高等数学专升本教学大纲 .doc
- 格式:doc
- 大小:66.00 KB
- 文档页数:6
高等数学(二)专升本考试大纲一、考试内容本次高等数学(二)专升本考试内容主要包括以下几个方面:1.函数的连续性与一致连续性2.曲线的切线与法线3.微分学的应用4.不定积分5.定积分与应用6.微分方程二、考试要求1.掌握函数的连续性与一致连续性的判定方法,并能灵活应用于解题过程中。
2.理解曲线的切线与法线的概念,并能运用导数的定义和性质求解切线和法线的方程。
3.了解微分学的基本概念,并能应用微分学知识解决实际问题。
4.掌握不定积分的定义和基本性质,并能进行常见函数的积分运算。
5.熟悉定积分的定义和基本性质,并能运用定积分求解简单的几何问题。
6.理解微分方程的概念,并能根据给定的微分方程解决实际问题。
三、考试形式本次高等数学(二)专升本考试采取闭卷形式,包括选择题和解答题。
1.选择题:共计50道选择题,每题2分,满分100分。
选择题主要测试考生对基本概念和理论的理解程度。
2.解答题:共计3道解答题,每题30分,满分90分。
解答题主要测试考生的问题分析和解决能力。
四、复习重点1.函数的连续性与一致连续性–连续函数的定义–连续函数的性质–一致连续函数的定义和判定方法2.曲线的切线与法线–切线的概念和性质–法线的概念和性质–切线和法线的方程求解方法3.微分学的应用–极值与最值–函数的增减与凹凸性–求解最值和极值问题4.不定积分–不定积分的定义和基本性质–常见函数的积分运算方法–积分表的使用技巧5.定积分与应用–定积分的定义和基本性质–定积分的计算方法–几何应用和物理应用6.微分方程–微分方程的基本概念和分类–解微分方程的一般步骤–常微分方程的应用五、备考建议1.提前制定复习计划,合理安排学习时间。
2.多做习题,加强对知识点的理解和应用。
3.注意整理复习笔记,方便日后的复习和回顾。
4.多参考往年的真题和模拟试卷,了解考试形式和难度。
5.针对考试要求的不同部分,进行有针对性的复习和训练。
六、考前注意事项1.睡眠充足,保持良好的精神状态。
XX 市普通高校“专升本”统一选拔考试大纲《高等数学》(2019年版)(考试科目代码20)Ⅰ、考试大纲适用对象及考试性质本大纲适用于XX 市普通高校“专升本”的理工类和经济类考生。
“专升本”考试结果将作为XX 市普通高校高职高专学生申请“专升本”的成绩依据。
本科院校根据考生考试成绩,按照已确定的招生计划择优录取。
因此,该考试应具有较高的 信度、效度,必要的区分度和适当的难度。
Ⅱ、考试内容及要求一、一元函数微分学1.理解函数概念,知道函数的表示法;会求函数的定义域及函数值。
2.掌握函数的奇偶性、单调性、周期性、有界性。
3.理解复合函数与反函数的定义,会求单调函数的反函数。
4.掌握基本初等函数的性质与图像,了解初等函数的概念。
5.理解极限概念及性质,掌握极限的运算法则。
6.理解无穷小量与无穷大量的概念及两者的关系,掌握无穷小量的性质和无穷小量的比较。
7.了解夹逼准则与单调有界准则,掌握两个重要极限:0sin lim 1x x x→=,()10lim 11x x x →+=。
8.理解函数连续与间断的定义,理解函数间断点的分类,会利用连续性求极限,会判别函数间断点的类型。
9.理解闭区间上连续函数的有界性定理、最值定理、介值定理,并会用上述定理推证一些简单命题。
10.理解导数的定义及几何意义,会根据定义求函数的导数。
11.理解函数的可导与连续的关系。
12.熟练掌握基本初等函数的导数公式、导数的四则运算法则、复合函数求导法则、隐函数求导法、对数求导法及参数方程求导法,了解反函数的求导法则。
13.了解高阶导数的概念,熟练掌握初等函数的一阶和高阶导数的求法。
14.理解微分的定义、可微与可导的关系,了解微分的四则运算法则及一阶微分形式的不变性;会求函数的微分。
15.理解罗尔(Rolle )定理、拉格朗日中值(Lagrange )定理,了解柯西(Cauchy )中值定理和泰勒(Taylor )中值定理。
会用罗尔定理证明方程根的存在性,会用拉格朗日中值定理证明一些简单不等式。
专升本《高等数学》课程教学大纲一、适用对象适用于网络教育、成人教育学生二、课程性质高等数学是大学各专业的公共基础课,在培养高素质人才中具有独特的、不可替代的重要作用。
通过本门课程的学习,要使学生获得高等数学的基本理论、基本方法和基本运算技能,为学习后续课程和进一步获得数学知识奠定基础。
前序课程:初等数学、高等数学前三章三、教学目的通过各个教学环节逐步培养学生具有抽象概括问题的能力、逻辑推理能力、空间想象能力、创造性思维能力和自学能力,还要特别注意培养学生具有比较熟练的运算能力和综合运用所学数学知识分析问题和解决问题的能力。
四、教材及学时安排教材:《高等数学》电子科技大学出版社,2014年学时安排:五、教学要求第四章不定积分教学要求:1、理解原函数与不定积分的概念;2、了解不定积分的性质;3、灵活运用基本积分公式及方法;4、灵活运用换元积分法、分部积分法求不定积分;5、掌握简单的有理函数的积分法。
