新高考数学复习:双曲线与抛物线
- 格式:pptx
- 大小:1.93 MB
- 文档页数:62
一.椭圆二.双曲线四.椭圆、双曲线及抛物线的性质对比(焦点在x轴上)名称椭圆双曲线抛物线定义|PF1|+|PF2|=2a(2a>|F1F2|)||PF1|-|PF2||=2a(2a<|F1F2︱)|PF|= 点F不在直线l上,PM⊥l于M标准方程12222=+byax(a>b>0)12222=-byax(a>0,b>0)y2=2px(p>0)图象几何性质范围byax≤≤,ax≥0≥x顶点),0(),0,(ba±±)0,(a±(0,0)对称性关于x轴,y轴和原点对称关于x轴对称焦点(±c,0 ))0,2(p轴长轴长2a,短轴长2b实轴长2a,虚轴长2b准线cax2±=2px-=通径abAB22=pAB2=渐近线xaby±=...——知识就是力量,学海无涯苦作舟!——不要担心知识没有用,知识多了,路也好选择,也多选择。
比如高考,高分的同学,填报志愿的时候选择学校的范围大,而在分数线左右的就为难了,分数低的就更加不要说了。
再比如,有了知识,你也可以随时炒老板。
高中数学高考几何解析(椭圆双曲线抛物线)课本知识讲解及练习(含答案)第五节椭圆一、必记3个知识点1.椭圆的定义(1)设椭圆x2a2+y2b2=1(a>b>0)上任意一点P(x,y),则当x=0时,|OP|有最小值b,这时,P在短轴端点处;当x=±a时,|OP|有最大值a,这时,P在长轴端点处.(2)椭圆的一个焦点、中心和短轴的一个端点构成直角三角形,其中a是斜边长,a2=b2+c2.(3)已知过焦点F1的弦AB,则△ABF2的周长为4a.(4)若P为椭圆上任一点,F为其焦点,则a-c≤|PF|≤a+c.二、必明3个易误点1.椭圆的定义中易忽视2a>|F1F2|这一条件,当2a=|F1F2|其轨迹为线段F1F2,当2a<|F1F2|不存在轨迹.2.求椭圆的标准方程时易忽视判断焦点的位置,而直接设方程为x2a2+y2b2=1(a>b>0).3.注意椭圆的范围,在设椭圆x2a2+y2b2=1(a>b>0)上点的坐标为P(x,y)时,则|x|≤a,这往往在求与点P有关的最值问题中特别有用,也是容易被忽略而导致求最值错误的原因.三、技法1.求椭圆标准方程的2种常用方法(1)直接求出a,c来求解e.通过已知条件列方程组,解出a,c的值.(2)构造a,c的齐次式,解出e.由已知条件得出关于a,c的二元齐次方程,然后转化为关于离心率e的一元二次方程求解.(3)通过取特殊值或特殊位置,求出离心率.提醒:在解关于离心率e的二次方程时,要注意利用椭圆的离心率e∈(0,1)进行根的取舍,否则将产生增根.3.求解最值、取值范围问题的技巧(1)与椭圆几何性质有关的问题要结合图形进行分析,即使画不出图形,思考时也要联想到一个图形.(2)椭圆的范围或最值问题常常涉及一些不等式.例如,-a≤x≤a,-b≤y≤b,0<e<1,在求椭圆的相关量的范围时,要注意应用这些不等关系.(3)最值问题,将所求列出表达式,构造基本不等式或利用函数单调性求解.4.判断直线与椭圆位置关系的四个步骤第一步:确定直线与椭圆的方程.第二步:联立直线方程与椭圆方程.第三步:消元得出关于x(或y)的一元二次方程.第四步:当Δ>0时,直线与椭圆相交;当Δ=0时,直线与椭圆相切;当Δ<0时,直线与椭圆相离.5.直线被椭圆截得的弦长公式设直线与椭圆的交点坐标为A(x1,y1),B(x2,y2),则|AB|=(1+k2)[(x1+x2)2-4x1x2])=(y1+y2)2-4y1y2])(k为直线斜率).参考答案①F1,F2②|F1F2|③x轴,y轴④坐标原点⑤(-a,0)⑥(a,0)⑦(0,-b)⑧(0,b)⑨(0,-a)⑩(0,a)⑪(-b,0)⑫(b,0)⑬2a⑭2b⑮2c⑯(0,1)⑰c2=a2-b2第六节双曲线一、必记3个知识点1.双曲线的定义(1)平面内与两个定点F1、F2(|F1F2|=2c>0)的距离①________________为非零常数2a(2a<2c)的点的轨迹叫做双曲线.这两个定点叫做双曲线的②________,两焦点间的距离叫做③________.(2)集合P={M|||MF1|-|MF2||=2a},|F1F2|=2c,其中a,c为常数且a>0,c>0.(ⅰ)当④________________时,M点的轨迹是双曲线;(ⅱ)当⑤________________时,M点的轨迹是两条射线;(ⅲ)当⑥________________时,M点不存在.2.双曲线的标准方程和几何性质⑧________x ∈对称轴:⑪________对称中心:⑫________顶点坐标:A 1⑮______,A 2⑯________⑱____________c =⑳________|=21________;线段________;a 叫做双曲线的虚半轴长>b >0)(1)双曲线为等轴双曲线⇔双曲线的离心率e =2⇔双曲线的两条渐近线互相垂直.(2)渐近线的斜率与双曲线的焦点位置的关系:当焦点在x 轴上时,渐近线斜率为±ba,当焦点在y 轴上时,渐近线斜率为±ab.(3)渐近线与离心率.x2a2-y2b2=1(a >0,b >0)的一条渐近线的斜率为ba=e2-1.(4)若P 为双曲线上一点,F 为其对应焦点,则|PF |≥c -a .二、必明4个易误点1.