m =a m +1+a m +2+…+a 2m =a 1q m +a 2q m +…+a m q m =(a 1+a 2+…+a m )q m =S m ·q m . 同理S 3m -S 2m =S m ·q 2m ,…,在S m ≠0时,S m ,S 2m -S m ,S 3m -S 2m ,…,仍组成等比数列.例2 已知等比数列前n 项,前2n 项,前3n 项的和分别为S n ,S 2n ,S 3n ,求证:S 2n +S 22n =S n (S 2n+S 3n ).证明 方法一 设此等比数列的公比为q ,首项为a 1, 当q =1时,S n =na 1,S 2n =2na 1,S 3n =3na 1,∴S 2n +S 22n =n 2a 21+4n 2a 21=5n 2a 21,S n (S 2n +S 3n )=na 1(2na 1+3na 1)=5n 2a 21,∴S 2n +S 22n =S n (S 2n +S 3n ).当q ≠1时,S n =a 11-q (1-q n ),S 2n =a 11-q (1-q 2n ),S 3n =a 11-q(1-q 3n ),∴S 2n +S 22n =⎝⎛⎭⎪⎫a 11-q 2·=⎝⎛⎭⎪⎫a 11-q 2·(1-q n )2·(2+2q n +q 2n ). 又S n (S 2n +S 3n )=⎝ ⎛⎭⎪⎫a 11-q 2·(1-q n )2·(2+2q n +q 2n ),∴S 2n +S 22n =S n (S 2n +S 3n ).方法二 根据等比数列性质,有S 2n =S n +q n S n =S n (1+q n ),S 3n =S n +q n S n +q 2n S n ,∴S 2n +S 22n =S 2n +2=S 2n (2+2q n +q 2n), S n (S 2n +S 3n )=S 2n (2+2q n +q 2n ). ∴S 2n +S 22n =S n (S 2n +S 3n ).反思与感悟 运用等比数列的前n 项和公式要注意公比q =1和q ≠1两种情形,在解有关的方程(组)时,通常用约分或两式相除的方法进行消元. 跟踪训练2 在等比数列{a n }中,已知S n =48,S 2n =60,求S 3n . 解 因为S 2n ≠2S n ,所以q ≠1,由已知得⎩⎪⎨⎪⎧a 1(1-q n )1-q=48a 1(1-q 2n)1-q =60①②②÷①得1+q n =54,即q n =14.③将③代入①得a 11-q=64,所以S 3n =a 1(1-q 3n )1-q =64×⎝⎛⎭⎫1-143=63. 探究点三 等差、等比数列前n 项和的综合问题例3 已知数列{a n }的前n 项和为S n ,且S n =2a n -2(n ∈N +),在数列{b n }中,b 1=1,点P (b n ,b n +1)在直线x -y +2=0上. (1)求数列{a n },{b n }的通项公式; (2)记T n =a 1b 1+a 2b 2+…+a n b n ,求T n .解 (1)由S n =2a n -2,得S n -1=2a n -1-2(n ≥2), 两式相减得a n =2a n -2a n -1,即a na n -1=2(n ≥2),又a 1=2a 1-2,∴a 1=2,∴{a n }是以2为首项,以2为公比的等比数列,∴a n =2n . ∵点P (b n ,b n +1)在直线x -y +2=0上, ∴b n -b n +1+2=0,即b n +1-b n =2, ∴{b n }是等差数列,∵b 1=1,∴b n =2n -1.(2)∵T n =1×2+3×22+5×23+…+(2n -3)2n -1+(2n -1)2n ① ∴2T n =1×22+3×23+5×24+…+(2n -3)2n +(2n -1)·2n +1② ①-②得:-T n =1×2+2(22+23+…+2n )-(2n -1)·2n +1 =2+2·22-2n ·21-2-(2n -1)2n +1=2+4·2n -8-(2n -1)2n +1 =(3-2n )·2n +1-6 ∴T n =(2n -3)·2n +1+6.反思与感悟 等差数列与等比数列既有类似的部分,又有区别,要在应用中加强记忆.同时,用好性质也会降低解题的运算量,从而减少差错.