《创新设计·高考一轮总复习》数学 立体几何 第1讲
- 格式:ppt
- 大小:1.87 MB
- 文档页数:41
第七章 立体几何
第1讲 空间几何体的结构及其三视图和直观图
[考纲解读] 1.认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.
2.能画出简单空间几何体的三视图,并能根据三视图识别几何体,会用斜二测画法画出它们的直观图.(重点、难点)
[考向预测] 从近三年高考情况来看,本讲一直是高考的重点内容之一.预测2021年会一如既往地进行考查,以三视图和直观图的联系与转化为主要命题方向,考查题型有:①根据三视图还原几何体;②根据几何体求体积.试题以客观题形式呈现,难度一般不大,属中档题.
1基础知识过关PART ONE
平行
相等
平行
平行且相等一点
一点
平行四边形三角形梯形
垂直
一点一点
圆矩形等腰三角形等腰梯形
斜二测画法
垂直
平行于坐标轴
不变
一半
正侧俯
正侧正俯侧俯
答案
2经典题型冲关PART TWO
题型一 空间几何体的结构特征
答案
解析
解析
解析
解析
答案
答案
3课时作业PART THREE。
基础巩固题组 (建议用时:40分钟)一、选择题1.(2016·景德镇模拟)已知正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB ,E 为AA 1的中点,则异面直线BE 与CD 1所成角的余弦值为( ) A.1010B.15C.31010D.35解析 以D 为坐标原点,建立空间直角坐标系,如图, 设AA 1=2AB =2,则D (0,0,0),C (0,1,0),B (1,1,0),E (1,0,1),D 1(0,0,2).所以BE →=(0,-1,1),CD 1→=(0,-1,2), 所以cos 〈BE →,CD 1→〉=BE →·CD 1→|BE →|·|CD 1→|=32×5=31010. 答案 C2.正方体ABCD -A 1B 1C 1D 1的棱长为a ,点M 在AC 1上且AM →=12MC →1,N 为B 1B的中点,则|MN →|为( )A.216aB.66aC.156aD.153a解析 以D 为原点建立如图所示的空间直角坐标系D -xyz ,则A ( a ,0,0),C 1(0,a ,a ),N ⎝ ⎛⎭⎪⎫a ,a ,a 2.设M (x ,y ,z ), ∵点M 在AC 1上且AM →=12MC →1,(x -a ,y ,z )=12(-x ,a -y ,a -z )∴x =23a ,y =a 3,z =a 3.得M ⎝ ⎛⎭⎪⎫2a 3,a 3,a 3,∴|MN →|=⎝ ⎛⎭⎪⎫a -23a 2+⎝ ⎛⎭⎪⎫a -a 32+⎝ ⎛⎭⎪⎫a 2-a 32=216 a . 答案 A3.在正方体ABCD -A 1B 1C 1D 1中,点E 为BB 1的中点,则平面A 1ED 与平面ABCD 所成的锐二面角的余弦值为( ) A.12B.23C.33D.22解析 以A 为原点建立如图所示的空间直角坐标系A -xyz ,设棱长为1, 则A 1(0,0,1),E ⎝ ⎛⎭⎪⎫1,0,12,D (0,1,0), ∴A 1D →=(0,1,-1), A 1E →=⎝ ⎛⎭⎪⎫1,0,-12, 设平面A 1ED 的一个法向量为n 1=(1,y ,z ),所以有⎩⎨⎧A 1D →·n 1=0,A 1E →·n 1=0,即⎩⎨⎧y -z =0,1-12z =0,解得⎩⎪⎨⎪⎧ y =2,z =2.∴n 1=(1,2,2).∵平面ABCD 的一个法向量为n 2=(0,0,1), ∴ cos 〈n 1,n 2〉=23×1=23.即所成的锐二面角的余弦值为23. 答案 B4.在正四棱锥S -ABCD 中,O 为顶点在底面上的射影,P 为侧棱SD 的中点,且 SO =OD ,则直线BC 与平面P AC 所成的角是( ) A.30°B.45°C.60°D.90°解析 如图,以O 为原点建立空间直角坐标系O -xyz . 设OD =SO =OA =OB =OC =a .则A (a ,0,0),B (0,a ,0),C (-a ,0,0),P ⎝ ⎛⎭⎪⎫0,-a 2,a 2.则CA→=(2a ,0,0),AP →=⎝ ⎛⎭⎪⎫-a ,-a 2,a 2, CB→=(a ,a ,0),设平面P AC 的一个法向量为n ,设n =(x ,y ,z ),则⎩⎨⎧n ·CA →=0,n ·AP →=0,解得⎩⎪⎨⎪⎧x =0,y =z ,可取n =(0,1,1),则 cos 〈CB →,n 〉=CB →·n |CB →|·|n |=a 2a 2·2=12, ∴〈CB →,n 〉=60°,∴直线BC 与平面P AC 所成的角为90°-60°=30°. 答案 A5.设正方体ABCD -A 1B 1C 1D 1的棱长为2,则点D 1到平面A 1BD 的距离是( ) A.32B.22C.223D.233解析 如图建立坐标系.则D 1(0,0,2),A 1(2,0,2),B (2,2,0),D 1A 1→=(2,0,0),DB →=(2,2,0), 设平面A 1BD 的法向量 n =(x ,y ,z ),则⎩⎨⎧n ·DA 1→=0,n ·DB →=0,∴⎩⎪⎨⎪⎧2x +2z =0,2x +2y =0,令z =1,得n =(-1,1,1). ∴D 1到平面A 1BD 的距离d =|D 1A 1→·n ||n |=23=233.答案 D 二、填空题6.(2016·郑州模拟)在长方体ABCD -A 1B 1C 1D 1中,AB =2,BC =AA 1=1,则D 1C 1与平面A 1BC 1所成角的正弦值为__________.解析 以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系,设n =(x ,y ,z )为平面A 1BC 1的法向量.