双曲线的定义中易忽视2a <|F 1F 2|这一条件.若2a =|F 1F 2|,则轨迹是以F 1,F 2为端点的两条射线,若2a >|F 1F 2|则轨迹不存在.2.双曲线的标准方程中对a ,b 的要求只是a >0,b >0,易误认为与椭圆标准方程中a ,b 的要求相同.若a >b >0,则双曲线的离心率e ∈(1,2);若a =b >0,则双曲线的离心率e =2;若0<a <b ,则双曲线的离心率e >2.3.注意区分双曲线中的a ,b ,c 大小关系与椭圆a ,b ,c 关系,在椭圆中a 2=b 2+c 2,而在双曲线中c2=a2+b2.4.易忽视渐近线的斜率与双曲线的焦点位置关系.当焦点在x轴上,渐近线斜率为±ba,当焦点在y轴上,渐近线斜率为±ab.三、技法1.双曲线定义的应用(1)判定满足某条件的平面内动点的轨迹是否为双曲线,进而根据要求可求出曲线方程;(2)在“焦点三角形”中,常利用正弦定理、余弦定理,经常结合||PF1|-|PF2||=2a,运用平方的方法,建立|PF1|与|PF2|的关系.[注意]在应用双曲线定义时,要注意定义中的条件,搞清所求轨迹是双曲线,还是双曲线的一支,若是双曲线的一支,则需确定是哪一支.2.求双曲线标准方程的一般方法(1)待定系数法:设出双曲线方程的标准形式,根据已知条件,列出参数a,b,c的方程并求出a,b,c的值.与双曲线x2a2-y2b2=1有相同渐近线时,可设所求双曲线方程为:x2a2-y2b2=λ(λ≠0).(2)定义法:依定义得出距离之差的等量关系式,求出a的值,由定点位置确定c的值.3.求双曲线离心率或其范围的方法(1)求a,b,c的值,由c2a2=a2+b2a2=1+b2a2直接求e.(2)列出含有a,b,c的齐次方程(或不等式),借助于b2=c2-a2消去b,然后转化成关于e的方程(或不等式)求解.4.求双曲线的渐近线方程的方法求双曲线x2a2-y2b2=1(a>0,b>0)的渐近线的方法是令x2a2-y2b2=0,即得两渐近线方程为:xa±yb=0.参考答案①之差的绝对值②焦点③焦距④2a<|F1F2|⑤2a=|F1F2|⑥2a>|F1F2|⑦x≥a或x≤-a⑧y≥a或y≤-a⑨x轴,y轴⑩坐标原点⑪x轴,y轴⑫坐标原点⑬(-a,0)⑭(a,0)⑮(0,-a)⑯(0,a)⑰y=±ba x⑱y=±ab x⑲ca⑳a2+b2212a222b23a2+b2第七节抛物线一、必记2个知识点1.抛物线定义、标准方程及几何性质x轴⑤________y轴⑥________O(0,0)O(0,0)O(0,0)O(0,0)F⑦________⑧________⑨________设AB是过抛物线y2=2px(p>0)的焦点F的弦,若A(x1,y1),B(x2,y2),则(1)x1x2=p24,y1y2=-p2.(2)弦长|AB|=x1+x2+p=2psin2α(α为弦AB的倾斜角).(3)以弦AB为直径的圆与准线相切.(4)通径:过焦点且垂直于对称轴的弦,长等于2p.二、必明2个易误点1.抛物线的定义中易忽视“定点不在定直线上”这一条件,当定点在定直线上时,动点的轨迹是过定点且与直线垂直的直线.2.抛物线标准方程中参数p易忽视,只有p>0,才能证明其几何意义是焦点F到准线l 的距离,否则无几何意义.三、技法1.应用抛物线定义的2个关键点(1)由抛物线定义,把抛物线上点到焦点距离与到准线距离相互转化.(2)注意灵活运用抛物线上一点P(x,y)到焦点F的距离|PF|=|x|+p2或|PF|=|y|+p2.2.求抛物线的标准方程的方法(1)求抛物线的标准方程常用待定系数法,因为未知数只有p,所以只需一个条件确定p值即可.(2)因为抛物线方程有四种标准形式,因此求抛物线方程时,需先定位,再定量.3.确定及应用抛物线性质的技巧(1)利用抛物线方程确定及应用其焦点、准线等性质时,关键是将抛物线方程化为标准方程.(2)要结合图形分析,灵活运用平面几何的性质以图助解.4.解决直线与抛物线位置关系问题的常用方法(1)直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系.(2)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式|AB|=x1+x2+p,若不过焦点,则必须用一般弦长公式.(3)涉及抛物线的弦长、中点、距离等相关问题时,一般利用根与系数的关系采用“设而不求”“整体代入”等解法.提醒:涉及弦的中点、斜率时,一般用“点差法”求解.参考答案①相等②y2=-2px(p>0)③x2=-2py(p>0)④x2=2py(p>0)⑤x轴⑥y轴⑦F(-p2,0)⑧F(0,-p2)⑨F(0,p2)⑩e=1⑪x=-p2⑫y=-p2⑬-y0+p2⑭y0+p2⑮y≤0⑯y≥0。