内容要点:4.1:原函数与不定积分的概念4.2:不定积分的性质和基本积分公式4.3:换元积分法4.4:分部积分法第五章定积分及其应用教学要求:1、理解定积分概念与性质;2、掌握积分上限函数及其导数,掌握牛顿-莱布尼兹公式;3、灵活运用换元积分法、分部积分法求定积分;4、掌握定积分的几何应用。
内容要点:5.1:定积分概念与性质5.2:微积分基本公式5.3:定积分的换元法与分部积分法5.5:定积分的应用第六章常微分方程教学要求:1、了解常微分方程及其解、通解、初始条件和特解等概念;2、掌握可分离变量方程及一阶线性方程的解法;内容要点:6.1:微分方程的基本概念6.2:一阶微分方程。
河南省专升本高数教学大纲河南省专升本高数教学大纲河南省专升本高数教学大纲是河南省教育厅制定的一项重要教学指导文件,旨在规范河南省专升本高数课程的教学内容、教学目标和教学方法,提高学生的数学素养和解决实际问题的能力。
本文将围绕河南省专升本高数教学大纲展开讨论,探讨其重要性和实施策略。
一、教学大纲的重要性教学大纲是教学活动的指导和依据,对于高数课程的教学工作至关重要。
首先,教学大纲能够明确高数课程的教学目标和内容,使教师在教学过程中有的放矢,避免盲目教学。
其次,教学大纲能够统一教学标准,确保学生在不同学校、不同教师的教学下,能够获得相对一致的知识体系和学习成果。
最后,教学大纲能够提供教学评价的依据,帮助教师进行学生综合素质评价,促进学生全面发展。
二、教学大纲的内容河南省专升本高数教学大纲主要包括以下几个方面的内容:教学目标、教学内容、教学方法和评价标准。
教学目标是指学生在学习高数课程过程中应达到的知识、能力和素养要求。
教学内容包括数学分析、线性代数、概率论与数理统计等基础知识和应用技能。
教学方法是指教师在教学过程中采用的教学手段和策略,如讲授、讨论、实践等。
评价标准是指学生在高数课程中的学习成果和能力水平的评价指标。
三、教学大纲的实施策略为了更好地实施河南省专升本高数教学大纲,教师可以采取以下一些策略。
首先,注重培养学生的数学思维能力。
高数课程不仅仅是知识的灌输,更重要的是培养学生的数学思维能力和解决问题的能力。
教师可以通过启发式教学、案例分析等方式,引导学生主动思考和探索。
其次,注重理论与实践的结合。
高数课程的教学应该注重理论知识的讲解,同时也要注重实际问题的应用。
教师可以通过实例讲解、实验演示等方式,帮助学生将数学知识应用于实际问题的解决。
最后,注重学生的参与和互动。
教师应该积极引导学生参与到课堂教学中,鼓励学生提问、讨论,促进学生之间的互动和合作。
总之,河南省专升本高数教学大纲对于高数课程的教学工作具有重要的指导作用。
云南省专升本高等数学教材高等数学是云南省专升本考试中的一门重要科目,该科目的教材编写旨在帮助学生全面掌握高等数学的基本概念、理论和应用技巧。
本文将以教材的形式为您呈现云南省专升本高等数学教材的内容大纲。
第一章导数与微分1.导数的概念1.1 函数的极限与导数的定义1.2 导数的计算与性质2.基本导数公式2.1 常数函数与幂函数的导数2.2 三角函数的导数2.3 指数函数与对数函数的导数3.高阶导数与隐函数求导4.微分的定义与应用4.1 微分与导数的关系4.2 高阶微分的计算与应用5.小结与习题第二章不定积分与定积分1.不定积分的概念与性质1.1 不定积分的定义与基本性质1.2 基本初等函数的不定积分2.定积分的概念与性质2.1 定积分的定义与基本性质2.2 定积分的计算方法3.定积分的应用3.1 曲线的弧长与面积3.2 物理问题中的定积分应用4.小结与习题第三章微分方程1.微分方程的基本概念1.1 微分方程与解的概念1.2 一阶微分方程的解法2.可降阶的高阶微分方程2.1 高阶微分方程的可降阶形式2.2 一阶降阶微分方程的解法3.常系数线性微分方程3.1 二阶常系数线性微分方程的解法3.2 高阶常系数线性微分方程的解法4.小结与习题第四章多元函数与偏导数1.二元函数的基本概念1.1 二元函数的定义与图像1.2 二元函数的极限与连续性2.偏导数与全微分2.1 多元函数的偏导数2.2 多元函数的全微分3.隐函数与参数方程3.1 隐函数的求导3.2 参数方程的求导4.小结与习题第五章重积分与曲线曲面积分1.重积分的基本概念与性质1.1 重积分的定义与性质1.2 重积分的计算方法2.曲线积分与曲面积分的基本概念2.1 曲线积分的定义与性质2.2 曲面积分的定义与性质3.格林公式与高斯公式3.1 格林公式的证明与应用3.2 高斯公式的证明与应用4.小结与习题第六章空间解析几何1.空间直线与平面1.1 空间直线的方程与性质1.2 平面的方程与性质2.空间曲线与曲面2.1 空间曲线的参数方程与性质2.2 曲面的参数方程与性质3.空间几何体的体积与表面积3.1 球体与球台的体积与表面积3.2 圆柱体与圆锥体的体积与表面积4.小结与习题通过以上对云南省专升本高等数学教材的提纲梳理,我们可以清晰地了解到该教材的整体结构与内容安排。