跟踪训练3 在等比数列{a n }中,a n >0 (n ∈N +),公比q ∈(0,1),且a 1a 5+2a 3a 5+a 2a 8=25,又a 3与a 5的等比中项为2. (1)求数列{a n }的通项公式;(2)设b n =log 2a n ,数列{b n }的前n 项和为S n ,当S 11+S 22+…+S nn 最大时,求n 的值.解 (1)∵a 1a 5+2a 3a 5+a 2a 8=25,∴a 23+2a 3a 5+a 25=25,又a n >0,∴a 3+a 5=5.又a 3与a 5的等比中项为2, ∴a 3a 5=4,而q ∈(0,1),∴a 3>a 5,∴a 3=4,a 5=1. ∴q =12,a 1=16,∴a n =16×⎝⎛⎭⎫12n -1=25-n . (2)b n =log 2a n =5-n ,∴b n +1-b n =-1,∴{b n }是以b 1=4为首项,-1为公差的等差数列, ∴S n =n (9-n )2,∴S n n =9-n 2,∴当n ≤8时,S nn >0;当n =9时,S nn=0;当n >9时,S nn<0.∴当n =8或9时,S 11+S 22+S 33+…+S nn最大.1.一个七层的塔,每层所点的灯的盏数都等于上面一层的2倍,一共点381盏灯,则底层所点灯的盏数是( ) A .190 B .191 C .192 D .193答案 C解析 设最底面一层灯的盏数为a 1, 则公比q =12,n =7,由a 1(1-127)1-12=381,解得a 1=192.2.已知数列{a n }的前n 项和S n =a n -1(a 是不为零且a ≠1的常数),则数列{a n }( ) A .一定是等差数列 B .一定是等比数列C .或者是等差数列,或者是等比数列D .既非等差数列,也非等比数列 答案 B解析 当n ≥2时,a n =S n -S n -1=(a -1)·a n -1; 当n =1时,a 1=a -1,∴a n =(a -1)·a n -1,n ∈N +. ∴a n +1a n=a . 3.一个等比数列的前7项和为48,前14项和为60,则前21项和为( ) A .180 B .108 C .75 D .63 答案 D解析 由题意得S 7,S 14-S 7,S 21-S 14组成等比数列48,12,3,即S 21-S 14=3,∴S 21=63. 4.在数列{a n }中,a n +1=ca n (c 为非零常数),且前n 项和为S n =3n +k ,则实数k =________. 答案 -1解析 当n =1时,a 1=S 1=3+k ,当n ≥2时,a n =S n -S n -1=(3n +k )-(3n -1+k ) =3n -3n -1=2·3n -1.由题意知{a n }为等比数列,所以a 1=3+k =2, ∴k =-1.1.在利用等比数列前n 项和公式时,一定要对公比q =1或q ≠1作出判断;若{a n }是等比数列,且a n >0,则{lg a n }构成等差数列. 2.等比数列中用到的数学思想:(1)分类讨论的思想:①利用等比数列前n 项和公式时要分公比q =1和q ≠1两种情况讨论; ②研究等比数列的单调性时应进行讨论:当a 1>0,q >1或a 1<0,0<q <1时为递增数列;当a 1<0,q >1或a 1>0,0<q <1时为递减数列;当q <0时为摆动数列;当q =1时为常数列.(2)函数的思想:等比数列的通项a n =a 1q n -1=a 1q ·q n (q >0且q ≠1)常和指数函数相联系;等比数列前n 项和S n =a 1q -1(q n -1)(q ≠1).设A =a 1q -1,则S n =A (q n -1)也与指数函数相联系.(3)整体思想:应用等比数列前n 项和时,常把q n ,a 11-q当成整体求解.一、基础过关1.等比数列{a n }中,a 3=3S 2+2,a 4=3S 3+2,则公比q 等于( ) A .2 B.12 C .4 D.14答案 C解析 ∵a 3=3S 2+2,a 4=3S 3+2, ∴a 4-a 3=3(S 3-S 2)=3a 3, 即a 4=4a 3,∴q =a 4a 3=4,故选C.2.设{a n }是公比为q 的等比数列,S n 是它的前n 项和,若{S n }是等差数列,则q 等于( ) A .1 B .0 C .1或0 D .-1 答案 A解析 ∵S n -S n -1=a n ,又{S n }是等差数列, ∴a n 为定值,即数列{a n }为常数列,∴q =a na n -1=1.3.