高等数学(本科少学时类型)第三版下册试卷3
- 格式:doc
- 大小:94.00 KB
- 文档页数:2
一、判断题:(对的划“√”,错的划“Ⅹ”,每题1分共14分)1、 二元函数f 在P 点可微,则f 在P 点连续。
2、 二元函数f 在P 点的偏导数存在,则f 在P 点可微。
3、 },|),{(d y c b x a y x D ≤≤≤≤=,)()(y g x f ⋅在D 上可积,则等式⎰⎰⎰⎰∙=dcb aDdy y g dx x f dxdy y g x f )()()()(成立。
4、 若),(lim 00y x f y y x x →→存在,则),(lim 00y x f y y x x →→和),(lim lim 00y x f x x y y →→一定相等。
5、 0=⋅⇔⊥,其中,为两个向量。
6、 方向向量l 的方向余弦为}cos ,{cos βα,),(y x f 在0P ),(00y x 的偏导数存在,则βαcos cos 0p p p yf xf lf ∂∂+⋅∂∂=∂∂。
7、 三个向量的混合积的绝对值就是以这三个向量为邻边的平行六面体的体积。
8、 两个向量的向量积就是以这两个向量为邻边的平行四边形的面积。
9、 0P 是函数),(y x f 的极值点,则0P 一定是函数),(y x f 的驻点。
10、级数∑∞=1n n a 收敛,其中0>n a ,则1lim1<=+∞→l a a nn n 成立。
11、 微分方程02)(2=+'-'+x y y y x y 是二阶微分方程。
12、)(x f 是以π2为周期的连续的奇函数,则它的傅立叶级数展开式是余弦级数。
13、 级数∑∞=1n na收敛,则级数∑∞=12n na一定收敛。
14、幂级数∑∞=1n nnx 的收敛域为)1,1[-。
二、计算题(1)(每小题4分共8分)1.3),(,2,5π===Λb a b a ,求:2)32(b a -2. 设)(x f 是周期为π2的周期函数,它在区间),[ππ-上定义为⎩⎨⎧<<+≤≤--=)0(,1)0(,2)(2ππx x x x x f ,求)(x f 的傅立叶级数的和函数)(x S 。
高等数学(本科少学时类型)同济第三、四版课后习题答案选解1第一章函数与极限1.1函数P.17习题1.11..005.0:01.0;05.0:1.0,222,1),,1(<=<=<<-<-∈δεδεεδδδx x U x 1..3.下列函数是否为同一函数?为什么?(1)2()2ln ()ln f x x x x j ==与;(2)()f x =()x x j =;(2)(3)()f x =与()g x x =;(4)()f x =与()sin g x x =;解:(1)否;因为定义域不同;(2)否;因为对应关系不同;(2)否;因为函数的定义域不同;(3)是;因为定义域和对应关系及值域都相同;(4)否;因为对应关系及值域都相同;4.求下列函数的定义域:(1)1y x =(2)2232x y x x =-+;(3)arcsin(3)y x =-;(4)1arctan y x =;(5)ln(1)y x =+;(6)1x y e =;解:(1)要使1y x=有意义,需使20,10x x ¹-³故函数的定义域为[-1,0)[(0,1].(2)要使2232x y x x =-+有意义,需使2320x x -+¹故函数的定义域为(-,-2)(-2,1)[1,+.) (3)要使arcsin(3)y x =-有意义,需使31x -£故函数的定义域为[2,4].(4)要使1arctan y x=有意义,需使30,0x x ->¹故函数的定义域为(-,0)(0,3].¥(5)要使ln(1)y x =+有意义,需使10x +>故函数的定义域为+).(1,-¥(6)要使1xy e =有意义,需使0x ≠故定义域为(,0)(0,)-∞+∞ .5.6.7.8.9.10.下列函数中哪些是偶函数,哪些是奇函数,哪些是非奇函数又非偶函数?