则n ·A 1B →=0,n ·A 1C 1→=0,即⎩⎪⎨⎪⎧2y -z =0,-x +2y =0,令z =2,则y =1,x =2,于是n =(2,1,2),D 1C 1→=(0,2,0)设所求线面角为α,则sin α=| cos 〈n ,D 1C 1→〉|=13. 答案 137.正△ABC 与正△BCD 所在平面垂直,则二面角A -BD -C 的正弦值为________. 解析 取BC 中点O ,连接AO ,DO .建立如图所示坐标系,设BC =1,则A ⎝⎛⎭⎪⎫0,0,32,B ⎝ ⎛⎭⎪⎫0,-12,0, D ⎝ ⎛⎭⎪⎫32,0,0.∴OA →=⎝ ⎛⎭⎪⎫0,0,32,BA →=⎝⎛⎭⎪⎫0,12,32,BD→=⎝ ⎛⎭⎪⎫32,12,0. 设平面ABD 的法向量为n =(x 0,y 0,z 0),则BA→·n =0,且BD →·n =0,∴y 02+32z 0=0,且32x 0+y 02=0,因此⎩⎪⎨⎪⎧y 0=-3z 0,y 0=-3x 0,取x 0=1,得平面ABD 的一个法向量n =(1,-3,1), 由于OA→=⎝⎛⎭⎪⎫0,0,32为平面BCD 的一个法向量, ∴ cos 〈n ,OA →〉=55,∴ sin 〈n ,OA →〉=255.答案 25 58.如图所示,在三棱柱ABC -A 1B 1C 1中,AA 1⊥底面ABC ,AB =BC =AA 1,∠ABC =90°,点E 、F 分别是棱AB 、BB 1的中点,则直线EF 和BC 1所成的角是__________.解析 以BC 为x 轴,BA 为y 轴,BB 1为z 轴,建立空间直角坐标系.设AB =BC =AA 1=2,则C 1(2,0,2),E (0,1,0),F (0,0,1), 则EF →=(0,-1,1),BC 1→=(2,0,2),∴EF →·BC 1→=2,∴cos 〈EF →,BC 1→〉=22×22=12,∴EF 和BC 1所成的角为60°. 答案 60° 三、解答题9.(2015·安徽卷)如图所示,在多面体A 1B 1D 1-DCBA ,四边形AA 1B 1B ,ADD 1A 1,ABCD 均为正方形,E 为B 1D 1的中点,过A 1,D ,E 的平面交CD 1于F . (1)证明:EF ∥B 1C .(2)求二面角E -A 1D -B 1的余弦值.(1)证明 由正方形的性质可知A 1B 1∥AB ∥DC ,且A 1B 1=AB =DC ,所以四边形A 1B 1CD 为平行四边形,从而B 1C ∥A 1D ,又A 1D 面A 1DE ,B 1C 面A 1DE ,于是B 1C ∥面A 1DE .又B 1C面B 1CD 1.面A 1DE ∩面B 1CD 1=EF ,所以EF ∥B 1C .(2)解 因为四边形AA 1B 1B ,ADD 1A 1,ABCD 均为正方形,所以AA 1⊥AB ,AA 1⊥AD ,AB ⊥AD 且AA 1=AB =AD .以A 为原点,分别以AB →,AD →,AA 1→为x 轴,y 轴和z 轴单位正向量建立如图所示的空间直角坐标系,可得点的坐标A (0,0,0),B (1,0,0),D (0,1,0),A 1(0,0,1),B 1(1,0,1),D 1(0,1,1),而E 点为B 1D 1的中点,所以E 点的坐标为⎝ ⎛⎭⎪⎫12,12,1.设面A 1DE 的法向量n 1=(r 1,s 1,t 1),而该面上向量A 1E →=⎝ ⎛⎭⎪⎫12,12,0,A 1D →=(0,1,-1),由n 1⊥A 1E →.n 1⊥A 1D →得r 1,s 1,t 1应满足的方程组⎩⎪⎨⎪⎧12r 1+12s 1=0,s 1-t 1=0,(-1,1,1)为其一组解,所以可取n 1=(-1,1,1).设面A 1B 1CD 的法向量n 2=(r 2,s 2,t 2),而该面上向量A 1B 1→=(1,0,0),A 1D →=(0,1,-1),由此同理可得n 2=(0,1,1).所以结合图形知二面角E -A 1D -B 1的余弦值为|n 1·n 2||n 1|·|n 2|=23×2=63.10.如图,在四棱锥A -BCDE 中,平面ABC ⊥平面BCDE , ∠CDE =∠BED =90°,AB =CD =2,DE =BE =1,AC = 2. (1)证明:DE ⊥平面ACD ; (2)求二面角B -AD -E 的大小.(1)证明 在直角梯形BCDE 中,由DE =BE =1,CD =2,得BD =BC =2,由AC =2,AB =2,得AB 2=AC 2+BC 2,即AC ⊥BC , 又平面ABC ⊥平面BCDE ,平面ABC ∩平面BCDE =BC ,AC 平面ABC ,从而AC ⊥平面BCDE ,又DE 平面BCDE ,所以AC ⊥DE .又DE ⊥DC ,DC ∩AC =C ,从而DE ⊥平面ACD . (2)解 以D 为原点,分别以射线DE ,DC 为x 轴,y 轴的正半轴,建立空间直角坐标系D -xyz ,如图所示. 由题意知各点坐标如下:D (0,0,0),E (1,0,0),C (0,2,0),A (0,2,2), B (1,1,0).设平面ADE 的法向量为m =(x 1,y 1,z 1), 平面ABD 的法向量为n =(x 2,y 2,z 2),可算得AD→=(0,-2,-2),AE →=(1,-2,-2),DB →=(1,1,0),由⎩⎪⎨⎪⎧m ·AD →=0,m ·AE →=0,即⎩⎨⎧-2y 1-2z 1=0,x 1-2y 1-2z 1=0,可取m =(0,1,-2).由⎩⎪⎨⎪⎧n ·AD →=0,n ·BD →=0,即⎩⎨⎧-2y 2-2z 2=0,x 2+y 2=0,可取n = (1,-1,2).