高等数学专升本教材目录一、函数与极限1. 实数与数集2. 函数及其表示3. 函数的极限与连续性4. 极限运算与极限的存在准则5. 无穷小与无穷大6. 极限的运算法则二、微分学1. 导数的概念与运算法则2. 高阶导数与隐函数求导法3. 导数的几何应用4. 微分中值定理与导数的应用5. 微分学基本公式6. 泰勒公式与函数的展开三、积分学1. 不定积分与定积分的概念2. 定积分的性质与求法3. 反常积分的概念与判定4. 微积分基本公式与换元积分法5. 积分的几何应用6. 定积分的应用与物理应用四、级数与级数检查法1. 数项级数的概念2. 级数的收敛与发散3. 正项级数的比较判别法4. 正项级数的比值判别法5. 函数项级数的收敛性6. 幂级数与泰勒级数五、常微分方程1. 常微分方程的基本概念2. 可分离变量的常微分方程3. 齐次方程与一阶线性非齐次方程4. 高阶线性齐次方程5. 常系数非齐次线性微分方程6. 常微分方程的应用六、多元函数微分学1. 多元函数的概念与极限2. 偏导数及其几何应用3. 全微分与微分中值定理4. 多元函数的极值与最值5. 隐函数与参数方程的微分6. 多元函数的泰勒公式和极限运算法则七、重积分与曲线积分1. 二重积分的概念与性质2. 二重积分的计算方法3. 三重积分的概念与计算4. 重积分的应用5. 曲线积分的概念与计算6. 曲线积分的应用八、曲面积分与散度定理1. 曲面积分的概念与计算2. 散度的概念与计算3. 散度定理的应用4. Green公式与环流的计算5. 散度、旋度与调和函数6. Stokes公式与积分曲线无关性以上为《高等数学专升本教材》的目录,涵盖了高等数学的主要内容及其应用。
无论是函数与极限、微分学、积分学、级数与级数检查法、常微分方程、多元函数微分学,还是重积分与曲线积分、曲面积分与散度定理等章节都对数学专升本的学生提供了全面的知识体系和解题技巧。
这本教材将帮助学生深入理解高等数学的基本概念和原理,并能应用于实际问题的求解中。
《高等数学》教学大纲(2010年3月讨论稿)全院专升本各专业适用华南理工大学东莞东阳教学中心一、课程的性质与任务《高等数学》课程,是成人高等教育本科各专业教学计划中的一门必修基础理论课,它不仅为专业计划中多门后继课程提供必要的数学基础,而且也是为提高学生科学素养而设置的课程.通过本课程的学习,要使学生获得《高等数学》中的基本概念、基本理论和基本方法.要通过各个教学环节,逐步培养学生具备较熟练的运算能力和运用数学方法处理问题的初步能力.同时,在抽象思维和逻辑推理方面也有一定的提高,以提升学生的数学素质,使自学能力提高一个层次,为以后深造打下坚实的基础.二、本课程的基本要求与重点专升本数学教学是比较特殊的一种教学形式,因学生是专科毕业生,已初步获得一元微积分的基本知识.因此,根据成人高等教育以培养应用型人才的目标,按基础理论教材“必需、够用”的原则,本课程的基本要求:1.加深掌握一元函数微分和积分两大基本数学方法的理解和应用;2.获得多元函数微积分、常微分方程和无穷级数的系统的基本知识、基本理论和基本方法.本课程的重点为:微分方程、二元函数微分学、二重积分、曲线积分和无穷级数.(说明:曲线积分和无穷级数经管类不作要求)三、课程内容和考核要求第一章函数、极限与连续性(一)课程内容1.初等函数与非初等函数;2.函数的特性;3.数列的极限;4.函数的极限;5.极限的运算法则;6.两个重要极限;7.无穷小量及其性质和无穷大量;8.无穷小量的比较;9.函数的连续性概念和连续函数的运算;10.函数的间断点;11.闭区间上连续函数的性质.(二)考核要求1.掌握求函数的定义域和函数值,理解函数记号的运用.2.了解函数与其图形之间的关系,掌握画常用的简单的函数图像.3.掌握求比较简单函数的反函数;掌握复合函数的分解;了解初等函数的构成;了解分段函数的表示.4.理解函数的有界性和周期性,掌握判别函数的奇偶性和单调性(用一阶导数的符号).5.理解数列极限的直观定义.6.理解X→∞时和X→Xo时函数极限的直观定义.7.理解函数的单侧极限,了解函数极限与单侧极限之间的关系.8.掌握极限的四则运算法则,并能熟练运用.9.掌握两个重要极限,并能熟练运用.10.了解无穷小和无穷大,掌握运用无穷小的性质,掌握判断两个无穷小的阶的高低或是否等价.11.理解函数在一点连续与间断的含义,掌握求出函数的两类间断点.12.掌握判别分段函数在区间分界点处的连续性.13.了解闭区间上连续函数的最大(小)值定理和函数取零值定理.第二、三章一元函数微分学(一)课程内容:1.导数的定义及其几何意义;2.可导函数的连续性;3.可导函数的和、差、积、商的求导法则;4.反函数和复合函数的求导法则;5.基本初等函数的导数公式;6.高阶导数;7.隐函数求导法;8.