第3讲 椭圆、双曲线、抛物线[考情分析] 高考对这部分知识考查侧重三个方面:一是求圆锥曲线的标准方程;二是求椭圆的离心率、双曲线的离心率、渐近线问题;三是抛物线的性质及应用问题.考点一 椭圆、双曲线、抛物线的定义与标准方程核心提炼1.圆锥曲线的定义(1)椭圆:|PF1|+|PF2|=2a(2a>|F1F2|).(2)双曲线:||PF1|-|PF2||=2a(0<2a<|F1F2|).(3)抛物线:|PF|=|PM|,l为抛物线的准线,点F不在定直线l上,PM⊥l于点M.2.求圆锥曲线标准方程“先定型,后计算”所谓“定型”,就是确定曲线焦点所在的坐标轴的位置;所谓“计算”,就是指利用待定系数法求出方程中的a2,b2,p的值.例1 (1)(2020·广州四校模拟)若椭圆+=1(其中a>b>0)的离心率为,两焦点分别为F1,F2,M为椭圆上一点,且△F1F2M的周长为16,则椭圆C的方程为( )A.+=1B.+=1C.+=1D.+=1答案 D解析 椭圆+=1(其中a>b>0)的两焦点分别为F1,F2,M为椭圆上一点,且△F1F2M的周长为16,可得2a+2c=16,椭圆+=1(其中a>b>0)的离心率为,可得=,解得a=5,c=3,则b=4,所以椭圆C 的方程为+=1.(2)(2020·全国Ⅰ)设F1,F2是双曲线C:x2-=1的两个焦点,O为坐标原点,点P在C上且|OP|=2,则△PF1F2的面积为( )A.B.3C.D.2答案 B解析 方法一 由题意知a=1,b=,c=2,F1(-2,0),F2(2,0),如图,因为|OF1|=|OF2|=|OP|=2,所以点P在以F1F2为直径的圆上,故PF1⊥PF2,则|PF1|2+|PF2|2=(2c)2=16.由双曲线的定义知||PF1|-|PF2||=2a=2,所以|PF1|2+|PF2|2-2|PF1||PF2|=4,所以|PF1||PF2|=6,所以△PF1F2的面积为|PF1||PF2|=3.方法二 由双曲线的方程可知,双曲线的焦点F1,F2在x轴上,且|F1F2|=2=4.设点P的坐标为(x0,y0),则解得|y0|=.所以△PF1F2的面积为|F1F2|·|y0|=×4×=3.易错提醒 求圆锥曲线的标准方程时的常见错误双曲线的定义中忽略“绝对值”致错;椭圆与双曲线中参数的关系式弄混,椭圆中的关系式为a2=b2+c2,双曲线中的关系式为c2=a2+b2;圆锥曲线方程确定时还要注意焦点位置.跟踪演练1 (1)设抛物线C:y2=2px(p>0)的焦点为F,点M在C上,|MF|=5.若以MF 为直径的圆过点(0,2),则C的方程为( )A.y2=4x或y2=8x B.y2=2x或y2=8xC.y2=4x或y2=16x D.y2=2x或y2=16x答案 C解析 方法一 因为以MF为直径的圆过点(0,2),所以点M在第一象限.由|MF|=x M+=5,得x M=5-,即M.从而以MF为直径的圆的圆心N的坐标为.因为点N的横坐标恰好等于圆的半径,所以圆与y轴相切于点(0,2),从而2=,即p2-10p+16=0,解得p=2或p=8,所以抛物线方程为y2=4x或y2=16x.方法二 由已知得抛物线的焦点F,设点A(0,2),点M(x0,y0),则AF=,AM=.由已知,得AF·AM=0,即y-8y0+16=0,解得y0=4,M.由|MF|=5,得=5.又因为p>0,解得p=2或p=8,所以抛物线C的方程为y2=4x或y2=16x.(2)已知椭圆C:+=1(m>4)的右焦点为F,点A(-2,2)为椭圆C内一点,若椭圆C上存在一点P,使得|PA|+|PF|=8,则实数m的取值范围是( )A.(6+2,25] B.[9,25]C.(6+2,20] D.[3,5]答案 A解析 椭圆C:+=1(m>4)的右焦点F的坐标为(2,0).设左焦点为F′,则F′(-2,0).由椭圆的定义可得2=|PF|+|PF′|,即|PF′|=2-|PF|,可得|PA|-|PF′|=|PA|+|PF|-2=8-2.由||PA|-|PF′||≤|AF′|=2,可得-2≤8-2≤2,解得3≤≤5,所以9≤m≤25.①又点A在椭圆内,所以+<1(m>4),所以8m-16<m(m-4)(m>4),解得m<6-2(舍)或m>6+2.②由①②得6+2<m≤25,故选A.考点二 圆锥曲线的几何性质核心提炼1.求离心率通常有两种方法(1)求出a,c,代入公式e=.(2)根据条件建立关于a,b,c的齐次式,消去b后,转化为关于e的方程或不等式,即可求得e的值或取值范围.2.与双曲线-=1(a>0,b>0)共渐近线bx±ay=0的双曲线方程为-=λ(λ≠0).例2 (1)设F1,F2分别是椭圆E:+=1(a>b>0)的左、右焦点,过F2的直线交椭圆于A,B两点,且AF1·AF2=0,AF2=2F2B,则椭圆E的离心率为( )A.B.C.D.答案 C解析 ∵AF2=2F2B,设|BF2|=x,则|AF2|=2x,∴|AF1|=2a-2x,|BF1|=2a-x,∵AF1·AF2=0,∴AF1⊥AF2,在Rt△AF1B中,有(2a-2x)2+(3x)2=(2a-x)2,解得x=,∴|AF2|=,|AF1|=,在Rt△AF1F2中,有2+2=(2c)2,整理得=,∴e==.(2)(2020·莆田市第一联盟体联考)已知直线l:y=x-1与抛物线y2=4x相交于A,B两点,M是AB的中点,则点M到抛物线准线的距离为( )A.B.4C.7D.8答案 B解析 由题意可知直线y=x-1过抛物线y2=4x的焦点(1,0),如图,AA′,BB′,MM′都和准线垂直,并且垂足分别是A′,B′,M′,由图象可知|MM′|=(|AA′|+|BB′|),根据抛物线的定义可知|AA′|+|BB′|=|AB|,∴|MM′|=|AB|,联立得x2-6x+1=0,设A,B两点的坐标为(x1,y1),(x2,y2),x1+x2=6,∴|AB|=x1+x2+2=8,∴|MM′|=4.