在等比数列{a n }中,已知S 30=13S 10,S 10+S 30=140,则S 20等于( ) A .90 B .70 C .40 D .30 答案 C解析 ∵S 30≠3S 10,∴q ≠1.由⎩⎪⎨⎪⎧ S 30=13S 10S 10+S 30=140,∴⎩⎪⎨⎪⎧S 10=10S 30=130, ∴⎩⎪⎨⎪⎧a 1(1-q 10)1-q=10a 1(1-q 30)1-q =130,∴q 20+q 10-12=0.∴q 10=3,∴S 20=a 1(1-q 20)1-q=S 10(1+q 10)=10×(1+3)=40.4.等比数列{a n }前n 项和为S n =3n -2+k ,则实数k 的值为( ) A.13 B .-13 C.19 D .-19 答案 D解析 S n =3n -2+k =19·3n +k ,根据等比数列前n 项和S n 的有关性质可得k =-19.5.等比数列{a n }共2n 项,其和为-240,且奇数项的和比偶数项的和大80,则公比q =________. 答案 2解析 根据题意得⎩⎪⎨⎪⎧S 奇+S 偶=-240,S 奇-S 偶=80,∴⎩⎪⎨⎪⎧S 奇=-80,S 偶=-160.∴q =S 偶S 奇=-160-80=2.6.设等比数列{a n }的前n 项和为S n ,若S 6S 3=3,则S 9S 6=______.答案 73解析 q ≠1,否则S 6S 3=6a 13a 1=2≠3.∴S 6S 3=a 1(1-q 6)1-q a 1(1-q 3)1-q =1+q 3=3,∴q 3=2. ∴S 9S 6=a 1(1-q 9)1-q a 1(1-q 6)1-q=1-q 91-q 6=1-231-22=73. 7.已知a 1,a 2,a 3,…,a n ,…构成一个等差数列,其前n 项和为S n =n 2,设b n =a n3n ,记{b n }的前n 项和为T n .(1)求数列{a n }的通项公式; (2)证明:T n <1. (1)解 a 1=S 1=1,当n ≥2时,a n =S n -S n -1=2n -1; 由于n =1时符合公式,∴a n =2n -1. (2)证明 ∵b n =a n 3n =2n -13n ,∴T n =13+39+527+…+2n -13n ,①∴13T n =19+327+…+2n -33n +2n -13n +1,② ①-②,得23T n =13+29+227+…+23n -2n -13n +1 =13+13⎝⎛⎭⎫1-13n -1-2n -13n +1. ∴T n =12+12⎝⎛⎭⎫1-13n -1-2n -12×3n =1-n +13n <1.二、能力提升8.设{a n }是由正数组成的等比数列,S n 为其前n 项和,已知a 2a 4=1,S 3=7,则S 5等于( ) A.152 B.314 C.334 D.172 答案 B解析 ∵{a n }是由正数组成的等比数列,且a 2a 4=1, ∴设{a n }的公比为q ,则q >0,且a 23=1,即a 3=1. ∵S 3=7,∴a 1+a 2+a 3=1q 2+1q +1=7,即6q 2-q -1=0.故q =12或q =-13(舍去),∴a 1=1q 2=4.∴S 5=4(1-125)1-12=8(1-125)=314.9.数列{a n }的前n 项和为S n ,若a 1=1,a n +1=3S n (n ≥1),则a 6等于( ) A .3×44 B .3×44+1 C .45 D .45+1答案 A解析 当n ≥1时,a n +1=3S n ,则a n +2=3S n +1, ∴a n +2-a n +1=3S n +1-3S n =3a n +1,即a n +2=4a n +1, ∴该数列从第2项开始是以4为公比的等比数列. 又a 2=3S 1=3a 1=3,∴a n =⎩⎪⎨⎪⎧1 (n =1),3×4n -2(n ≥2).∴当n =6时,a 6=3×46-2=3×44.10.等比数列{a n }中,前n 项和为S n ,S 3=2,S 6=6,则a 10+a 11+a 12=________. 答案 16解析 ∵S 3,S 6-S 3,S 9-S 6成等比数列, ∴(S 6-S 3)2=S 3·(S 9-S 6). 又∵S 3=2,S 6=6,∴S 9=14.再由S 6-S 3,S 9-S 6,S 12-S 9成等比数列, 即(S 9-S 6)2=(S 6-S 3)·(S 12-S 9), 求出S 12-S 9=16,即a 10+a 11+a 12=16.