微分概念及微分的求法;9.参数方程所确定的函数的求导法;10.介绍罗尔定理和拉格朗日中值定理;11.洛必达法则;12.函数单调性的判定;13.函数的极值及其求法;14.函数的最值及其应用;15.曲线的凹凸性与拐点;16.曲线的渐近线.(二)考核要求:1.了解函数在一点可导与左、右导数之间的关系,掌握判断分段函数在分界点处是否可导.2.了解函数在一点连续是函数在该点可导的必要条件.3.掌握求曲线在一点处的切线方程和法线方程.4熟练掌握导数公式和函数四则运算的求导法则.5.熟练掌握复合函数的求导(一层复合步骤为主).6.掌握求函数的二阶导数.7.掌握求隐函数的一阶导数.8.掌握求函数的微分.9.掌握求参数式函数的一、二阶导数.10.熟练掌握运用洛必达法则求0和∞∞型极限,掌握求0⋅∞和∞-∞型极限.11.掌握用导数的符号判断函数的单调性及求函数的增、减区间.12.理解函数极值的概念,掌握求函数的极值.13.了解函数最值得定义及其与极值的区别,掌握求简单应用问题的最值.14.掌握确定曲线的凹凸区间,掌握求曲线的拐点.第四、五章一元函数积分学(一)课程内容:1.原函数与不定积分的概念;2.基本积分公式和不定积分的线性性质;3.不定积分的第一换元积分法(凑微分法);4.不定积分的第二换元积分法;5.不定积分的分部积分法;6.定积分概念及其几何意义;7.定积分的性质;8.变上限积分及其导数公式;9.牛顿-莱布尼兹公式;10.定积分的换元法和分部积分法;11.无穷区间上的广义积分;12.定积分的几何应用.(二)考核要求:1.理解原函数和不定积分的定义,了解它们的联系与区别;理解微分运算与不定积分运算互为逆运算.2.熟练掌握运用基本积分公式和不定积分的线性性质求比较简单函数的积分.3.掌握第一换元积分法(凑微分法).4.掌握第二换元积分法(重点是根式代换).5.掌握分部积分法求被积函数属于指数函数(或三角函数)与幂函数的乘积;对数函数(或反三角函数)与幂函数的乘积的积分.6.理解定积分定义,及定积分与不定积分的区别,了解定积分的值取决于被积函数和积分区间,而与积分变量采用的记号无关.7. 掌握应用定积分的性质及在对称区间上奇(偶)函数积分的结论.8.掌握变上限积分的求导公式.9.掌握用牛顿——莱布尼兹公式计算定积分.10.掌握计算分段函数(限于分两段)的定积分.11.掌握定积分的换元积分法和分部积分法.12.掌握判断无穷区间上的广义积分的敛散性.13.掌握在直角坐标系中计算平面图形的面积.14.掌握求简单平面图形绕X轴旋转所得旋转体的体积.第六章微分方程(一)课程内容:1.微分方程的基本概念;2.变量可分离的一阶微分方程;3.一阶线性微分方程;4.齐次型的一阶微分方程;5.可降阶的高阶微分方程;6.二阶线性微分方程解的结构;7.二阶常系数线性齐次微分方程; 8. 二阶常系数线性非齐次微分方程. (二)考核要求:1.了解微分方程的阶、解、通解、特解及线性微分方程的含义.2.掌握求解变量可分离的一阶微分方程.3.掌握用通解公式求解一阶线性非齐次微分方程.4.掌握用降阶法求解形如()y f x ''=和(,)y f x y '''=的二阶方程.5.了解二阶线性齐次及非齐次微分方程解的结构定理.6.掌握求解二阶常系数线性齐次微分方程的特征根法.7.掌握非齐次方程右端函数属()()x n f x P x e λ=型时,该方程特解待定形式的设置.第七章 向量代数与空间解析几何(一)课程内容: 1.向量及其运算; 2.空间的平面与直线; 3.常见的空间曲面与曲线.(说明:这部分的内容不作考核要求,由任课教师自主选择授课内容).第八章 多元函数微分学(一)课程内容:1.二元函数的定义及其图形;2.二元函数的极限与连续性;3.二元函数的偏导数定义;4.偏导数的求法;5.高阶偏导数;6.全微分;7.多元复合函数求导法则; 8.隐函数微分法;9.二元函数的极值与最值; (二)考核要求:1.理解二元函数函数值的记号及函数符号的运用.2.理解二元函数的极限定义,了解其与一元函数极限的异同点.3.了解二元函数在一点连续的含义.4.理解二元函数偏导数定义.5.了解二元函数连续与可偏导没有必然联系.6.掌握求偏导数及较简单函数的二阶偏导数.7.理解二元函数的全微分定义,掌握求二元函数的全增量和全微分. 8.掌握求全导数.9.掌握由方程(,)0F x y =所确定的隐函数()y y x =的求导公式. 10.掌握由方程(,,)0F x y z =所确定的隐函数(,)z z x y =的求偏导公式.11.掌握求二元函数的极值.12.掌握求简单应用问题的最值.第九章重积分和曲线积分(说明:曲线积分部分经管类不作要求)(一)课程内容:1.二重积分概念及其几何意义;2.重积分的性质;3.直角坐标下二重积分的计算;4.极坐标下二重积分的计算;5.二重积分的应用;6.第一型曲线积分(对弧长的曲线积分)的概念与性质;7.对弧长曲线积分的计算;8.