二级结论 抛物线的有关性质:已知抛物线y2=2px(p>0)的焦点为F,直线l过点F且与抛物线交于两点A(x1,y1),B(x2,y2),则(1)|AB|=x1+x2+p=(α为直线l的倾斜角).(2)以AB为直径的圆与抛物线的准线相切.(3)+=.跟踪演练2 (1)已知F是抛物线C:y2=2px(p>0)的焦点,抛物线C的准线与双曲线Γ:-=1(a>0,b>0)的两条渐近线交于A,B两点,若△ABF为等边三角形,则Γ的离心率e等于( )A.B.C.D.答案 D解析 抛物线的焦点坐标为,准线方程为x=-,联立抛物线的准线方程与双曲线的渐近线方程得解得y=±,可得|AB|=,由△ABF为等边三角形,可得p=·,即有=,则e====.(2)已知抛物线C:y2=2px(p>0)的焦点为F,点M(x0,2)是抛物线C上一点,圆M与线段MF相交于点A,且被直线x=截得的弦长为|MA|,若=2,则|AF|等于( )A.B.1C.2D.3答案 B解析 如图所示,由题意知,|MF|=x0+.∵圆M与线段MF相交于点A,且被直线x=截得的弦长为|MA|,∴|MA|=2|DM|=2.∵=2,∴|MF|=|MA|,∴x0=p.又∵点M(x0,2)在抛物线上,∴2p2=8,又∵p>0,∴p=2.∴|MA|=2=2,∴|AF|=1.考点三 直线与圆锥曲线的位置关系核心提炼解决直线与椭圆的位置关系问题,经常利用设而不求的方法,解题要点如下:(1)设直线与椭圆的交点坐标为A(x1,y1),B(x2,y2);(2)联立直线的方程与椭圆的方程;(3)消元得到关于x或y的一元二次方程;(4)利用根与系数的关系设而不求;(5)把题干中的条件转化为含有x1+x2,x1x2或y1+y2,y1y2的式子,进而求解即可.例3 (2020·全国Ⅲ)已知椭圆C:+=1(0<m<5)的离心率为,A,B分别为C的左、右顶点.(1)求C的方程;(2)若点P在C上,点Q在直线x=6上,且|BP|=|BQ|,BP⊥BQ,求△APQ的面积.解 (1)由题设可得=,得m2=,所以C的方程为+=1.(2)设P(x P,y P),Q(6,y Q),根据对称性可设y Q>0,由题意知y P>0.由已知可得B(5,0),直线BP的方程为y=-(x-5),所以|BP|=y P,|BQ|=.因为|BP|=|BQ|,所以y P=1.将y P=1代入C的方程,解得x P=3或-3.由直线BP的方程得y Q=2或8,所以点P,Q的坐标分别为P1(3,1),Q1(6,2);P2(-3,1),Q2(6,8).所以|P1Q1|=,直线P1Q1的方程为y=x,点A(-5,0)到直线P1Q1的距离为,故△AP1Q1的面积为××=;|P2Q2|=,直线P2Q2的方程为y=x+,点A到直线P2Q2的距离为,故△AP2Q2的面积为××=.综上,△APQ的面积为.规律方法 解决直线与圆锥曲线位置关系的注意点(1)注意使用圆锥曲线的定义.(2)引入参数,注意构建直线与圆锥曲线的方程组.(3)注意用好圆锥曲线的几何性质.(4)注意几何关系和代数关系之间的转化.跟踪演练3 (1)(2019·全国Ⅰ)已知椭圆C的焦点为F1(-1,0),F2(1,0),过F2的直线与C 交于A,B两点.若|AF2|=2|F2B|,|AB|=|BF1|,则C的方程为( )A.+y2=1B.+=1C.+=1D.+=1答案 B解析 由题意设椭圆的方程为+=1(a>b>0),连接F1A,令|F2B|=m,则|AF2|=2m,| BF1|=3m.由椭圆的定义知,4m=2a,得m=,故|F2A|=a=|F1A|,则点A为椭圆C的上顶点或下顶点.令∠OAF2=θ(O为坐标原点),则sinθ==.在等腰三角形ABF1中,cos2θ==,因为cos2θ=1-2sin2θ,所以=1-22,得a2=3.又c2=1,所以b2=a2-c2=2,椭圆C的方程为+=1.(2)设F为抛物线y2=2px(p>0)的焦点,斜率为k(k>0)的直线过F交抛物线于A,B两点,若|FA|=3|FB|,则直线AB的斜率为( )A.B.1C.D.答案 D解析 假设A在第一象限,如图,过A,B分别向抛物线的准线作垂线,垂足分别为D,E,过A作EB的垂线,垂足为C,则四边形ADEC为矩形,由抛物线定义可知|AD|=|AF|,|BE|=|BF|,又∵|FA|=3|FB|,∴|AD|=|CE|=3|BE|,即B为CE的三等分点,设|BF|=m,则|BC|=2m,|AF|=3m,|AB|=4m,即|AC|===2m,则tan∠ABC===,即直线AB的斜率k=.专题强化练一、单项选择题1.(2020·福州模拟)已知双曲线-=1(a>0,b>0)的渐近线方程为y=±x,则此双曲线的离心率为( )A. B.C. D.答案 C解析 因为双曲线-=1(a>0,b>0)的渐近线方程为y=±x,所以=,所以双曲线的离心率e====.2.(2020·全国Ⅰ)已知A为抛物线C:y2=2px(p>0)上一点,点A到C的焦点的距离为12,到y轴的距离为9,则p等于( )A.2B.3C.6D.9答案 C解析 设A(x,y),由抛物线的定义知,点A到准线的距离为12,即x+=12.又因为点A到y轴的距离为9,即x=9,所以9+=12,解得p=6.3.