也可以由S 3,S 6-S 3,S 9-S 6,S 12-S 9成等比数列,此数列首项为S 3=2,公比q ′=S 6-S 3S 3=6-22=2,得S 12-S 9=2×23=16. 11.设等比数列{a n }的前n 项和为S n ,已知a 2=6,6a 1+a 3=30,求a n 和S n . 解 设{a n }的公比为q ,由题设得⎩⎪⎨⎪⎧ a 1q =6,6a 1+a 1q 2=30.解得⎩⎪⎨⎪⎧ a 1=3,q =2或⎩⎪⎨⎪⎧ a 1=2,q =3. 当a 1=3,q =2时,a n =3×2n -1,S n =a 1(1-q n )1-q =3(1-2n )1-2=3(2n -1); 当a 1=2,q =3时,a n =2×3n -1,S n =a 1(1-q n )1-q =2(1-3n )1-3=3n -1. 12.已知等比数列{a n }中,a 1=2,a 3+2是a 2和a 4的等差中项.(1)求数列{a n }的通项公式;(2)记b n =a n log 2a n ,求数列{b n }的前n 项和S n . 解 (1)设数列{a n }的公比为q ,由题意知:2(a 3+2)=a 2+a 4,∴q 3-2q 2+q -2=0,即(q -2)(q 2+1)=0.∴q =2,即a n =2·2n -1=2n .(2)b n =n ·2n ,∴S n =1·2+2·22+3·23+…+n ·2n .①2S n =1·22+2·23+3·24+…+(n -1)·2n +n ·2n +1.② ①-②得-S n =21+22+23+24+…+2n -n ·2n +1 =-2-(n -1)·2n +1.∴S n =2+(n -1)·2n +1.三、探究与拓展13.等比数列{a n }的各项均为正数,2a 4,a 3,4a 5成等差数列,且a 3=2a 22.(1)求数列{a n }的通项公式;(2)设b n =2n +5(2n +1)(2n +3)a n,求数列{b n }的前n 项和S n . 解 (1)设等比数列{a n }的公比为q ,依题意可知,⎩⎨⎧ a 3=2a 4+4a 52,a 3=2a 22,即⎩⎪⎨⎪⎧a 3=a 4+2a 5,a 3=2a 22, 所以⎩⎪⎨⎪⎧a 1q 2=a 1q 3+2a 1q 4,a 1q 2=2a 21q 2, 由于a 1≠0,q ≠0,解得⎩⎨⎧ a 1=12,q =12或⎩⎪⎨⎪⎧a 1=12,q =-1. 又a 1>0,q >0,所以a 1=12,q =12,所以数列{a n }的通项公式为a n =⎝⎛⎭⎫12n (n ∈N +). (2)由(1)得b n =2n +5(2n +1)(2n +3)·a n =2n +5(2n +1)(2n +3)·12n , 所以b n =⎝ ⎛⎭⎪⎫22n +1-12n +3·12n =1(2n +1)2n -1-1(2n +3)2n . 所以S n =b 1+b 2+…+b n=⎝⎛⎭⎫13-15×2+⎝⎛⎭⎫15×2-17×22+…+⎣⎢⎡⎦⎥⎤1(2n +1)2n -1-1(2n +3)2n =13-1(2n +3)2n. 故数列{b n }的前n 项和S n =13-1(2n +3)2n .。
2.5 等比数列前n 项和(2)【学习目标】1. 进一步熟练掌握等比数列的通项公式和前n 项和公式;2. 会用公式解决有关等比数列的1,,,,n n S a a n q 中知道三个数求另外两个数的一些简单问题. 【重点难点】重点.掌握等比数列的通项公式和前n 项和公式;难点. 运用方程思想解决有关等比数列的1,,,,n n S a a n q 中知道三个数求两问题 【学习过程】 一、自主学习:任务1: (预习教材,找出疑惑之处) 等比数列的前n 项和公式.当1q ≠时,n S = = 当q =1时,n S = 任务2: 等比数列的通项公式. n a = = 二、合作探究归纳展示探究1:探究任务:等比数列的前n 项和与通项关系 问题:等比数列的前n 项和 n S =1231n n a a a a a -+++++, 1n S -=1231n a a a a -++++ (n ≥2),∴ 1n n S S --= , 当n =1时, 1S = . 反思:等比数列前n 项和n S 与通项n a 的关系是什么? 三、讨论交流点拨提升例1 数列{}n a 的前n 项和1n n S a =-(a ≠0,a ≠1),试证明数列{}n a 是等比数列.