第二型曲线积分(对坐标的曲线积分)的概念与性质;9.对坐标曲线积分的计算;10.格林公式;11.平面曲线积分与路径无关的条件.(二)考核要求:1.理解二重积分实质与定积分相同,也是一类和式的极限.2.了解二重积分的性质.3.掌握直角坐标下二重积分的计算,选择合理的积分顺序.4.掌握极坐标下二重积分的计算.5.了解曲线积分有着与定积分相类似的性质,但应注意对弧长的曲线积分与积分路径L的方向无关,而对坐标的曲线积分路径有方向性.6.了解对弧长曲线积分的计算方法.7.掌握对坐标曲线积分的计算方法.8.掌握格林公式的运用.9.掌握平面曲线积分与路径无关的条件及其应用.第十章无穷级数(说明:经管类不作要求)(一)课程内容:1.常数项级数的概念和性质;2.正项级数的审敛法;3.任意项级数的审敛法;4.函数项级数的收敛概念;5.幂级数的收敛范围;6.幂级数的性质;7.函数展开成幂级数的方法;8.幂级数的和函数.(二)考核要求:1.无穷级数∑∞=1.nnμ是个“无限和”,理解其收敛与发散的含义.2.了解级数收敛的必要条件和级数的主要性质.3.了解正项级数审敛的比较判别法;掌握比较法的极限形式;掌握比值判别法.4.掌握交错级数的审敛法.5.掌握任意项级数的审敛步骤.6.掌握求幂级数的收敛半径,收敛区间;了解收敛域.7.了解幂级数的性质.8.了解函数直接展开成幂级数的方法;掌握间接展开法.四、推荐用书1.教材:现代远程教育与继续教育精品教材系列《高等数学》(本科使用),吴满曾令武编著,华南理工大学出版社(2010版)2.教辅书:《高等数学解题指引与同步练习》,吴满曾令武编著,华南理工大学出版社(2008 版)五、课后练习(必做题)同步练习①1-(1)(3)(4),3,5~8,10~12,14,19,21-(1)~(8),22,23-(1)(2)(4),26,27-(1)~(5),28-(2),29,30-(1),31-(3),40-(1)(2)(3)(5)(6),41-(1)(3)~(6)(8),42,46~48,50,55,56,58~61,63.同步练习②1,3,5,11~13,16,17-(1)~(4)(6)(8),18-(1)(2)(4)(6),19-(2),23,24-(1)(3),25,26,33-(1)(3),34,42-(1)(2),43,51,52,59,60,65~67. 同步练习③6,7,8-(1)(2),9-(1)(4)(5),10-(2)(3),12-(1)(2)(3),13,18,22,23,24-(2),25,27,28,36-(1)(3)(4),40,41.同步练习④1,2,6,10-(1)(2)(5)(7)(9),11-(1)(2)(3)(5)(6)(8)(10)~(13)(16)(17)(19)(22)(24)(25)(27)~(30),12,15,16,18-(1)~(4)(6)~(8)(10),19,21.同步练习⑤1,3,4,6-(1)(2),10,11-(2)(4),12-(1)(2),14-(1)~(5)(7)(8)(12)(14),25-(1)~(4),26,27,30-(7),33 ,35-(1)~(4)(7),41-(1)(3),42-(2)(3),43,47,48-(1)~(4)(6)~(8),50,54,56,57,59,60.同步练习⑥3,4,5,7,8-(1)(3)(5),9-(1)(2)(3),15-(1)(2)(3),16-(1)(3),25-(1)(2),30,34-(1),35,36-(2),38,39-(1) ~(5)(7).同步练习⑦(说明:由任课教师自主留题)同步练习⑧2,3,5,6,15,16-(1)(2)(5)(6),18,20,26~28,32~36,40,45~48,55~59,61,67,68,70.同步练习⑨3,4,7,8,9-(1)(2)(5)~(8),10,11-(2),12,17,18,20,21,23.(说明:以下练习经管类不作要求)41,42,44,49,50-(1)(2),54~57.同步练习⑩1,3,4-(1),5,6-(1)(2),7,10-(2),11-(1)(2)(4)(5),13,14-(1)~(4),15,16,17-(2)(3), 18,24~26,29.华南理工大学继续教育学院《高等数学》教学指导小组二〇一〇年三月专升本统考样题(理工类)22(34)l x y ds +⎰分,解答应写出推理,演算步骤) 2x =所围成的区域0≥所确定.专升本统考样题(经管类)11 / 11。
辽宁专升本数学教学大纲(详情)辽宁专升本数学教学大纲辽宁专升本数学考试大纲是指通过专升本考试衡量考生对高等数学知识的掌握程度,主要分为以下几个考查部分:1.函数、极限、连续。
要求考生掌握函数的概念及性质,极限的四则运算,极限存在性定理,连续的概念及性质。
2.一元函数微分学。
要求考生掌握导数的概念及性质,微分概念及性质,罗尔定理,拉格朗日中值定理,函数的单调性、极值及函数的最值。