于是|cos 〈m ,n 〉|=|m ·n ||m |·|n |=33·2=32,由题意可知,所求二面角是锐角,故二面角B -AD -E 的大小是π6.能力提升题组 (建议用时:20分钟)11.(2016·西安质检)如图所示,在空间直角坐标系中有直三棱柱ABC -A 1B 1C 1,CA =CC 1=2CB ,则直线BC 1与直线AB 1夹角的余弦值为( ) A.55B.53C.255D.35解析 不妨令CB =1,则CA =CC 1=2,可得O (0,0,0),B (0,0,1),C 1(0,2,0),A (2,0,0),B 1(0,2,1), ∴BC 1→=(0,2,-1),AB 1→=(-2,2,1), ∴cos 〈BC 1→,AB 1→〉=BC 1→·AB 1→|BC 1→||AB 1→|=4-15×9=15=55>0.∴BC 1→与AB 1→的夹角即为直线BC 1与直线AB 1的夹角,∴直线BC 1与直线AB 1夹角的余弦值为55. 答案 A12.在三棱锥P -ABC 中,P A ⊥平面ABC ,∠BAC =90°,D ,E ,F 分别是棱AB ,BC ,CP 的中点,AB =AC =1,P A =2,则直线P A 与平面DEF 所成角的正弦值为( ) A.15B.255C.55D.25解析 以A 为原点,AB ,AC ,AP 所在直线分别为x 轴,y 轴, z 轴建立如图所示的空间直角坐标系,由AB =AC =1,P A =2,得A (0,0,0),B (1,0,0),C (0,1,0),P (0,0,2),D ⎝ ⎛⎭⎪⎫12,0,0,E ⎝ ⎛⎭⎪⎫12,12,0,F ⎝ ⎛⎭⎪⎫0,12,1. ∴P A →=(0,0,-2),DE →=⎝ ⎛⎭⎪⎫0,12,0,DF →=⎝ ⎛⎭⎪⎫-12,12,1. 设平面DEF 的法向量为n =(x ,y ,z ),则由⎩⎨⎧n ·DE →=0,n ·DF →=0得⎩⎪⎨⎪⎧y =0,-x +y +2z =0.取z =1,则n =(2,0,1),设直线P A 与平面DEF 所成的角为θ,则sin θ=|P A →·n ||P A →||n |=55,∴直线P A 与平面DEF 所成角的正弦值为55. 答案 C13.(北师大选修2-1P47习题改编)如图所示,二面角的棱上有A ,B 两点,直线AC ,BD 分别在这个二面角的两个半平面内,且都垂直于AB .已知AB =4,AC =6,BD =8,CD =217,则该二面角的大小为__________. 解析 ∵CD →=CA →+AB →+BD →, ∴|CD →|=(CA→+AB →+BD →)2=36+16+64+2CA →·BD→=116+2CA →·BD→=217.∴CA →·BD →=|CA →|·|BD →|· cos 〈CA→,BD →〉=-24. ∴ cos 〈CA→,BD →〉=-12.又所求二面角与〈CA →,BD →〉互补, ∴所求的二面角为60 °. 答案 60 °14.(2015·广东卷)如图,三角形PDC 所在的平面与长方形ABCD 所在的平面垂直,PD =PC =4,AB =6,BC =3.点E 是CD 边的中点,点F ,G 分别在线段AB ,BC 上,且AF =2FB ,CG =2GB . (1)证明:PE ⊥FG ;(2)求二面角P -AD -C 的正切值; (3)求直线P A 与直线FG 所成角的余弦值.解 在△PCD 中,∵E 为CD 的中点,且PC =PD ,∴PE ⊥CD .又∵平面PCD ⊥平面ABCD ,且平面PCD ∩平面ABCD =CD ,PE 平面PCD ,∴PE ⊥平面ABCD ,取AB 的中点H ,连接EH , ∵四边形ABCD 是长方形,则EH ⊥CD ,如图所示,以E 为原点,EH ,EC ,EP 所在直线分别为x ,y ,z 轴建立空间直角坐标系,∵PD =PC =4,AB =6,BC =3,AF =2FB ,CG =2GB ,∴E (0,0,0),P (0,0,7),F (3,1,0),G (2,3,0),A (3,-3,0),D (0,-3,0),C (0,3,0). (1)证明 ∵EP→=(0,0,7),FG →=(-1,2,0), 且EP →·FG →=(0,0,7)·(-1,2,0)=0, ∴EP→⊥FG →,即EP ⊥FG . (2)∵PE ⊥平面ABCD ,∴平面ABCD 的法向量为EP →=(0,0,7).设平面ADP 的一个法向量为n =(x 1,y 1,z 1), AP→=(-3,3,7),DP →=(0,3,7), 由于⎩⎪⎨⎪⎧AP →·n =0,DP →·n =0,即⎩⎨⎧-3x 1+3y 1+7z 1=0,3y 1+7z 1=0,令z 1=3,则x 1=0,y 1=-7,∴n =(0,-7,3).由图可知二面角P -AD -C 是锐角,设为α,则cos α=⎪⎪⎪⎪⎪⎪⎪⎪n ·EP →|n ||EP →|=3747=34,∴sin α=74,tan α=73.(3)∵AP →=(-3,3,7),FG →=(-1,2,0),设直线P A 与直线FG 所成角为θ, 则cos θ=⎪⎪⎪⎪⎪⎪⎪⎪AP →·FG →|AP →||FG →|=3+69+9+7×5=9525,95∴直线P A与FG所成角的余弦值为25.。