(1)22(1)y x x =-;(2)233y x x =-;(3)(1)(1)y x x x =-+;(4)2x xa a y -+=;(5)2x xa a y --=;(6)sin cos 1y x x =-+;解:(1)按运算:偶函数与偶函数的和差积仍是偶函数;也可以按定义判定;(2)定义域对称,但()();()()f x f x f x f x -¹-¹-所以是非奇非偶函数;(3)按运算:奇函数与奇函数的积是偶函数;奇函数与偶函数的积是奇函数;所以是奇函数;也可以按定义判定;(4)定义域对称,()()f x f x -=所以函数是偶函数;(5)定义域对称,()()f x f x -=-所以函数是奇函数;(6)定义域对称,但()();()()f x f x f x f x -¹-¹-所以是非奇非偶函数;11.设下面所考虑的函数都是定义在对称区间(,)l l -内的,证明:(1)两个偶函数的和是偶函数;两个奇函数的和是奇函数;(2)两个偶函数的乘积是偶函数,两个奇函数的乘积是偶函数,偶函数与奇函数的乘积是奇函数。
高等数学(下册)考试试卷(一)、填空题(每小题 3分,共计24分)1、 z=<log a (x 2 y 2)(a 0)的定义域为 D = 重积分ln(x 2 y 2 )dxdy 的符号为|x| |y| 1皿八 皿…、…, x (t )4、设曲线L 的参数方程表示为y (t )5、设曲面习2-入一y 9介于z(x 2的和为n 1n(n 1)二、选择题(每小题 2分,共计16分)1、二元函数z f (x, y )在(x 0,y 0)处可微的充分条件是(f (x, y)在(X o ,y o )处连续;3、由曲线 y ln x 及直线x y e 1,1所围图形的面积用二重积分表示6、微分方程 dy dxy taM 的通解为 x x7、方程y(4)4y0的通解为(C) z f x (x 0,y °) x f y (x 0,y °) y 当 v( x)2 ( y)2 。
时,是无穷小;(D) 12、设uz f x (x 0,y °) hmy 0(x)2yf(-) xf(Y),其中x f y (x 0,y 。
)y (y )2f 具有一阶连续导数,0。
2mU则x22y —U 等于((A)xy x y; (B) x;(C) y ;x (D)0 。
y3、设 :2x22y z 1, z0,则三重积分IzdV 等于( )f x (x ,y ) , f y (x, y )在(X 0, y o )的某邻域内存在;2、x ),则弧长元素ds分的外侧,则1)ds (B)(A) 4o 2do 2d1r 3sin cos dr ;(A)方程xy 2y x 2y 0是三阶微分方程;(B)方程y — x — ysin x 是一阶微分方程;dx dx(C) 方程(x 2 2xy 3)dx (y 2 3x 2y 2)dy 。
是全微分方程; (D)方程 曳 1x 宣是伯努利方程。
dx 2 x7、已知曲线y y(x)经过原点,且在原点处的切线与直线 2x y 6 0平行,而y(x)(B)典 °d ;「2sin dr ;2 (C) d1 3 .r sincos dr ; (D)1 3.r sincos dr 。
高等数学下册试题库一、选择题(每题4分,共20分)1. 已知A (1,0,2), B (1,2,1)是空间两点,向量 的模是:( A ) A )5 B ) 3 C ) 6 D )9解 AB ={1-1,2-0,1-2}={0,2,-1},||=5)1(20222=-++. 2. 设a ={1,-1,3}, b ={2,-1,2},求c =3a -2b 是:( B )A ){-1,1,5}.B ) {-1,-1,5}.C ) {1,-1,5}.D ){-1,-1,6}.解 (1) c =3a -2b =3{1,-1,3}-2{2,-1,2}={3-4,-3+2,9-4}={-1,-1,5}.3. 设a ={1,-1,3}, b ={2, 1, -2},求用标准基i , j , k 表示向量c=a-b ; ( A ) A )-i -2j +5k B )-i -j +3k C )-i -j +5k D )-2i -j +5k解c ={-1,-2,5}=-i -2j +5k .4. 