已知椭圆C:+=1(a>b>0)的左、右焦点分别为F1,F2,左、右顶点分别为M,N,过F2的直线l交C于A,B两点(异于M,N),△AF1B的周长为4,且直线AM与AN的斜率之积为-,则C的方程为( )A.+=1B.+=1C.+=1D.+y2=1答案 C解析 由△AF1B的周长为4,可知|AF1|+|AF2|+|BF1|+|BF2|=4a=4,解得a=,则M,N(,0).设点A(x0,y0)(x0≠±),由直线AM与AN的斜率之积为-,可得·=-,即y=-(x-3),①又+=1,所以y=b2,②由①②解得b2=2.所以C的方程为+=1.4.设F为双曲线C:-=1(a>0,b>0)的右焦点,O为坐标原点,以OF为直径的圆与圆x2+y2=a2交于P,Q两点.若|PQ|=|OF|,则C的离心率为( )A.B.C.2D.答案 A解析 如图,由题意,知以OF为直径的圆的方程为2+y2=,①将x2+y2=a2记为②式,①-②得x=,则以OF为直径的圆与圆x2+y2=a2的公共弦所在直线的方程为x=,所以|PQ|=2.由|PQ|=|OF|,得2=c,整理得c4-4a2c2+4a4=0,即e4-4e2+4=0,解得e=.5.(2020·潍坊模拟)已知点P为双曲线C:-=1(a>0,b>0)右支上一点,F1,F2分别为C的左、右焦点,直线PF1与C的一条渐近线垂直,垂足为H,若|PF1|=4|HF1|,则该双曲线的离心率为( )A.B.C.D.答案 C解析 如图,取PF1的中点M,连接MF2.由条件可知|HF1|=|PF1|=|MF1|,∵O是F1F2的中点,∴OH∥MF2,又∵OH⊥PF1,∴MF2⊥PF1,∴|F1F2|=|PF2|=2c.根据双曲线的定义可知|PF1|=2a+2c,∴|HF1|=,直线PF1的方程是y=(x+c),即ax-by+ac=0,原点到直线PF1的距离|OH|==a,∴在△OHF1中,a2+2=c2,整理为3c2-2ac-5a2=0,即3e2-2e-5=0,解得e=或e=-1(舍).二、多项选择题6.(2020·新高考全国Ⅰ)已知曲线C:mx2+ny2=1.( )A.若m>n>0,则C是椭圆,其焦点在y轴上B.若m=n>0,则C是圆,其半径为C.若mn<0,则C是双曲线,其渐近线方程为y=±xD.若m=0,n>0,则C是两条直线答案 ACD解析 对于A,当m>n>0时,有>>0,方程化为+=1,表示焦点在y轴上的椭圆,故A正确.对于B,当m=n>0时,方程化为x2+y2=,表示半径为的圆,故B错误.对于C,当m>0,n<0时,方程化为-=1,表示焦点在x轴上的双曲线,其中a=,b =,渐近线方程为y=±x;当m<0,n>0时,方程化为-=1,表示焦点在y轴上的双曲线,其中a=,b=,渐近线方程为y=±x,故C正确.对于D,当m=0,n>0时,方程化为y=±,表示两条平行于x轴的直线,故D正确.7.已知双曲线C过点(3,)且渐近线为y=±x,则下列结论正确的是( )A.C的方程为-y2=1B.C的离心率为C.曲线y=e x-2-1经过C的一个焦点D.直线x-y-1=0与C有两个公共点答案 AC解析 因为渐近线方程为y=±x,所以可设双曲线方程为-=λ,代入点(3,),得λ=,所以双曲线方程为-y2=1,选项A正确;该双曲线的离心率为,选项B不正确;双曲线的焦点为(±2,0),曲线y=e x-2-1经过双曲线的焦点(2,0),选项C正确;把x=y+1代入双曲线方程,得y2-2y+2=0,解得y=,故直线x-y-1=0与曲线C只有一个公共点,选项D不正确.8.已知抛物线C:y2=2px(p>0)的焦点为F,直线l的斜率为且经过点F,直线l与抛物线C交于A,B两点(点A在第一象限),与抛物线的准线交于点D.若|AF|=8,则下列结论正确的是( )A.p=4 B.DF=FAC.|BD|=2|BF|D.|BF|=4答案 ABC解析 如图所示,分别过点A,B作准线的垂线,垂足分别为E,M,连接EF.抛物线C的准线交x轴于点P,则|PF|=p,由于直线l的斜率为,则其倾斜角为60°.又AE∥x轴,∴∠EAF=60°,由抛物线的定义可知,|AE|=|AF|,则△AEF为等边三角形,∴∠EFP=∠AEF =60°,则∠PEF=30°,∴|AF|=|EF|=2|PF|=2p=8,解得p=4,故A正确;∵|AE|=| EF|=2|PF|,PF∥AE,∴F为线段AD的中点,则DF=FA,故B正确;∵∠DAE=60°,∴∠ADE=30°,∴|BD|=2|BM|=2|BF|(抛物线定义),故C正确;∵|BD|=2|BF|,∴| BF|=|DF|=|AF|=,故D错误.三、填空题9.(2019·全国Ⅲ)设F1,F2为椭圆C:+=1的两个焦点,M为C上一点且在第一象限.若△MF1F2为等腰三角形,则M的坐标为________.答案 (3,)解析 不妨令F1,F2分别为椭圆C的左、右焦点,根据题意可知c==4.因为△MF1F2为等腰三角形,所以易知|F1M|=2c=8,所以|F2M|=2a-8=4.设M(x,y),则得所以M的坐标为(3,).10.(2020·全国Ⅰ)已知F为双曲线C:-=1(a>0,b>0)的右焦点,A为C的右顶点,B 为C上的点,且BF垂直于x轴.若AB的斜率为3,则C的离心率为________.答案 2解析 如图,A(a,0).