第1讲 空间几何体的结构及其三视图和直观图[考纲解读] 1.认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.2.能画出简单空间几何体的三视图,并能根据三视图识别几何体,会用斜二测画法画出它们的直观图.(重点、难点)[考向预测] 从近三年高考情况来看,本讲一直是高考的重点内容之一.预测2021年会一如既往地进行考查,以三视图和直观图的联系与转化为主要命题方向,考查题型有:①根据三视图还原几何体;②根据几何体求体积.试题以客观题形式呈现,难度一般不大,属中档题.1.多面体的结构特征 名称棱柱棱锥棱台图形底面 互相□01平行且□02相等 多边形互相□03平行 侧棱 □04平行且相等 相交于□05一点,但不一定相等延长线交于□06一点 侧面 形状□07平行四边形 □08三角形 □09梯形 2.旋转体的结构特征名称圆柱圆锥圆台球图形母线互相平行且相等, □01垂直于底面 相交于□02一点 延长线交于□03一点 —轴截 面全等的□04矩形 全等的□05等腰三角形 全等的□06等腰梯形□07圆3.直观图(1)画法:常用□01斜二测画法. (2)规则①原图形中x 轴、y 轴、z 轴两两垂直,直观图中,x ′轴与y ′轴的夹角为45°(或135°),z ′轴与x ′轴(或y ′轴)□02垂直. ②原图形中平行于坐标轴的线段,直观图中仍□03平行于坐标轴.平行于x 轴和z 轴的线段在直观图中保持原长度□04不变,平行于y 轴的线段的长度在直观图中变为原来的□05一半. 4.三视图(1)几何体的三视图包括□01正视图、□02侧视图、□03俯视图,分别是从几何体的正前方、正左方、正上方观察几何体画出的轮廓线.(2)三视图的画法①基本要求:长对正,高平齐,宽相等.②画法规则:□04正侧一样高,□05正俯一样长,□06侧俯一样宽;看不到的线画虚线.1.概念辨析(1)棱柱的侧棱都相等,侧面都是全等的平行四边形.( ) (2)有一个面是多边形,其余各面都是三角形的几何体是棱锥.( ) (3)棱台各侧棱的延长线交于一点.( )(4)夹在圆柱的两个平行截面间的几何体还是旋转体.( ) 答案 (1)× (2)× (3)√ (4)× 2.小题热身(1)如图所示,在三棱台A ′B ′C ′-ABC 中,沿A ′BC 截去三棱锥A ′-ABC ,则剩余的部分是( )A .三棱锥B .四棱锥C .三棱柱D .组合体答案 B解析 剩余的部分是四棱锥A ′-B ′C ′CB .(2)用斜二测画法画一个水平放置的平面图形的直观图为如图所示的一个正方形,则原来的图形是( )答案 A解析由斜二测画法的原理可知.(3)若一个三棱柱的三视图如图所示,其俯视图为正三角形,则这个三棱柱的高和底面边长分别为( )A.2,2 3 B.22,2C.4,2 D.2,4答案 D解析由三视图可知,正三棱柱的高为2,底面正三角形的高为23,故底面边长为4,故选D.(4)如图,长方体ABCD-A′B′C′D′被截去一部分,其中EH∥A′D′,则剩下的几何体是________,截去的几何体是________.答案五棱柱三棱柱题型一空间几何体的结构特征下列结论正确的个数是________.①有两个平面互相平行,其余各面都是平行四边形的多面体是棱柱;②棱锥的侧棱长与底面多边形的边长相等,则此棱锥可能是六棱锥;③有两个平面互相平行,其余各面都是梯形的多面体是棱台;④直角三角形绕其任一边所在直线旋转一周所形成的几何体都是圆锥;⑤若在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线.答案0解析①③④错误,反例见下面三个图.②错误,若六棱锥的所有棱长都相等,则底面多边形是正六边形.由几何图形知,若以正六边形为底面,侧棱长必然要大于底面边长.⑤错误,平行于轴的连线才是母线.识别空间几何体的两种方法(1)定义法:紧扣定义,由已知构建几何模型,在条件不变的情况下,变换模型中的线面关系或增加线、面等基本要素,根据定义进行判定.(2)反例法:通过反例对结构特征进行辨析,要说明一个结论是错误的,只要举出一个反例即可.(2019·青岛模拟)以下命题:①以直角梯形的一腰所在直线为轴旋转一周所得的旋转体是圆台;②圆柱、圆锥、圆台的底面都是圆面;③一个平面截圆锥,得到一个圆锥和一个圆台.其中正确命题的个数为( )A.0 B.1C.2 D.3答案 B解析由圆台的定义可知①错误,②正确.对于命题③,只有平行于圆锥底面的平面截圆锥,才能得到一个圆锥和一个圆台,③错误.题型 二 空间几何体的直观图(2019·桂林模拟)已知正三角形ABC 的边长为a ,那么△ABC 的平面直观图△A ′B ′C ′的面积为( )A.34a 2B.38a 2C.68a 2 D.616a 2 答案 D解析 如图(1)所示的是△ABC 的实际图形,图(2)是△ABC 的直观图.由图(2)可知A ′B ′=AB =a ,O ′C ′=12OC =34a ,在图(2)中作C ′D ′⊥A ′B ′于点D ′,则C ′D ′=22O ′C ′=68a .∴S △A ′B ′C ′=12A ′B ′·C ′D ′=12×a ×68a =616a 2.故选D. 条件探究 将本例中的条件变为“△ABC 的直观图△A 1B 1C 1是边长为a 的正三角形”,则△ABC 的面积为________.答案62a 2解析 如图(1)所示的是△ABC 的直观图,图(2)是△ABC 的实际图形.在图(1)中作C 1D 1∥y 1轴,交x 1轴于点D 1,在图(2)中作CD ⊥x 轴,交x 轴于点D ,设C 1D 1=x ,则CD =2x .在△A 1D 1C 1中,由正弦定理a sin45°=x sin120°,得x =62a ,∴S △ABC =12AB ·CD =12×a ×6a =62a 2.用斜二测画法画直观图的技巧(1)在原图形中与x 轴或y 轴平行的线段在直观图中仍然与x ′轴或y ′轴平行. (2)原图中不与坐标轴平行的直线段可以先画出线段的端点再连线.(3)原图中的曲线段可以通过取一些关键点,作出在直观图中的相应点,然后用平滑曲线连接.(2019·福州调研)已知等腰梯形ABCD ,上底CD =1,腰AD =CB =2,下底AB =3,以下底所在直线为x 轴,则由斜二测画法画出的直观图A ′B ′C ′D ′的面积为________.