求两平面032=--+z y x 和052=+++z y x 的夹角是:(C )A )2πB )4πC )3π D )π 解 由公式(6-21)有21112)1(211)1(1221c o s 2222222121=++⋅-++⨯-+⨯+⨯=⋅⋅=n n n n α,因此,所求夹角321arccos πα==.5. 求平行于z 轴,且过点)1,0,1(1M 和)1,1,2(2-M 的平面方程.是:(D ) A )2x+3y=5=0 B )x-y+1=0 C )x+y+1=0 D )01=-+y x .解 由于平面平行于z 轴,因此可设这平面的方程为 0=++D By Ax 因为平面过1M 、2M 两点,所以有⎩⎨⎧=+-=+020D B A D A解得D B D A -=-=,,以此代入所设方程并约去)0(≠D D ,便得到所求的平面方程01=-+y x6.微分方程()043='-'+''y y y x y xy 的阶数是( D )。
高数下考试题和答案一、选择题(每题4分,共20分)1. 函数f(x)=x^3-3x+1在x=0处的导数为()。
A. 0B. 1C. -1D. 3答案:B2. 曲线y=x^2+2x-3的拐点坐标为()。
A. (-1, -2)B. (1, -2)C. (-1, -4)D. (1, 0)答案:A3. 函数y=e^x的不定积分为()。
A. xe^x + CB. e^x + CC. e^x - x + CD. x^2e^x + C答案:B4. 计算定积分∫(0,1) x^2 dx的值为()。
A. 1/3B. 1/2C. 1/4D. 1/6答案:B5. 函数y=x^2-4x+3的极值点为()。
A. x=1B. x=2C. x=3D. x=4答案:B二、填空题(每题4分,共20分)6. 函数f(x)=x^2-4x+3的最小值为________。
答案:-17. 计算定积分∫(-1,1) e^(-x^2) dx的值约为________。
答案:1.462658. 函数y=ln(x)的导数为________。
答案:1/x9. 函数y=x^3-3x^2+2x的二阶导数为________。
答案:6x-610. 计算定积分∫(0,π) sin(x) dx的值为________。
答案:2三、计算题(每题10分,共30分)11. 计算不定积分∫(x^2-2x+1) dx。
解:∫(x^2-2x+1) dx = (1/3)x^3 - x^2 + x + C12. 求函数y=x^3-3x+2在x=1处的切线方程。
解:首先求导数y'=3x^2-3,代入x=1得y'|_{x=1}=0,切线斜率为0。
切点为(1,0),因此切线方程为y=0。
13. 计算定积分∫(0,2) (x^2-2x+1) dx。
解:∫(0,2) (x^2-2x+1) dx = [(1/3)x^3 - x^2 + x](0,2) = (8/3 - 4 + 2) - (0) = 2/3四、应用题(每题10分,共30分)14. 一个物体从高度h=100米处自由落下,忽略空气阻力,求物体落地时的速度v。
1、求函数29x y -=的定义域 解:092≥-x解得:33≤≤-x2、求函数x x y 53++=的定义域 解:3+X>=0, 解得: X>=-3 X.>=05X>=0 X>=03函数)2)(3(-+=x x y 的定义域解:(X+3)(X-2)>=0 解得:X ≤-3,X ≥24函数213--=x x y 的定义域 解: 3X-1>=0 解得: X ≥31 2.,231><≤x x X-2≠0 X ≠25、求函数211x xy --=的定义域 解: X ≠0 解得: X ≠0 012≥-x 11≤≤-x6、求函数212--=x x y 的定义域解:022>--x x 解得;x<-1,x>27、求极限237135lim 424+-+-∞→x x x x x =5/7 12、求极限3711129lim 2436+-+-∞→x x x x x = ∞ 13、求极限3711127lim 2523+-+-∞→x x x x x =0 14、求极限xx x 1sinlim 0→=1 15、求极限x x x 1sin lim ∞→=∞16、求极限x x x )51(lim -∞→=e 5- 17、求极限x x x 10)31(lim -→=e 3-18、求极限x x x3)21(lim -∞→=e 