3.一元函数积分学。
要求考生掌握原函数与不定积分的概念及性质,定积分的概念及性质,积分公式,微积分定理,积分中值定理,变上限定积分。
4.向量代数与空间解析几何。
要求考生掌握向量代数,向量数量积、向量垂直、向量夹角,向量平行,空间直角坐标系,向量的正交分解与坐标表示,空间曲面与曲线的方程,。
5.多元函数的微积分学。
要求考生掌握多元函数的概念及性质,偏导数概念及性质,全微分概念及性质,罗尔定理,拉格朗日中值定理的推广,多元函数的极值及函数的最值。
6.无穷级数。
要求考生掌握数项级数、函数项级数的概念及性质,幂级数及其收敛性判定,函数的展开为幂级数。
7.常微分方程。
要求考生掌握常微分方程的概念及性质,一阶微分方程、高阶微分方程的求解方法。
数学竞赛教学大纲很抱歉,我无法为您搜索到数学竞赛教学大纲,但是我可以为您提供一些数学竞赛的学习建议。
数学竞赛通常是一种挑战,它要求学生具有快速计算、快速逻辑思考和快速解题的能力。
对于初学者来说,首先需要理解基础数学知识,例如整数、分数、小数、百分数、几何基础、代数基础等。
在此基础上,需要逐渐接触一些高级数学知识,例如因式分解、解方程、不等式、数列求和、数列概率等。
在学习过程中,建议学生多做一些习题,巩固自己的知识,并且不断挑战自己,参加一些数学竞赛,提升自己的能力。
如果想要了解更详细的教学大纲,建议参考相关的数学竞赛教材或者咨询专业的数学教师。
聋校数学教学大纲聋校数学教学大纲是中国教育部门为聋校学生制定的数学教学指导文件。
《高等数学(二)》专升本考试大纲《高等数学》专升本入学考试注重考察学生基础知识、基本技能和思维能力、运算能力、以及分析问题和解决问题的能力。
考试时间为2小时,满分150分。
考试内容和基本要求一、函数、极限与连续(一)考试内容函数的概念与基本特性;数列、函数极限;极限的运算法则;两个重要极限;无穷小的概念与阶的比较;函数的连续性和间断点;闭区间上连续函数的性质。
(二)考试要求1.理解函数的概念,了解函数的基本性态(奇偶性、单调性、周期性、有界性)。
了解反函数的概念,理解复合函数的概念,理解初等函数的概念。
会建立简单经济问题的函数关系。
掌握常用的经济函数(需求函数、成本函数、收益函数、利润函数)。
2.了解数列极限、函数极限的概念(不要求做给出ε,求N 或δ的习题);了解极限性质(唯一性、有界性、保号性)。
3.掌握函数极限的运算法则;熟练掌握极限计算方法。
掌握两个重要极限,会用两个重要极限求极限;4.了解无穷小、无穷大、高阶无穷小、等价无穷小的概念,会用等价无穷小求极限。
5.理解函数连续的概念;了解函数间断点的概念,会判别间断点的类型(第一类与第二类)。
6.了解初等函数的连续性;了解闭区间上连续函数的性质,会用性质证明一些简单结论。
二、导数与微分(一)考试内容导数的概念及求导法则;隐函数所确定函数的导数;高阶导数;微分的概念与运算法则。
(二)考试要求1.理解导数的概念及几何意义和经济意义,了解函数可导与连续的关系,会求平面曲线的切、法线方程。
2.掌握基本初等函数的求导公式;掌握导数的四则运算法则和复合函数的求导法则;掌握隐函数及取对数求导法。
会熟练求函数的导数。
3.了解高阶导数的概念,掌握初等函数的一阶、二阶导数的求法。
4.理解微分的概念,了解微分的运算法则和一阶微分形式不变性,会求函数的微分。
三、中值定理与导数应用(一)考试内容罗尔中值定理、拉格朗日中值定理;洛必达法则;函数单调性与极值、曲线凹凸性与拐点。
专升本高等数学教材书《专升本高等数学教材书》第一章:导数与微分一、导数定义与性质二、常见函数的导数公式1. 幂函数的导数2. 指数函数与对数函数的导数3. 三角函数的导数4. 反三角函数的导数5. 基本初等函数的导数三、导数的应用1. 函数的单调性2. 函数的极值与最值3. 函数的凹凸性第二章:积分与定积分一、不定积分1. 函数的原函数与不定积分2. 基本积分公式二、定积分1. 定积分的概念与性质2. 定积分的计算3. 定积分的应用第三章:级数与收敛一、数列的极限1. 数列极限的定义与性质2. 常用数列极限二、级数的概念1. 级数的收敛与发散2. 常用级数的性质三、收敛级数1. 正项级数2. 任意项级数第四章:常微分方程一、常微分方程的基本概念1. 常微分方程的定义与分类2. 初等函数与常微分方程的关系二、一阶常微分方程解法1. 可分离变量的一阶常微分方程2. 齐次线性一阶常微分方程3. 一阶常微分方程的其他解法第五章:多元函数与偏导数一、多元函数的概念与性质1. 多元函数的定义2. 多元函数的极限与连续性3. 多元函数的偏导数二、多元函数的极值与最值1. 多元函数的极值点与最值2. 多元函数的条件极值第六章:空间解析几何一、空间直线和平面1. 空间直线的方程与性质2. 空间平面的方程与性质二、空间曲线和曲面1. 空间曲线的参数方程与性质2. 空间曲面的方程与性质3. 空间曲线与曲面的相交关系第七章:线性代数与矩阵一、线性方程组1. 线性方程组的概念与解法2. 线性方程组的矩阵表示与求解二、矩阵与行列式1. 矩阵的定义与运算2. 行列式的定义与性质第八章:概率与统计一、概率论基础1. 随机事件与概率空间2. 概率的计算二、随机变量与概率分布1. 随机变量的定义与分类2. 常见概率分布的特征与计算三、统计学基础1. 样本与总体2. 统计量与抽样分布以上是《专升本高等数学教材书》的大致章节安排。