答案22解析 如图所示,图(1)是等腰梯形ABCD 的实际图形,O 为AB 的中点,图(2)是等腰梯形ABCD 的直观图.在图(2)中作E ′F ⊥x ′轴,交x ′轴于F , 因为OE =22-1=1,所以O ′E ′=12,E ′F =24,则直观图A ′B ′C ′D ′的面积S ′=1+32×24=22.题型 三 空间几何体的三视图角度1 已知几何体识别三视图1.(2018·全国卷Ⅲ)中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是( )答案 A解析观察图形易知卯眼处应以虚线画出,俯视图为,故选A.角度2 已知三视图还原几何体2.(2018·全国卷Ⅰ)某圆柱的高为2,底面周长为16,其三视图如右图.圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为( )A.217 B.2 5C.3 D.2答案 B解析根据圆柱的三视图以及其本身的特征,可以确定点M和点N分别在以圆柱的高为长方形的宽、圆柱底面圆周长的四分之一为长的长方形的对角线的端点处,所以所求的最短路径的长度为42+22=25,故选B.角度3 已知三视图中的部分视图,判断其他视图3.把边长为1的正方形ABCD沿对角线BD折起,使得平面ABD⊥平面CBD,形成的三棱锥C-ABD的正视图与俯视图如图所示,则侧视图的面积为( )A.12B.22C.24D.14答案 D解析由三棱锥C-ABD的正视图、俯视图得三棱锥C-ABD的侧视图为直角边长是22的等腰直角三角形,其形状如图所示,所以三棱锥C -ABD 的侧视图的面积为14.三视图问题的常见类型及解题策略(1)由几何体的直观图求三视图.注意观察方向,注意能看到的部分用实线表示,不能看到的部分用虚线表示.(2)由几何体的三视图还原几何体的形状.要熟悉柱、锥、台、球的三视图,明确三视图的形成原理,结合空间想象将三视图还原为实物图.(3)由几何体的部分视图画出剩余的部分视图.先根据已知的一部分三视图,还原、推测直观图的可能形状,然后再找其剩下部分三视图的可能形状.当然作为选择题,也可将选项逐项代入,再看看给出的部分三视图是否符合.1.如图1所示,是一个棱长为2的正方体被削去一个角后所得到的几何体的直观图,其中DD 1=1,AB =BC =AA 1=2,若此几何体的俯视图如图2所示,则可以作为其正视图的是( )答案 C解析 由直观图和俯视图知,其正视图的长应为底面正方形的对角线长,宽应为正方体的棱长,故排除B ,D ,又正视图中点D 1的射影是B 1,侧棱BB 1是看不见的,在正视图中用虚线表示,所以正视图是C 中的图形.故选C.2.(2019·河北衡水中学调研)如图所示,在正方体ABCD -A 1B 1C 1D 1中,E 为棱BB 1的中点,用过点A ,E ,C 1的平面截去该正方体的上半部分,则剩余几何体的侧视图为( )答案 C解析如图所示,过点A,E,C1的截面为AEC1F,则剩余几何体的侧视图为C中的图形.3.(2017·北京高考)某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为( )A.3 2 B.2 3C.2 2 D.2答案 B解析在正方体中还原该四棱锥,如图所示,可知SD为该四棱锥的最长棱.由三视图可知正方体的棱长为2,故SD=22+22+22=2 3.故选B.组基础关1.某几何体的正视图和侧视图均为如图所示的图形,则在下图的四个图中可以作为该几何体的俯视图的是( )A.①③B.①④C.②④D.①②③④答案 A解析由正视图和侧视图知,该几何体为球与正四棱柱或球与圆柱体的组合体,故①③正确.2.如图,直观图所表示的平面图形是( )A.正三角形B.锐角三角形C.钝角三角形D.直角三角形答案 D解析由直观图可知,其表示的平面图形△ABC中AC⊥BC,所以△ABC是直角三角形.3.日晷是中国古代利用日影测得时刻的一种计时工具,又称“日规”.通常由铜制的指针和石制的圆盘组成,铜制的指针叫做“晷针”,垂直地穿过圆盘中心,石制的圆盘叫做“晷面”,它放在石台上,其原理就是利用太阳的投影方向来测定并划分时刻.利用日晷计时的方法是人类在天文计时领域的重大发明,这项发明被人类沿用达几千年之久.上图是一位游客在故宫中拍到的一个日晷照片,假设相机镜头正对的方向为正方向,则根据图片判断此日晷的侧视图可能为( )答案 D解析因为相机镜头正对的方向为正方向,所以侧视图中圆盘为椭圆,指针上半部分为实线,下半部分为虚线,故选D.4.如图所示,四面体ABCD的四个顶点是长方体的四个顶点(长方体是虚拟图形,起辅助作用),则四面体ABCD的三视图是(用①②③④⑤⑥代表图形)( )A.①②⑥B.①②③C.④⑤⑥D.③④⑤答案 B解析正视图应该是边长为3和4的矩形,其对角线左下到右上是实线,左上到右下是虚线,因此正视图是①,侧视图应该是边长为5和4的矩形,其对角线左上到右下是实线,左下到右上是虚线,因此侧视图是②;俯视图应该是边长为3和5的矩形,其对角线左上到右下是实线,左下到右上是虚线,因此俯视图是③.5.若某几何体的三视图如图所示,则这个几何体的直观图可以是( )答案 D解析由三视图知该几何体的上半部分是一个三棱柱,下半部分是一个四棱柱.故选D.6.(2019·四川省南充高中模拟)在正方体中,M,N,P分别为棱DD1,A1D1,A1B1的中点(如图),用过点M,N,P的平面截去该正方体的顶点C1所在的部分,则剩余几何体的正视图为( )答案 B解析由已知可知过点M,N,P的截面是过正方体棱BB1,BC,CD的中点的正六边形,所以剩余几何体如图所示,其正视图应是选项B.7.用若干块相同的小正方体搭成一个几何体,该几何体的三视图如图所示,则搭成该几何体需要的小正方体的块数是( )A.8 B.7C.6 D.5答案 C解析画出直观图可知,共需要6块.8.