6- 19、求极限xx x )1ln(lim 0+→ =1 20、求极限ax a x a x --→sin sin lim =cos a 21、、求极限)1311(lim 31x x x ---→=1- 22、5)(0='x f ,则h x f h x f h )()2(lim000-+→=10 23、3)2(='f ,则h f h f h )2()52(lim0--→=-15 24、函数x e y 5=,求y y ''',,)0(),0(y y '''y’=e x 55 y ’’ =e x 525y ’(0)=5 y ’’(0)=25 25、函数)13(cos 2+=x y ,求dy y ,',y’=-6COS(3X+1)SIN(3X+1) dy= -6cos(3x+1)sin(3x+1)dx26、函数)1(sin 22+=x y ,求dy y ,'y’ =4XSIN(x 2+1)COS(x 2+1) dy=4xsin(x 2+1)cos(x^2+1)dx 27、函数)35(tan 22+=x y ,求dy y ,'y’=20xtan(x 25+3)sec^2(x 25+3) dy=20xtan(5x^2+3)sec^2(5x^2+3)dx 28、函数n x y =,求)1(+n yy’=nx^(n-1)y ’’=n(n-1)x^(n-2)y ’’’=n(n-1)(n-2)x^(n-3)y(4)=n(n-1)(n-2)(n-3)x^(n-4)...y(n)=n(n-1)(n-2)(n-3)(n-4)(n-5)…….1=n!y(n+1)=029、求由方程0333=-+xy y x 所确定的隐函数的导数dxdy x y dx dy y x 333322--+dx dy =0 3y 2dx dy -3x dx dy =3y-3x 2 x y dx dy y x 333322--==xy y x --2230、求由方程xy e xy =所确定的隐函数的导数dxdy e e e e e xy xy xy xy xy x x yy dx dy y y x x dxdy dxdy x y dx dy x y --=-=-+=+)()( 31、求由方程y xe y +=1所确定的隐函数的导数dxdy )1('x y dx dy dx dy x e ee y y y y +=+= 32、用对数求导法求0,sin >=x x y x 的导数。
高等数学下考试题库(附答案) 高等数学》试卷1(下)一、选择题(3分×10)1.点M1(2,3,1)到点M2(2,7,4)的距离M1M2=().A.3B.4C.5D.62.向量a=-i+2j+k,b=2i+j,则有().A.a∥bB.a⊥bC.a,b=D.a,b=3.函数y=2-x^2-y^2+1/x+y-12/2+y^2的定义域是().A.{(x,y)|1<x<2,1≤x^2+y^2≤2}B.{(x,y)|x,y<0}C.{(x,y)|1<x≤2,2+y^2<2}D.{(x,y)|2+y^2<x}4.两个向量a与b垂直的充要条件是().A.a·b=0B.a×b=0C.a-b=0D.a+b=05.函数z=x+y-3xy的极小值是().A.2B.-2C.1D.-16.设z=xsiny,则∂z/∂y|(π/4,3/4)=().A.2/√2B.-2/√2C.2D.-27.若p级数∑n=1∞pn收敛,则().A.p1 D.p≥18.幂级数∑n=1∞xn/n的收敛域为().A.[-1,1]B.(-1,1)C.[-1,1)D.(-1,1]9.幂级数∑n=2∞x^n/(n-1)在收敛域内的和函数是().A.1/(1-x)B.2/(1-x)^2C.2/(1+x)D.1/(1+x)10.微分方程xy'-ylny=0的通解为().A.y=cxB.y=e^xC.y=cxe^xD.y=ex二、填空题(4分×5)1.一平面过点A(1,2,3)且垂直于直线AB,其中点B(2,-1,1),则此平面方程为______________________.2.函数z=sin(xy)的全微分是______________________________.3.设z=xy-3xy^2+1,则(∂^2z)/(∂x∂y)|3/2=-___________________________.