由BF⊥x轴且AB的斜率为3,知点B在第一象限,且B,则k AB==3,即b2=3ac-3a2.又∵c2=a2+b2,即b2=c2-a2,∴c2-3ac+2a2=0,∴e2-3e+2=0.解得e=2或e=1(舍去).故e=2.11.设双曲线mx2+ny2=1的一个焦点与抛物线y=x2的焦点相同,离心率为2,则抛物线的焦点到双曲线的一条渐近线的距离为________.答案 解析 ∵抛物线x2=8y的焦点为(0,2),∴mx2+ny2=1的一个焦点为(0,2),∴焦点在y轴上,∴a2=,b2=-,c=2.根据双曲线三个参数的关系得到4=a2+b2=-,又离心率为2,即=4,解得n=1,m=-,∴此双曲线的方程为y2-=1,则双曲线的一条渐近线方程为x-y=0,则抛物线的焦点(0,2)到双曲线的一条渐近线的距离为d==.12.如图,抛物线C1:y2=2px和圆C2:2+y2=,其中p>0,直线l经过C1的焦点,依次交C1,C2于A,D,B,C四点,则AB·CD的值为________.答案 解析 易知AB·CD=|AB|·|CD|,圆C2的圆心即为抛物线C1的焦点F,当直线l的斜率不存在时,l的方程为x=,所以A,B,C,D,|AB|=|CD|=,所以AB·CD=·=;当直线l的斜率存在时,设A(x1,y1),D(x2,y2),则|AB|=|FA|-|FB|=x1+-=x1,同理|CD|=x2,设l的方程为y=k,由可得k2x2-(pk2+2p)x+=0,则AB·CD=|AB|·|CD|=x1·x2=.综上,AB·CD=.四、解答题13.(2020·全国Ⅱ)已知椭圆C1:+=1(a>b>0)的右焦点F与抛物线C2的焦点重合,C1的中心与C2的顶点重合.过F且与x轴垂直的直线交C1于A,B两点,交C2于C,D两点,且|CD|=|AB|.(1)求C1的离心率;(2)设M是C1与C2的公共点,若|MF|=5,求C1与C2的标准方程.解 (1)由已知可设C2的方程为y2=4cx,其中c=.不妨设A,C在第一象限,由题设得A,B的纵坐标分别为,-;C,D的纵坐标分别为2c,-2c,故|AB|=,|CD|=4c.由|CD|=|AB|得4c=,即3×=2-22,解得=-2(舍去),=.所以C1的离心率为.(2)由(1)知a=2c,b=c,故C1:+=1.设M(x0,y0),则+=1,y=4cx0,故+=1.①由于C2的准线为x=-c,所以|MF|=x0+c,而|MF|=5,故x0=5-c,代入①得+=1,即c2-2c-3=0,解得c=-1(舍去),c=3.所以C1的标准方程为+=1,C2的标准方程为y2=12x.14.已知点F为抛物线E:y2=2px(p>0)的焦点,点A(2,m)在抛物线E上,且到原点的距离为2.(1)求抛物线E的方程;(2)已知点G(-1,0),延长AF交抛物线于点B,证明:以点F为圆心且与直线GA相切的圆必与直线GB相切.(1)解 由题意可得解得p=2,所以抛物线E的方程为y2=4x.(2)证明 设以点F为圆心且与直线GA相切的圆的半径为r.因为点A(2,m)在抛物线E:y2=4x上,所以m=±2,由抛物线的对称性,不妨取A(2,2).由A(2,2),F(1,0)可得直线AF的方程为y=2(x-1),联立得2x2-5x+2=0,解得x=2或x=,从而B.所以直线GB的方程为2x+3y+2=0,易知直线GA的方程为2x-3y+2=0,从而r==.因为点F到直线GB的距离d===r,所以以点F为圆心且与直线GA相切的圆必与直线GB相切.。
新高考数学复习考点知识讲解与专题训练专题31、 双曲线的方程及几何性质一、 双曲线的定义平面内与两个定点F 1,F 2的距离之差的绝对值等于非零常数(小于||F 1F 2)的点的轨迹叫做双曲线.这两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距.集合P ={M ⎪⎪⎪⎪| ||MF 1-||MF 2=2a },||F 1F 2=2c ,其中a ,c 为常数,且a >0,c >0.(1)当a <c 时,点P 的轨迹是双曲线; (2)当a =c 时,点P 的轨迹是两条射线; (3)当a >c 时,点P 不存在. 二 、双曲线的标准方程和几何性质一、常用结论1、过双曲线的一个焦点且与实轴垂直的弦的长为2b 2a,也叫通径.2、与双曲线x 2a 2-y 2b 2=1(a >0,b >0)有共同渐近线的方程可表示为x 2a 2-y 2b2=t (t ≠0).3、双曲线的焦点到其渐近线的距离为b .4、若P 是双曲线右支上一点,F 1,F 2分别为双曲线的左、右焦点,则|PF 1|min =a +c ,|PF 2|min =c -a .题型一、双曲线的方程与渐近线的方程例1、【2020年高考天津】设双曲线C 的方程为22221(0,0)x y a b a b-=>>,过抛物线24y x =的焦点和点(0,)b 的直线为l .若C 的一条渐近线与l 平行,另一条渐近线与l 垂直,则双曲线C 的方程为A .22144x y -=B .2214y x -= C .2214x y -=D .221x y -=【答案】D【解析】由题可知,抛物线的焦点为()1,0,所以直线l 的方程为1yx b+=,即直线的斜率为b -,又双曲线的渐近线的方程为b y x a=±,所以b b a-=-,1b b a-⨯=-,因为0,0a b >>,解得1,1a b ==.