变式:已知数列{}n a 的前n 项和n S ,且142n n S a +=+, 11a =,设12n n n b a a +=-,求证:数列{}n b 是等比数列.例2 等比数列前n 项,前2n 项,前3n 项的和分别是n S ,2n S ,3n S ,求证:n S ,2n n S S -,32n n S S -也成等比.变式:在等比数列中,已知248,60n n S S ==,求3n S .四、学能展示课堂闯关 知识拓展1. 等差数列中,m n m n S S S mnd +=++;2. 等比数列中,n m m n n m m n S S q S S q S +=+=+.1. 等比数列{}n a 中,33S =,69S =,则9S =( ). A. 21 B. 12 C. 18 D. 242. 在等比数列中,14a =,q =2,使4000n S >的最小n 值是( ). A. 11 B. 10 C. 12 D. 93. 计算机是将信息转换成二进制数进行处理的,二进制即“逢二进一”.如(1101)2表示二进制的数, 将它转换成十进制的形式是32101212021213⨯+⨯+⨯+⨯=,那么将二进制数(11111111)2转换成十进制的形式是( ). A. 922- B. 821- C. 822- D. 721-4. 在等比数列中,若332422S a S a +=+,则公比q = .5. 在等比数列中,11a =,512n a =-,341n S =-, 则q = ,n = . 五、学后反思1. 等比数列的前n 项和与通项关系;2. 等比数列前n 项,前2n 项,前3n 项的和分别是n S ,2n S , 3n S ,则数列n S ,2n n S S -,32n n S S -也成为等比数列.【课后作业】1. 等比数列的前n 项和12nn s =-,求通项n a .2. 设a 为常数,求数列a ,2a 2,3a 3,…,na n,…的前n 项和;。
课题: 2.5 等比数列的前 n 项和(2)第课时总序第个教课设计课型:新讲课编写不时间:年月日履行时间:年月日教课目的:批知识与技术:会用等比数列的通项公式和前n 项和公式解决相关等比数列的注S n , a n , a1, n, q 中知道三个数求此外两个数的一些简单问题;提升剖析、解决问题能力过程与方法:经过公式的灵巧运用,进一步浸透方程的思想、分类议论的思想、等价转变的思想 .感情态度与价值观:经过公式推导的教课,对学生进行思想的谨慎性的训练,培育他们脚踏实地的科学态度 .教课要点:进一步娴熟掌握等比数列的通项公式和前n 项和公式教课难点:灵巧使用公式解决问题教课器具:投影仪教课方法:经过公式的灵巧运用,进一步浸透方程的思想、分类议论的思想、等价转变的思想 .教课过程:Ⅰ. 课题导入第一回想一下前一节课所学主要内容:等比数列的前 n 项和公式:当 q 1时,S n a1 (1 q n ) ①或S n a1a n q②1 q1q当 q=1 时,S n na1当已知 a1, q, n时用公式①;当已知 a1, q,a n时,用公式②Ⅱ . 讲解新课例 1、等比数列前n 项,前2n 项,前 3n 项的和分别是Sn, S2n, S3n,求证: S2S2S (S S)n 2 n n2 n 3 n例 2、设 a 为常数,求数列a, 2a2,3a3,, na n,的前n 项和;(1)a=0 时, S n=0( 2)a≠ 0 时,若 a=1,则 Sn=1+2+3+ +n= 1n(n1)2n-1n),Sn= (1 a[1 (n 1)an na n 1]( 3)若 a ≠ 1,S n -aS n =a ( 1+a+ +a -na a) 2例 3:某商场第一年销售计算机 5000 台,假如均匀每年的销售量比上一年增添10%,那么从第一年起,约几年可使总销售量达到30000 台?(保存到个位)练习 1: 已知 { a n }中, a n 1 2a n , a 2 3, 求 S 6.练习2:(1).(a 1) (a 2 2)( a n n); (2).1 2x 3x 2nx n 1.练习3:已知S n 是等比数列a n 的前n 项和,且S 10 5,S 2015.(1).求 S 30 ;(2).问S 10,S20S10, S30S20能否成等比数列?教课后记:。
等比数列的前n 项和(二)
教学目标 进一步熟练掌握等比数列的通项公式和前n 项和公式,通过对有关问题的研究讨论,培养分析问题,解决问题的能力.
重点难点
前n 项和公式的应用.