三、计算题(5分×6)4.1.设z=esinv,而u=xy,v=x+y,求u∂z/∂x-∂z/∂y.2.已知隐函数z=z(x,y)由方程x^2+y^2+z^2=1确定,求∂z/∂x.3.设f(x,y)=x^2y-xy^2,求f在点(1,1)处的方向导数沿向量i+j的值.4.设z=f(x^2+y^2),其中f(u)在u=1处可导,求∂z/∂x|P,其中P为曲线x^2+y^2=1,z=1上的点.5.设z=ln(x+y)cos(x-y),求∂^2z/∂x^2-2∂^2z/∂x∂y+∂^2z/∂y^2.6.设f(x,y)在点(0,0)处可微,且f(0,0)=0,证明:∂f/∂x和∂f/∂y在点(0,0)处连续.1.已知函数f(x)在区间[0,1]上连续,且f(0)=0,f(1)=1,则方程f(x)=0在区间(0,1)内至少有()个实根。
《高等数学》试卷1〔下〕一.选择题〔3分⨯10〕1.点1M ()1,3,2到点()4,7,22M 的距离=21M M 〔 〕.A.3B.4C.5D.62.向量j i b k j i a+=++-=2,2,则有〔 〕.A.a ∥bB.a ⊥bC.3,π=b aD.4,π=b a3.函数1122222-++--=y x y x y 的定义域是〔 〕.A.(){}21,22≤+≤y x y x B.(){}21,22<+<y x y xC.(){}21,22≤+<y xy x D (){}21,22<+≤y x y x4.两个向量a 与b垂直的充要条件是〔 〕.A.0=⋅b aB.0 =⨯b aC.0 =-b aD.0 =+b a5.函数xy y x z 333-+=的极小值是〔 〕. A.2 B.2- C.1 D.1- 6.设y x z sin =,则⎪⎭⎫ ⎝⎛∂∂4,1πyz =〔 〕.A.22B.22-C.2D.2-7.若p 级数∑∞=11n p n 收敛,则〔 〕. A.p 1< B.1≤p C.1>p D.1≥p8.幂级数∑∞=1n nnx 的收敛域为〔 〕.A.[]1,1- B ()1,1- C.[)1,1- D.(]1,1-9.幂级数nn x ∑∞=⎪⎭⎫⎝⎛02在收敛域内的和函数是〔 〕.A.x -11 B.x -22 C.x -12 D.x-21 10.微分方程0ln =-'y y y x 的通解为〔 〕.A.xce y = B.xe y = C.xcxe y = D.cxe y =二.填空题〔4分⨯5〕1.一平面过点()3,0,0A 且垂直于直线AB ,其中点()1,1,2-B ,则此平面方程为______________________.2.函数()xy z sin =的全微分是______________________________.3.设13323+--=xy xy y x z ,则=∂∂∂yx z2_____________________________. 4.x+21的麦克劳林级数是___________________________. 三.计算题〔5分⨯6〕1.设v e z usin =,而y x v xy u +==,,求.,yz x z ∂∂∂∂ 2.已知隐函数()y x z z ,=由方程05242222=-+-+-z x z y x 确定,求.,yz x z ∂∂∂∂ 3.计算σd y x D⎰⎰+22sin ,其中22224:ππ≤+≤y x D . 4.求两个半径相等的直交圆柱面所围成的立体的体积〔R 为半径〕.四.应用题〔10分⨯2〕1.要用铁板做一个体积为23m 的有盖长方体水箱,问长、宽、高各取怎样的尺寸时,才能使用料最省? .试卷1参考答案一.选择题 CBCAD ACCBD 二.填空题1.0622=+--z y x .2.()()xdy ydx xy +cos .3.19622--y y x .4.()n n n n x ∑∞=+-0121.5.()xex C C y 221-+= .三.计算题 1.()()[]y x y x y e xzxy +++=∂∂cos sin ,()()[]y x y x x e y z xy +++=∂∂cos sin . 2.12,12+=∂∂+-=∂∂z yy z z x x z . 