故选:D .变式、【2018年高考天津卷理数】已知双曲线22221(0,0)x y a b a b-=>>的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于A ,B 两点. 设A ,B 到双曲线的同一条渐近线的距离分别为1d 和2d ,且126d d +=,则双曲线的方程为A .221412x y -=B .221124x y -=C .22139x y -=D .22193x y -=【答案】C【解析】设双曲线的右焦点坐标为(),0F c (c >0),则A B x x c ==,由22221c y a b -=可得:2b y a=±, 不妨设:22,,,b b A c B c a a ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,双曲线的一条渐近线方程为:0bx ay -=,据此可得:21bc b d c -==,22bc b d c +==, 则12226bcd d b c+===,则23,9b b ==,双曲线的离心率:2c e a ====,据此可得:23a =,则双曲线的方程为22139x y -=.本题选择C 选项.例2、【2018年高考全国Ⅱ理数】双曲线22221(0,0)x y a b a b-=>>的离心率A.y =B.y =C.2y x =±D.2y x =±【答案】A【解析】因为c e a ==,所以2222221312b c a e a a-==-=-=,所以b a =因为渐近线方程为by x a=±,所以渐近线方程为y =,故选A . 变式、(2020届山东省济宁市高三上期末)已知12,F F 是双曲线22221(0,0)x y a b a b -=>>的左、右焦点,若点2F 关于双曲线渐近线的对称点A 满足11F AO AOF ∠=∠(O 为坐标原点),则双曲线的渐近线方程为( )A .2y x =±B .y =C .y =D .y x =±【答案】B【解析】如图所示:由对称性可得:M 为2AF 的中点,且2AF OM ⊥, 所以12F A AF ⊥,因为11F AO AOF ∠=∠,所以11AF FO c ==, 故而由几何性质可得160AFO ∠=,即260MOF ∠=,故渐近线方程为y =, 故选B.题型二、双曲线的离心率例3、【2018年高考全国III 理数】设1F ,2F 是双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点,O 是坐标原点.过2F 作C 的一条渐近线的垂线,垂足为P .若1|||PF OP =,则C 的离心率为AB .2CD 【答案】C【解析】由题可知2PF b =,2OF c =,PO a ∴=,在2Rt POF △中,222cos PF b PF O OF c∠==, 在12Rt PF F △中,22221212212cos 2PF F F PF b PF O PF F F c∠+-==,b c=,即223c a =,e ∴=C .变式1、(2020届山东省潍坊市高三上期末)已知点P 为双曲线()2222:10,0x y C a b a b -=>>右支上一点,12,F F 分别为C 的左,右焦点,直线1PF 与C 的一条渐近线垂直,垂足为H ,若114PF HF =,则该双曲线的离心率为( )A B C .53D .73【答案】C【解析】取1PF 的中点M ,连接2MF ,由条件可知1111142HF PF MF ==, O 是12F F 的中点,2//OH MF ∴又1OH PF ⊥,21MF PF ∴⊥1222F F PF c ∴==,根据双曲线的定义可知122PF a c =+,12a cHF +∴=, 直线1PF 的方程是:()a y x c b=+ ,即0ax by ac -+= ,原点到直线的距离OH a ==,1OHF ∴∆中,2222a c a c +⎛⎫+= ⎪⎝⎭,整理为:223250c ac a --= , 即23250e e --= ,解得:53e = ,或1e =-(舍)故选:C变式2、【2020年高考全国I 卷理数】已知F 为双曲线2222:1(0,0)x y C a b a b -=>>的右焦点,A 为C 的右顶点,B 为C 上的点,且BF 垂直于x 轴.若AB 的斜率为3,则C 的离心率为 .【答案】2【解析】联立22222221x cx y a b a b c=⎧⎪⎪-=⎨⎪⎪=+⎩,解得2x c b y a =⎧⎪⎨=±⎪⎩,所以2bBF a =.依题可得,3BF AF =,AF c a =-,即()2223b c a a c a a c a -==--,变形得3c a a +=,2c a =,因此,双曲线C 的离心率为2. 故答案为:2.变式3、【2019年高考全国Ⅰ卷理数】已知双曲线C :22221(0,0)x y a b a b-=>>的左、右焦点分别为F 1,F 2,过F 1的直线与C 的两条渐近线分别交于A ,B 两点.若1F A AB =,120FB F B ⋅=,则C 的离心率为____________.