如图,点O为正方体ABCD-A′B′C′D′的中心,点E为平面B′BCC′的中心,点F为B′C′的中点,则空间四边形D′OEF在该正方体的各个面上的投影可能是________(填出所有可能的序号).答案①②③解析空间四边形D′OEF在正方体的平面DCC′D′上的投影是①;在平面BCC′B′上的投影是②;在平面ABCD上的投影是③,而不可能出现的投影为④的情况.9.(2019·福州质检)如图,网格纸上小正方形的边长为1,粗线画的是某几何体的三视图,则此几何体各面中直角三角形的个数是________.答案 4解析由三视图可得该几何体是如图所示的四棱锥P-ABCD,由图易知四个侧面都是直角三角形,故此几何体各面中直角三角形有4个.10.如图,一立在水平地面上的圆锥形物体的母线长为 4 m ,一只小虫从圆锥的底面圆上的点P 出发,绕圆锥表面爬行一周后回到点P 处.若该小虫爬行的最短路程为4 2 m ,则圆锥底面圆的半径等于________ m.答案 1解析 把圆锥侧面沿过点P 的母线展开成如图所示的扇形, 由题意知OP =4 m ,PP ′=4 2 m ,则cos ∠POP ′=42+42-4222×4×4=0,且∠POP ′是三角形的内角,所以∠POP ′=π2.设底面圆的半径为r cm ,则2πr =π2×4,所以r =1.组 能力关1.“牟合方盖”(如图1)是我国古代数学家刘徽在研究球的体积的过程中构造的一个和谐优美的几何体.它由完全相同的四个曲面构成,相对的两个曲面在同一个圆柱的侧面上,好似两个扣合(牟合)在一起的方形伞(方盖).其直观图如图2所示,图中四边形是为体现其直观性所作的辅助线,其实际直观图中四边形不存在,当其正视图和侧视图完全相同时,它的正视图和俯视图分别可能是( )A .a ,bB .a ,cC .c ,bD .b ,d答案 A解析 当正视图和侧视图均为圆时,有两种情况,一种正视图为a ,此时俯视图为b ;另一种情况的正视图和俯视图如下图所示.故选A.2.一个几何体的三视图如图所示,在该几何体的各个面中,面积最小的面的面积为( )A .8B .4C .4 3D .4 2答案 D解析 由三视图可知该几何体的直观图如图所示,由三视图特征可知,PA ⊥平面ABC ,DB ⊥平面ABC ,AB ⊥AC ,PA =AB =AC =4,DB =2,则易得S △PAC =S △ABC =8,S △CPD =12,S梯形ABDP=12,S △BCD =12×42×2=42,故选D.3.(2020·江西赣州摸底)某几何体的正视图和侧视图如图1,它的俯视图的直观图是矩形O1A1B1C1,如图2,其中O1A1=6,O1C1=2,则该几何体的侧面积为( )A.48 B.64C.96 D.128答案 C解析由题图2及斜二测画法可知原俯视图为如图所示的平行四边形OABC,设CB与y 轴的交点为D,则易知CD=2,OD=2×22=42,∴CO=CD2+OD2=6=OA,∴俯视图是以6为边长的菱形,由三视图知几何体为一个直四棱柱,其高为4,所以该几何体的侧面积为4×6×4=96.故选C.4.(2019·石家庄质检)一个三棱锥的正视图和俯视图如图所示,则该三棱锥的侧视图可能为( )答案 D解析由题图可知,该几何体为如图所示的三棱锥,其中平面ACD⊥平面BCD.所以该三棱锥的侧视图可能为D项.5.(2018·河南郑州质检)某三棱锥的三视图如图所示,且三个三角形均为直角三角形,则xy的最大值为________.答案64解析由三视图知三棱锥如图所示,底面ABC是直角三角形,AB⊥BC,PA⊥平面ABC,BC=27,PA2+y2=102,(27)2+PA2=x2,因此xy=x102-[x2-272]=x128-x2≤x2+128-x22=64,当且仅当x2=128-x2,即x=8时取等号,因此xy的最大值是64.6.(2019·全国卷Ⅱ)中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为________.答案26 2-1解析先求面数,有如下两种方法.解法一:由“半正多面体”的结构特征及棱数为48可知,其上部分有9个面,中间部分有8个面,下部分有9个面,共有2×9+8=26(个)面.解法二:一般地,对于凸多面体,顶点数(V)+面数(F)-棱数(E)=2(欧拉公式).由图形知,棱数为48的半正多面体的顶点数为24,故由V+F-E=2,得面数F=2+E-V=2+48-24=26.再求棱长.作中间部分的横截面,由题意知该截面为各顶点都在边长为1的正方形上的正八边形ABCDEFGH,如图,设其边长为x,则正八边形的边长即为半正多面体的棱长.连接AF,过H,G分别作HM⊥AF,GN⊥AF,垂足分别为M,N,则AM=MH=NG=NF=22x.又AM+MN+NF=1,即22x+x+22x=1.解得x=2-1,即半正多面体的棱长为2-1.。
第八篇立体几何第1讲空间几何体的结构、三视图和直观图A级||根底演练(时间:30分钟总分值:55分)一、选择题(每题5分,共20分)1.给出以下四个命题:①各侧面都是全等四边形的棱柱一定是正棱柱;②对角面是全等矩形的六面体一定是长方体;③棱锥的侧棱长与底面多边形的边长相等,那么该棱锥可能是正六棱锥;④长方体一定是正四棱柱.其中正确的命题个数是().A.0 B.1 C.2 D.3解析反例:①直平行六面体底面是菱形,满足条件但不是正棱柱;②底面是等腰梯形的直棱柱,满足条件但不是长方体;③假设以正六边形为底面,侧棱长必然要大于底面边长,故③中不能组成正六棱锥;④显然错误,应选A.答案 A2.以下关于几何体的三视图的论述中,正确的选项是().A.球的三视图总是三个全等的圆B.正方体的三视图总是三个全等的正方形C.水平放置的正四面体的三视图都是正三角形D.