3.⎰⎰=⋅πππρρρϕ202sin d d 26π-.4.3316R . 5.x xe ey 23-=.四.应用题1.长、宽、高均为m 32时,用料最省.2..312x y =《高数》试卷2〔下〕一.选择题〔3分⨯10〕1.点()1,3,41M ,()2,1,72M 的距离=21M M 〔 〕. A.12 B.13 C.14 D.152.设两平面方程分别为0122=++-z y x 和05=++-y x ,则两平面的夹角为〔 〕. A.6π B.4π C.3π D.2π 3.函数()22arcsin yx z +=的定义域为〔 〕.A.(){}10,22≤+≤y x y xB.(){}10,22<+<y x y x C.()⎭⎬⎫⎩⎨⎧≤+≤20,22πy x y x D.()⎭⎬⎫⎩⎨⎧<+<20,22πy x y x 4.点()1,2,1--P 到平面0522=--+z y x 的距离为〔 〕. A.3 B.4 C.5 D.6 5.函数22232y x xy z --=的极大值为〔 〕. A.0 B.1 C.1- D.216.设223y xy x z ++=,则()=∂∂2,1xz 〔 〕.A.6B.7C.8D.9 7.若几何级数∑∞=0n nar是收敛的,则〔 〕.A.1≤rB.1≥rC.1<rD.1≤r8.幂级数()nn xn ∑∞=+01的收敛域为〔 〕.A.[]1,1-B.[)1,1-C.(]1,1-D. ()1,1- 9.级数∑∞=14sin n n na是〔 〕. A.条件收敛 B.绝对收敛 C.发散 D.不能确定二.填空题〔4分⨯5〕1.直线l 过点()1,2,2-A 且与直线⎪⎩⎪⎨⎧-==+=t z t y t x 213平行,则直线l 的方程为__________________________.2.函数xye z =的全微分为___________________________.3.曲面2242y x z -=在点()4,1,2处的切平面方程为_____________________________________.三.计算题〔5分⨯6〕1.设k j b k j i a32,2+=-+=,求.b a ⨯2.设22uv v u z -=,而y x v y x u sin ,cos ==,求.,y z x z ∂∂∂∂ 3.已知隐函数()y x z z ,=由233=+xyz x 确定,求.,yz x z ∂∂∂∂ 4.如图,求球面22224a z y x =++与圆柱面ax y x 222=+〔0>a 〕所围的几何体的体积. 四.应用题〔10分⨯2〕 1.试用二重积分计算由x y x y 2,==和4=x 所围图形的面积.试卷2参考答案一.选择题 CBABA CCDBA. 二.填空题1.211212+=-=-z y x . 2.()xdy ydx exy+.3.488=--z y x .4.()∑∞=-021n n n x . 5.3x y =. 三.计算题1.k j i238+-.2.()()()y y x y y y y x yz y y y y x x z 3333223cos sin cos sin cos sin ,sin cos cos sin +++-=∂∂-=∂∂ . 3.22,z xy xz y z z xy yz x z +-=∂∂+-=∂∂. 4.⎪⎭⎫ ⎝⎛-3223323πa . 5.x xe C eC y --+=221.四.应用题 1.316. 2. 00221x t v gt x ++-=. 《高等数学》试卷3〔下〕一、选择题〔本题共10小题,每题3分,共30分〕 2、设a=i+2j-k,b=2j+3k,则a 与b 的向量积为〔 〕 A 、i-j+2k B 、8i-j+2k C 、8i-3j+2k D 、8i-3i+k 3、点P 〔-1、-2、1〕到平面x+2y-2z-5=0的距离为〔 〕 A 、2 B 、3 C 、4 D 、5 4、函数z=xsiny 在点〔1,4π〕处的两个偏导数分别为〔 〕 A 、,22,22 B 、,2222- C 、22-22- D 、22-,225、设x 2+y 2+z 2=2Rx,则yzx z ∂∂∂∂,分别为〔 〕 A 、z y z R x --, B 、z y z R x ---, C 、zyz R x ,-- D 、zyz R x ,- 6、设圆心在原点,半径为R,面密度为22y x +=μ的薄板的质量为〔 〕〔面积A=2R π〕A 、R 2AB 、2R 2AC 、3R 2AD 、A R 221 7、级数∑∞=-1)1(n nnn x 的收敛半径为〔 〕A 、2B 、21C 、1D 、3 8、cosx 的麦克劳林级数为〔 〕A 、∑∞=-0)1(n n)!2(2n x n B 、∑∞=-1)1(n n )!2(2n x n C 、∑∞=-0)1(n n )!2(2n x n D 、∑∞=-0)1(n n)!12(12--n x n二、填空题〔本题共5小题,每题4分,共20分〕 1、直线L 1:x=y=z 与直线L 2:的夹角为z y x =-+=-1321___________. 直线L 3:之间的夹角为与平面062321221=-+=-+=-z y x zy x ____________. 2、〔0.98〕2.03的近似值为________,sin100的近似值为___________. 3、二重积分⎰⎰≤+Dy x D d 的值为1:,22σ___________. 4、幂级数的收敛半径为∑∞=0!n nx n __________,∑∞=0!n nn x 的收敛半径为__________. 三、计算题〔本题共6小题,每小题5分,共30分〕2、求曲线x=t,y=t 2,z=t 3在点〔1,1,1〕处的切线与法平面方程.3、计算⎰⎰===Dx y x y D ,xyd 围成及由直线其中2,1σ.4、问级数∑∞=-11sin )1(n n?,?n 收敛则是条件收敛还是绝对若收敛收敛吗 5、将函数f<x>=e 3x 展成麦克劳林级数四、应用题〔本题共2小题,每题10分,共20分〕 1、求表面积为a 2而体积最大的长方体体积.参考答案一、选择题1、D2、C3、C4、A5、B6、D7、C8、A9、B 10,A 二、填空题 1、218arcsin,182cosar 2、0.96,0.17365 3、л 4、0,+∞ 5、ycx cey x 11,22-== 三、计算题2、解:因为x=t,y=t 2,z=t 3, 所以x t =1,y t =2t,z t =3t 2, 所以x t |t=1=1, y t |t=1=2, z t |t=1=3 故切线方程为:312111-=-=-z y x 法平面方程为:〔x-1〕+2<y-1>+3<z-1>=0 即x+2y+3z=63、解:因为D 由直线y=1,x=2,y=x 围成, 所以 D :1≤y ≤2y ≤x ≤2 故:⎰⎰⎰⎰⎰=-==212132811)22(][dy y y dy xydx xyd yDσ4、解:这是交错级数,因为。
《大学数学(三)》试题(2)一.单项选择(每小题2分,共10分) 1.下列级数中为条件收敛的是( )。
(A )211(1)nn n+∞=-∑ (B )11(1)nn n+∞=-∑ (C )1(43)(1)5nnnn i +∞=+-∑ (D )211(1)tan()nn n+∞=-∑2.设[]()()F f t ω=F ,则()F ω'=[]()()f t F 。
(A )j t - (B )j t (C )j ω (D )j ω- 3.z =∞为函数1()cos f z z=的( )。
(A )一级极点 (B)四级极点 (C) 本性奇点 (D)可去奇点 4.积分+02(3)-sin t et dt ∞⎰=( )。
(A )313(B )313- (C )213(D )385.方程4860z z -+=在13z <<内的根的数目为( )。
(A )1 (B )2 (C )3 (D )4 二.填空(每小题2分,共10分) 1.函数sin ()1zz f z e =-的极点z = 。
2.留数4R e s ,1zz ⎡⎤∞⎢⎥⎣⎦-= 。
3.设1,02()122,12x x f x x x ⎧≤≤⎪⎪=⎨⎪-<<⎪⎩在[]01,内展开为余弦级数,其和函数为()S x ,则7()4S = 。
4.+-(+)sin 2t t dt πδ∞∞⎰=。