每一章节都详细介绍了相关概念、定义、公式和求解方法,并附有大量例题和练习题供学生练习和巩固。
2018年浙江专升本高等数学考试大纲2018年浙江专升本高等数学考试大纲浙江省普通高校“专升本”统考科目:《高等数学》考试大纲考试要求考生应按本大纲的要求,掌握“高等数学”中函数、极限和连续、一元函数微分学、一元函数积分学、无穷级数、常微分方程、向量代数与空间解析几何的基本概念、基本理论和基本方法。
考生应注意各部分知识的结构及知识的联系;具有一定的抽象思维能力、逻辑推理能力、运算能力和空间想象能力;能运用基本概念、基本理论和基本方法进行推理、证明和计算;能运用所学知识分析并解决一些简单的实际问题。
考试内容一、函数、极限和连续(一)函数1.理解函数的概念,会求函数的定义域、表达式及函数值,会作出一些简单的分段函数图像。
2.掌握函数的单调性、奇偶性、有界性和周期性。
3.理解函数y= (x)与其反函数y= -1(x)之间的关系(定义域、值域、图像),会求单调函数的反函数。
4.掌握函数的四则运算与复合运算;掌握复合函数的复合过程。
5.掌握基本初等函数的性质及其图像。
6.理解初等函数的概念。
7.会建立一些简单实际问题的函数关系式。
(二)极限1.理解极限的概念(只要求极限的描述性定义),能根据极限概念描述函数的变化趋势。
理解函数在一点处极限存在的充分必要条件,会求函数在一点处的左极限与右极限。
2.理解极限的唯一性、有界性和保号性,掌握极限的四则运算法则。
3.理解无穷小量、无穷大量的概念,掌握无穷小量的性质,无穷小量与无穷大量的关系。
会比较无穷小量的阶(高阶、低阶、同阶和等价)。
会运用等价无穷小量替换求极限。
4.理解极限存在的两个收敛准则(夹逼准则与单调有界准则),掌握两个重要极限:,,并能用这两个重要极限求函数的极限。
(三)连续1.理解函数在一点处连续的概念,函数在一点处连续与函数在该点处极限存在的关系。
会判断分段函数在分段点的连续性。
2.理解函数在一点处间断的概念,会求函数的间断点,并会判断间断点的类型。
山东专升本高数教学大纲山东专升本高数教学大纲近年来,随着社会的发展和教育的普及,越来越多的人选择通过专升本的方式提升自己的学历。
而作为专升本考试中的一门重要科目,高等数学的教学大纲在山东地区也备受关注。
本文将从不同的角度探讨山东专升本高数教学大纲的重要性、内容设置和教学方法。
首先,了解山东专升本高数教学大纲的重要性是必要的。
教学大纲是教学活动的规划和组织的依据,它对于教师和学生来说都具有重要的指导作用。
对于教师而言,教学大纲明确了教学目标和内容,帮助教师更好地组织教学活动,提高教学效果;对于学生而言,教学大纲明确了学习目标和要求,帮助学生更好地学习和掌握知识,提高学习效果。
因此,山东专升本高数教学大纲的制定和实施对于专升本考生的学习和提升具有重要意义。
其次,讨论山东专升本高数教学大纲的内容设置。
高等数学作为一门基础学科,其内容涵盖了微积分、数学分析、线性代数等多个方面。
山东专升本高数教学大纲应该根据专升本考试的要求和学生的实际情况,合理地确定内容设置。
例如,可以将微积分的基本概念、导数与微分、积分与不定积分、定积分与曲线长度、微分方程等内容作为教学大纲的重点。
同时,还需要注重数学分析的基本概念、极限与连续、一元函数的导数与微分、一元函数的积分等内容的教学。
此外,线性代数的内容也是山东专升本高数教学大纲中不可或缺的一部分,如矩阵的基本概念、矩阵运算、矩阵的秩与逆矩阵、特征值与特征向量等。
通过合理设置教学内容,可以帮助学生全面、系统地掌握高等数学的基本知识和方法。
最后,探讨山东专升本高数教学大纲的教学方法。
高等数学作为一门理论性较强的学科,需要注重理论与实践的结合,培养学生的数学思维和解决问题的能力。
因此,在教学过程中,教师应该采用灵活多样的教学方法,如讲解、示范、引导、讨论、实践等,激发学生的学习兴趣和主动性。
另外,教师还应该注重培养学生的数学思维和解题能力,通过一些实际问题的引入和解决,帮助学生理解和应用高等数学知识。
目录一、函数与极限 (2)1、集合的概念 (2)2、常量与变量 (3)2、函数 (4)3、函数的简单性态 (4)4、反函数 (5)5、复合函数 (6)6、初等函数 (6)7、双曲函数及反双曲函数 (7)8、数列的极限 (8)9、函数的极限 (9)10、函数极限的运算规则 (11)一、函数与极限1、集合的概念一般地我们把研究对象统称为元素,把一些元素组成的总体叫集合(简称集)。