水平放置的圆台的俯视图是一个圆解析画几何体的三视图要考虑视角,但对于球无论选择怎样的视角,其三视图总是三个全等的圆.答案 A3.(2021·陕西)将正方体(如图(a)所示)截去两个三棱锥,得到图(b)所示的几何体,那么该几何体的侧视图为().解析复原正方体后,将D1,D,A三点分别向正方体右侧面作垂线,D1A的射影为C1B ,且为实线,B1C被遮挡应为虚线.答案 B4.(2021·浙江)假设某几何体的三视图如下列图,那么这个几何体的直观图可以是().解析 A ,B的正视图不符合要求,C的俯视图显然不符合要求,答案选D.答案 D二、填空题(每题5分,共10分)5.如下列图,E、F分别为正方体ABCD-A1B1C1D1的面ADD1A1、面BCC1B1的中|心,那么四边形BFD1E在该正方体的面DCC1D1上的投影是________(填序号).解析B在面DCC1D1上的投影为C,F、E在面DCC1D1上的投影应分别在边CC1和DD1上,而不在四边形的内部,故①③④错误.答案②6.一个几何体的正视图为一个三角形,那么这个几何体可能是以下几何体中的________(填入所有可能的几何体前的编号).①三棱锥;②四棱锥;③三棱柱;④四棱柱;⑤圆锥;⑥圆柱.解析显然,三棱锥、圆锥的正视图可以是三角形;三棱柱的正视图也可以是三角形(把三棱柱放倒,使一侧面贴在地面上,并让其底面面对我们,如下列图);只要形状适宜、摆放适当(如一个侧面正对着观察者的正四棱锥) ,四棱锥的正视图也可以是三角形(当然,不是任意摆放的四棱锥的正视图都是三角形) ,即正视图为三角形的几何体完全有可能是四棱锥;不管四棱柱、圆柱如何摆放,正视图都不可能是三角形(可以验证,随意摆放的任意四棱柱的正视图都是四边形,圆柱的正视图可以是圆或四边形).综上所述,应填①②③⑤.答案①②③⑤三、解答题(共25分)7.(12分):图a是截去一个角的长方体,试按图示的方向画出其三视图;图b是某几何体的三视图,试说明该几何体的构成.解图a几何体的三视图为:图b所示的几何体是上面为正六棱柱,下面为倒立的正六棱锥的组合体.8.(13分)圆锥的底面半径为r,高为h,且正方体ABCD-A1B1C1D1内接于圆锥,求这个正方体的棱长.解如下列图,过内接正方体的一组对棱作圆锥的轴截面,设圆锥内接正方体的棱长为x,那么在轴截面中,正方体的对角面A1ACC1的一组邻边的长分别为x和2x.∵△VA1C1∽△VMN ,∴2x2r=h-xh,∴x=2rh2r+2h.即圆锥内接正方体的棱长为2rh2r+2h.B级||能力突破(时间:30分钟总分值:45分)一、选择题(每题5分,共10分)1.(2021·温州质检)以下列图是一个正方体的展开图,将其折叠起来,变成正方体后的图形是().解析∵在这个正方体的展开图中,与有圆的面相邻的三个面中都有一条直线,当变成正方体后,这三条直线互相平行,∴选B.答案 B2.一个锥体的正视图和侧视图如下列图,下面选项中,不可能是该锥体的俯视图的是().解析选项C不符合三视图中 "宽相等〞的要求.答案 C二、填空题(每题5分,共10分)3.利用斜二测画法得到的:①三角形的直观图一定是三角形;②正方形的直观图一定是菱形;③等腰梯形的直观图可以是平行四边形;④菱形的直观图一定是菱形.以上正确结论的序号是________.解析由斜二测画法的规那么可知①正确;②错误,是一般的平行四边形;③错误,等腰梯形的直观图不可能是平行四边形;而菱形的直观图也不一定是菱形,④也错误.答案①4.图(a)为长方体积木块堆成的几何体的三视图,此几何体共由________块木块堆成;图(b)中的三视图表示的实物为________.图(a)图(b)解析(1)由三视图可知从正面看到三块,从侧面看到三块,结合俯视图可判断几何体共由4块长方体组成.(2)由三视图可知几何体为圆锥.答案4圆锥三、解答题(共25分)5.(12分)正四棱锥的高为 3 ,侧棱长为7 ,求侧面上斜高(棱锥侧面三角形的高)为多少?解如下列图,在正四棱锥S-ABCD中,高OS= 3 ,侧棱SA=SB=SC=SD=7 ,在Rt△SOA中,OA=SA2-OS2=2 ,∴AC=4.∴AB=BC=CD=DA=2 2.作OE⊥AB于E ,那么E为AB中点.连接SE ,那么SE即为斜高,在Rt△SOE中,∵OE=12BC= 2 ,SO= 3 ,∴SE= 5 ,即侧面上的斜高为 5.6.(13分)(1)如图1所示的三棱锥的三条侧棱OA、OB、OC两两垂直,那么该三棱锥的侧视图是图2还是图3?(2)某几何体的三视图如图4 ,问该几何体的面中有几个直角三角形?(3)某几何体的三视图如图5 ,问该几何体的面中有几个直角三角形?解(1)该三棱锥在侧(右)投影面上的投影是一直角三角形,该三棱锥的侧视图应是图2.(2)该几何体是三棱锥,其直观图如下列图,其中OA、OB、OC两两垂直,∴△OAB、△OAC、△OBC都是直角三角形,但△ABC是锐角三角形.设AO=a ,OC=c ,OB=b ,那么AC=a2+c2,BC=c2+b2,AB=a2+b2,∴cos∠BAC=a2a2+b2·c2+a2>0 ,∴∠BAC为锐角.同理,∠ABC、∠ACB也是锐角.综上所述,该几何体的面中共有三个直角三角形.(3)该几何体是三棱锥,其直观图如下列图,其中,AB⊥BC ,AB⊥BD ,BD⊥CD ,∴DC⊥面ABD ,∴DC⊥AD , ∴△ACD也是直角三角形.∴该几何体的面中共有四个直角三角形.。