5.实函数2x在x =处的Taylor 展开式是2x= 。
三.计算题(每小题10分,共30分)1.求幂级数1(1)(1)n n n x +∞=+-∑的收敛区间与和函数()S x 。
2.设C 为2z =的正向,求积分31(sin)6(1)CzeI z dz z z z =+--⎰3.计算实积分222(1)xI dx x +∞=+⎰。
四、计算题(每小题9分,共27分) 1.将21()(1)f z z z =+分别在011z ||<+<与1z <<+∞内展开成Laurent 级数。
高等数学下考试题库及答案一、单项选择题(每题4分,共20分)1. 函数f(x)=x^2+3x-4的零点个数是()。
A. 0B. 1C. 2D. 3答案:C2. 曲线y=e^x与y=ln x的交点个数是()。
A. 0B. 1C. 2D. 3答案:B3. 函数f(x)=x^3-3x+1的单调递增区间是()。
A. (-∞, +∞)B. (-∞, 1)C. (1, +∞)D. (-∞, 1)∪(1, +∞)答案:C4. 函数f(x)=x^2-4x+3的极小值是()。
A. 0B. 1C. 2D. 3答案:B5. 曲线y=x^3-3x^2+2x+1的拐点个数是()。
A. 0B. 1C. 2D. 3答案:C二、填空题(每题4分,共20分)6. 函数f(x)=x^2-4x+3的零点是_________。
答案:1和37. 函数f(x)=e^x-x-1的零点是_________。
答案:18. 函数f(x)=x^3-3x+1的极小值点是_________。
答案:19. 函数f(x)=x^2-4x+3的极大值是_________。
答案:010. 曲线y=x^3-3x^2+2x+1的拐点坐标为_________。
答案:(0,1)和(2,5)三、计算题(每题10分,共30分)11. 计算定积分∫₀¹(x^2+2x)dx。
解:∫₀¹(x^2+2x)dx = (1/3x^3+x^2)|₀¹ = 1/3+1 = 4/3。
12. 计算二重积分∬D(x^2+y^2)dσ,其中D是由x^2+y^2=1所围成的圆盘。
解:∬D(x^2+y^2)dσ = ∬(0,2π)∫(0,1)(r^2)rdrdθ = (1/3)π。
13. 计算曲线积分∮C(xy)dx+(yz)dy+(zx)dz,其中C为单位圆x^2+y^2=1在xy平面上的投影。
解:∮C(xy)dx+(yz)dy+(zx)dz = ∮(0,2π)(-1/2)sin^2θdθ = π/2。
郑州轻工业学院
一、填空题
1、[]22
()()x f x f x dx -+-=⎰。
2、曲面24z xy +=在点)0,2,1(处的切平面方程为 ___________________ 。
3、设10
(,)y I dy f x y dx =
⎰
⎰
,交换积分次序后,=I 。
二、单项选择题
1
、
(,)(0,0lim
x y →=( )
(A )3 (B )6 (C )不存在 (D )∞ 2
、设2(),x
f x dt =
⎰
则(1)f '=( )
(A
) (B )3 (C )36- (D )63- 5、下列级数中条件收敛的是( )
(A )n
n n 1)
1(1
1
∑∞
=+- (B )2
1
1)
1(n
n n
∑∞
=- (C )1
)
1(1
+-∑∞
=n n n n
(D ))
1(1)
1(1
+-∑∞
=n n n n
三.解答题
1、求⎰
++40
1
22dx x x
2、设sin()x
z e x y =- 求 dz
3、判别级数∑
∞
=+++-1
1
1
1
sin
)
1(n n n n ππ
是否收敛?如果收敛,是绝对收敛还是条件收敛?
5、求体积为a 3,而表面积最小的长方体的表面积
五、计算二重积分⎰⎰D
dxdy y x 其中D 是由两条抛物线2x y = 、x y =
所围成
的闭区域。
六、求由两条抛物线 2
x y =,x y =
所围成的平面图形的面积,并求该图形绕x
轴旋转所得的旋转体的体积。
七、已知微分方程244x y y y e '''-+=
(1)求对应的齐次方程440y y y '''-+=的通解; (2)写出此方程的通解的形式。