集合具有确定性(给定集合的元素必须是确定的)和互异性(给定集合中的元素是互不相同的)。
比如“身材较高的人”不能构成集合,因为它的元素不是确定的。
我们通常用大字拉丁字母A、B、C、……表示集合,用小写拉丁字母a、b、c……表示集合中的元素。
如果a是集合A中的元素,就说a属于A,记作:a∈A,否则就说a不属于A,记作:a A。
⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。
记作N⑵、所有正整数组成的集合叫做正整数集。
记作N+或N+。
⑶、全体整数组成的集合叫做整数集。
记作Z。
⑷、全体有理数组成的集合叫做有理数集。
记作Q。
⑸、全体实数组成的集合叫做实数集。
记作R。
集合的表示方法⑴、列举法:把集合的元素一一列举出来,并用“{}”括起来表示集合⑵、描述法:用集合所有元素的共同特征来表示集合。
集合间的基本关系⑴、子集:一般地,对于两个集合A、B,如果集合A中的任意一个元素都是集合B的元素,我们就说A、B有包含关系,称集合A为集合B的子集,记作A B(或B A)。
⑵相等:如何集合A是集合B的子集,且集合B是集合A的子集,此时集合A中的元素与集合B中的元素完全一样,因此集合A与集合B相等,记作A=B。
⑶、真子集:如何集合A是集合B的子集,但存在一个元素属于B但不属于A,我们称集合A是集合B的真子集。
⑷、空集:我们把不含任何元素的集合叫做空集。
记作,并规定,空集是任何集合的子集。
⑸、由上述集合之间的基本关系,可以得到下面的结论:①、任何一个集合是它本身的子集。
河南省普通专升本高等数学教材高等数学教材第一章:函数与极限1.1 函数的概念函数是一种特殊的关系,它将一个自变量映射到一个因变量上。
函数的定义域、值域、图像等基本概念要通过例题进行说明和讲解。
1.2 函数的性质与运算介绍函数的奇偶性、周期性、单调性等基本性质,并讲解函数的四则运算、复合运算等。
1.3 极限的概念与性质引入极限的概念,重点讲解极限的局部有界性、保序性、保号性等基本性质,同时介绍重要的极限定理和计算极限的方法。
第二章:导数与微分2.1 导数的概念与几何意义介绍导数的定义及其几何意义,包括切线与函数图像的关系等。
2.2 导数的基本公式与性质讲解导数的基本运算法则,如四则运算、复合运算、反函数的导数等。
2.3 高阶导数与相关公式深入研究高阶导数的概念和计算方法,并介绍莱布尼茨公式等相关公式。
第三章:微分中值定理与应用3.1 罗尔中值定理详细讲解罗尔中值定理的假设、结论以及证明思路,并通过实例解释应用。
3.2 拉格朗日中值定理介绍拉格朗日中值定理的条件和结论,包括柯西中值定理的特殊情况。
3.3 应用题解析通过一些实际问题,例如曲线的凹凸性、最值问题等,来解释中值定理的应用。
第四章:不定积分与定积分4.1 不定积分的定义与基本性质介绍不定积分的概念与基本性质,讲解几个常用的不定积分法则。
4.2 定积分的概念与性质引入定积分的概念,介绍黎曼积分的定义、性质和存在性。
4.3 定积分的计算方法讲解定积分的计算方法,包括换元积分法、分部积分法和分段积分法等。
第五章:微分方程基本概念与常微分方程5.1 微分方程的概念与基本性质介绍微分方程的定义、分类及基本性质,例如线性微分方程和常系数线性微分方程。
5.2 常微分方程的解法讲解一阶常微分方程和二阶常微分方程等基本类型的解法,包括常数变易法、齐次线性微分方程的解法等。
5.3 应用问题分析通过一些实际问题,例如生物衰变问题和弹簧振动问题,来引入微分方程解的应用。
专升本高等数学大纲
高等数学是高等教育阶段必修的一门学科,也是专升本中重要学科,本大纲旨在规定
专升本高等数学的教学内容和要求。
一、教学内容
1.初等数学
(1)代数计算:算术、平方根、立方根、分数、有理数、根式及多项式的运算等。
(2)方程:一元、二元方程及逐步求解法等。
(3)函数及其图像:关于一般函数的性质、图像的性质及求根法等。
(4)三角函数:有关特殊三角函数等的运算。
(5)极限和无穷小量:如何求取函数的极限,正切函数的极限与无穷小量等。
2.高等数学
(1)复变函数:复变函数的定义、性质、应用及其在实践中的应用。
(2)椭圆定理:椭圆的定义、性质、椭圆下的条件和计算等。
(3)微分学:函数的导数和微分之间的关系、泰勒公式、函数的积分等。
(4)空间解析几何:平面几何中定义球面和平面几何中线段和空间几何中的平面等。
(5)概率论:概率定义、条件概率论、随机变量及其分布,均值和方差以及概率问
题的求解等。
二、要求
1. 要求学生掌握本课程内容;
2. 要求学生掌握正确的数学思维和方法;
3. 要求学生熟练运用本领域的知识进行实际分析和推理;
4. 要求学生具备一定的科研能力,能够系统地论证解决存在的解决问题的实际意义;
5. 要求学生具有综合素养,能够以正确的方式把握数学的实质性、创新性和艺术性
问题。