2021年高考数学一轮复习 第一讲 空间几何体讲练 理 新人教A 版一、多面体的结构特征1.棱柱的侧棱都互相平行,上下底面是全等的多边形.2.棱锥的底面是任意多边形,侧面是有一个公共顶点的三角形.3.棱台可由平行于底面的平面截棱锥得到,其上下底面是相似多边形.(1)正棱柱:侧棱垂直于底面的棱柱叫做直棱柱,底面是正多边形的直棱柱叫做正棱柱.反之,正棱柱的底面是正多边形.侧棱垂直于底面,侧面是矩形.(2)正棱锥:底面是正多边形,顶点在底面的射影是底面正多边形的中心的棱锥叫做正棱锥,特别地,各棱均相等的正三棱锥叫正四面体.反之,正棱锥的底面是正多边形,且顶点在底面的射影是底面正多边形的中心.二、旋转体1、形成3 (1).V 柱体=Sh .(2).V 锥体=13Sh . (3).V 台体=13h (S +SS ′+S ′). (4).V 球=43πR 3(球半径是R ). 求几何体体积的两种重要方法1.割补法:求一些不规则几何体的体积时,常用割补法转化成已知体积公式的几何体进行解决.2.等积法:等积法包括等面积法和等体积法.等积法的前提是几何图形(或几何体)的面积(或体积)通过已知条件可以得到,利用等积法可以用来求解几何图形的高或几何体的高,特别是在求三角形的高和三棱锥的高时,这一方法回避了具体通过作图得到三角形(或三棱锥)的高,而通过直接计算得到高的数值.三、空间几何体的三视图1.三视图的名称 几何体的三视图包括:正视图、侧视图、俯视图. 2.三视图的画法 ①在画三视图时,重叠的线只画一条,挡住的线要画成虚线. ②三视图的正视图、侧视图、俯视图分别是从几何体的正前方、正左方、正上方观察几何体的正投影图. 四、空间几何体的直观图 空间几何体的直观图常用斜二测画法来画,其规则是1.原图形中x 轴、y 轴、z 轴两两垂直,直观图中,x ′轴,y ′轴的夹角为45°或135°,z ′轴与x ′轴和y ′轴所在平面垂直.2.原图形中平行于坐标轴的线段,直观图中仍平行于坐标轴.平行于x 轴和z 轴的线段在直观图中保持原长度不变,平行于y 轴的线段长度在直观图中长度为原来的一半.按照斜二测画法得到的平面图形的直观图,其面积与原图形的面积的关系:S 直观图=24S 原图形,S 原图形=22S 直观图. 基础自测1.(xx·湖南高考)已知正方体的棱长为1,其俯视图是一个面积为1的正方形,侧视图是一个面积为2的矩形,则该正方体的正视图的面积等于( )A.32 B .1 C.2+12D. 2 【解析】 由于该正方体的俯视图是面积为1的正方形,侧视图是一个面积为2的矩形,因此该几何体的正视图是一个长为2,宽为1的矩形,其面积为 2.【答案】 D2.(xx·陕西高考)某几何体的三视图如图7-2-2所示,则其表面积为________.图7-2-2【解析】 由三视图可知,该几何体为一个半径为1的半球,其表面积为半个球面面积与截面面积的和,即12×4π+π=3π. 【答案】 3π3.(xx·辽宁高考)某几何体的三视图如图7-2-3所示,则该几何体的体积是________.图7-2-3【解析】 由三视图可知该几何体是一个圆柱内部挖去一个正四棱柱,圆柱底面圆半径为2,高为4,故体积为16π;正四棱柱底面边长为2,高为4,故体积为16,故题中几何体的体积为16π-16.考点一空间几何体的三视图例(xx·四川高考)一个几何体的三视图如图7-1-4所示,则该几何体的直观图可以是( )图7-1-4【解析】由俯视图是圆环可排除A,B,C,进一步将已知三视图还原为几何体,可得选项D.【答案】 D空间几何体的三视图问题的求解关键(1)形状的确定:三视图与空间几何体的相互转化是解决这类问题的常用方法.(2)大小的确定:根据三视图的大小可确定几何体的大小,由几何体的大小也可确定出三视图的大小.考点二空间几何体的表面积与体积例 1、如图7-2-4是一个几何体的三视图,根据图中数据,可得该几何体的表面积是( )图7-2-4A.9πB.10πC.11πD.12π【尝试解答】从题中三视图可以看出该几何体是由一个球和一个圆柱体组合而成的,其表面积为S=4π×12+π×12×2+2π×1×3=12π.故选D.【答案】D方法与技巧 1.解答本题的关键是根据三视图得到几何体的直观图,弄清几何体的组成.2.在求多面体的侧面积时,应对每一侧面分别求解后再相加,对于组合体的表面积应注意重合部分的处理.3.以三视图为载体考查几何体的表面积,关键是能够对给出的三视图进行恰当的分析,从三视图中发现几何体中各元素间的位置关系及数量关系.2、[xx·辽宁卷] 某几何体三视图如图12所示,则该几何体的体积为( )图12A .8-π4B .8-π2C .8-πD .8-2π 答案:C [解析] 根据三视图可知,该几何体是正方体切去两个体积相等的圆柱的四分之一后余下的部分,故该几何体体积V =23-12×π×12×2=8-π. 跟踪练习 [xx·天津卷] 一个几何体的三视图如图12所示(单位:m),则该几何体的体积为________m 3.答案:20π3[解析] 由三视图可知,该几何体为圆柱与圆锥的组合体,其体积V =π×12×4+13π×22×2=20π3. 考点三 多面体与球例 [xx·全国卷] 正四棱锥的顶点都在同一球面上.若该棱锥的高为4,底面边长为2,则该球的表面积为( )A.81π4 B .16π C .9π D.27π4 10.A [解析] 如图所示,因为正四棱锥的底面边长为2,所以AE =12AC = 2.设球心为O ,球的半径为R ,则OE =4-R ,OA =R .又因为△AOE 为直角三角形,所以OA 2=OE 2+AE 2,即R 2=(4-R )2+2,解得R =94,所以该球的表面积S =4πR 2=4π⎝ ⎛⎭⎪⎫942=81π4.跟踪练习(xx 新课标全国,5a ,顶点都在一个球面上,则该球的表面积为( )A .πa 2 B.73πa 2 C.113πa 2 D .5πa 2 解析:三棱柱如图所示,由题意可知:球心在三棱柱上、下底面的中心O 1、O 2的连线的中点O 处,连接O 1B 、O 1O 、OB ,其中OB 即为球的半径R ,由题意知:O 1B =23×3a 2=3a 3, 所以半径R 2=(a 2)2+(3a 3)2=7a 212, 所以球的表面积是S =4πR 2=7πa 23. 答案:B。