引入新课
一、复习等比数列的前n 项和公式:
1.等比数列的求和公式:
当1≠q 时, ① 或 ②;当q=1时,
2. 等比数列的前n 项和公式的推导方法:“错位相减”
二、练习:
1.等比数列{a n }的各项都是正数,若a 1=81,a 5=16,则它的前5项和是
2.设等比数列{}n a 的前n 项和为S n ,若S 3+S 6=2S 9,则数列{}n a 的公比=q . 3等比数列{}n a 的首项为1,公比为q ,前n 项和为S ,则数列1n a ⎧⎫⎨⎬⎩⎭
的前n 项之和为 。
4.在公比为整数的等比数列{a n }中,已知a 1+a 4=18,a 2+a 3=12,那么a 5+a 6+a 7+a 8等于
5.设4710310()22222()n f n n N +=+++++∈ ,则()f n = 。
例题剖析
例1.设}{n a 是等比数列,求证:232,,n n n n n S S S S S --成等比数列.(注意:等差数列的类似性质)
类题训练:⑴在等比数列}{n a 中,若1049S =,20112S =,则30S = .
⑵在等比数列}{n a 中,若24=S ,68=S ,求20191817a a a a +++的值
例2.(1)已知数列{a n }的前n 项和b a S n n +=(0a ≠,1),若{a n }是等比数列,则1b -=;
反之亦然。
(2)已知数列{}n a 的前n 项和为n S ,231n n S =∙-,求n a 。
1q ⇒≠时n S 的另一种形式:n n S k q k =∙-
例3.设数列{}n a 为 ,,,4,3,2,1132-n nx x x x ,求此数列前n 项的和.
方法:差比数列的前n 项的和的求法——“错位相减”
★例4设数列{}n a 的首项a 1=1,前n 项的和S n 满足关系式3t S n -(2t+3)S n -1=3t(t 为常数,且t>0, n =2,3,4,……)。
(1)求证:数列{}n a 是等比数列;
(2)设{}n a 的公比为f (t),作数列{}n b ,使得b 1=1,b n =f(
1
1-n b ) (n =2,3,4,…),求{}n b 的通项公式。
(3)求和:b 1b 2-b 2b 3+b 3b 4-…+b 2n -1b 2n -b 2n b 2n +1
巩固练习
1.某厂去年的产值记为1,计划在今后五年内每年的产值比上年增长10%,则从今年起到第五年,这个厂的总产值为 。
2.数列}{n a 的通项1(21)2
n n a n -=+⋅,前n 项和为n S ,求n S .
课堂小结
1.知三求二。
2.性质
3.若{}n a 成等差数列(公差为d ),{}n b 成等比数列(公比1q ≠),则数列{}n n a b 的前n 项和可错位相减法求。
课后训练
一 基础题
1.已知等比数列{}n a 的前n 项和31n n S k =∙+,则k = 。
7.在等比数列{}n a 中,若324321,21a S a S =+=+,则q = 。
3.等比数列{}n a 中,37a =,前三项和321S =,则公比q 的值为 。
4.等比数列的前4项和为1,前8项和为17,则这个等比数列的公比为 。
5.在G.P {}n a 中,公比为q ,前n 项和为n S ,9956S =,则3699a a a +++ = 。
6.已知等比数列{a n }中,前n 项和S n =54,S 2n =60,则S 3n =
7.已知{}n a 为等比数列,22a =,516a =,则2222123n a a a a +++⋅⋅⋅+= 。
8.设数列{}n x 满足1ln 1ln n n x x +=+,且121010x x x +++= ,则212230x x x +++ =
9.a ,b ,c 是互不相等的正数成等差数列,x 是a ,b 的等比中项,y 是b ,c 的等比中项,则2x ,2b ,2y 可以组成 .
A .等差数列而非等比数列
B .等比数列而非等差数列
C .既是等差数列又是等比数列
D .既非等差数列又非等比数列
10..等比数列{}n a 中,公比为q ,前n 项和为n S ,若12,,n n n S S S ++成 A.P ,则q = 。
二 提高题
11. 等比数列{}n a 中,11a =,且有偶数项,若其奇数项之和为85,偶数项之和为170,求公比q 及项数。
12.设{}n a 是等差数列,{}n b 是各项都为正数的等比数列,且111a b ==,3521a b +=,
5313a b +=。
(1)求{}n a ,{}n b 的通项公式; (2)求数列n n a b ⎧⎫⎨⎬⎩⎭
的前n 项和n S .
三 能力题
13.设等比数列{}n a 的前n 项和为n S ,则()22223,n n n n n x S S y S S S =+=+的大小关系是
( )
A .x y >
B .x y =
C .x y <
D .不确定
14.已知等比数列{}n a 的首项10a >,公比()()1,00,q ∈-+∞ ,设其前n 项和为n S
(1)求证:0n S >恒成立;
(2)设1223++-=n n n a a b ,记{}n b 的前n 项和为n T ,试比较n S 与n T 的大小。