【答案】2 【解析】如图,由1,F A AB =得1.F A AB =又12,OF OF =得OA 是三角形12F F B 的中位线,即22,2.BF OA BF OA =∥由120FB F B ⋅=,得121,,F B F B OA F A ⊥∴⊥∴1OB OF =,1AOB AOF ∠=∠, 又OA 与OB 都是渐近线,∴21,BOF AOF ∠=∠又21πBOF AOB AOF ∠+∠+∠=,∴2160,BOF AOF BOA ∠=∠=∠=又渐近线OB 的斜率为tan 60ba=︒=,∴该双曲线的离心率为2c e a ====. 题型三、双曲线的综合问题例4、【2020年高考全国Ⅱ卷理数】设O 为坐标原点,直线x a =与双曲线2222:1(0,0)x y C a b a b -=>>的两条渐近线分别交于,D E 两点,若ODE 的面积为8,则C 的焦距的最小值为 A .4B .8C .16D .32【答案】B 【解析】2222:1(0,0)x y C a b a b-=>>, ∴双曲线的渐近线方程是by x a=±, 直线x a =与双曲线2222:1(0,0)x y C a b a b -=>>的两条渐近线分别交于D ,E两点不妨设D 为在第一象限,E 在第四象限,联立x ab y x a =⎧⎪⎨=⎪⎩,解得x a y b =⎧⎨=⎩,故(,)D a b ,联立x ab y x a =⎧⎪⎨=-⎪⎩,解得x a y b =⎧⎨=-⎩,故(,)E a b -,∴||2ED b =,∴ODE 面积为:1282ODE S a b ab =⨯==△,双曲线2222:1(0,0)x y C a b a b -=>>,∴其焦距为28c ===,当且仅当a b ==∴C 的焦距的最小值:8.故选:B .变式1、(2020届山东省临沂市高三上期末)已知P 为双曲线C :2214y x -=右支上一点,1F ,2F 分别为C 的左、右焦点,且线段12A A ,12B B 分别为C 的实轴与虚轴.若12A A ,12B B ,1PF 成等比数列,则2PF =______.【答案】6【解析】2214y x -=1222A A a ∴==,1224B B b ==,12A A ,12B B ,1PF 成等比数列212112A A PFB B ∴⋅=,解得18PF =,2826PF a ∴=-=故答案为:6变式2、【2020年高考全国Ⅲ卷理数】.设双曲线C :22221x y a b-=(a >0,b >0)的左、右焦点分别为F1,F 2,P 是C 上一点,且F 1P ⊥F 2P .若△PF 1F 2的面积为4,则a =A . 1B . 2C . 4D . 8【答案】A【解析】5ca=,c ∴=,根据双曲线的定义可得122PF PF a -=, 12121||42PF F PF F S P =⋅=△,即12||8PF PF ⋅=, 12F P F P ⊥,()22212||2PF PF c ∴+=,()22121224PF PF PF PF c ∴-+⋅=,即22540a a -+=,解得1a =,故选:A .1、【2019年高考浙江卷】渐近线方程为x ±y =0的双曲线的离心率是A .2B .1C D .2【答案】C【解析】因为双曲线的渐近线方程为0x y ±=,所以a b =,则c =,所以双曲线的离心率ce a==故选C. 2、【2018年高考浙江卷】双曲线2213x y -=的焦点坐标是A .(0),0) B .(−2,0),(2,0) C .(0,,(0 D .(0,−2),(0,2) 【答案】B【解析】设2213x y -=的焦点坐标为(,0)c ±,因为222314c a b =+=+=,2c =, 所以焦点坐标为(2,0)±,故选B .3、(2020届山东省烟台市高三上期末)若双曲线()222210,0x y a b a b-=>>的,则其渐近线方程为( )A .230x y ±=B .320x y ±=C .20x y ±=D .230x y ±=【答案】C【解析】由题,离心率c e a ===,解得12b a =,因为焦点在x 轴上,则渐近线方程为12y x =±,即20x y ±=故选:C4、【2019年高考全国Ⅲ卷理数】双曲线C :2242x y -=1的右焦点为F ,点P 在C 的一条渐近线上,O 为坐标原点,若=PO PF ,则△PFO 的面积为A .4B .2C .D .【答案】A【解析】由2,,a b c ====,2P PO PF x =∴=, 又P 在C 的一条渐近线上,不妨设为在by x a=上,则P P b y x a =⋅==1122PFO P S OF y ∴=⋅==△,故选A . 5、【2018年高考全国I 理数】已知双曲线22:13x C y -=,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M ,N .若OMN △为直角三角形,则||MN =A .32B .3C .D .4【答案】B【解析】由题可知双曲线C 的渐近线的斜率为3±,且右焦点为(2,0)F ,从而可得30FON ∠=︒,所以直线MN 的倾斜角为60︒或120︒,根据双曲线的对称性,设其倾斜角为60︒,可以得出直线MN 的方程为2)y x =-,分别与两条渐近线y x =和y x =联立,求得M ,3(,2N ,所以||3MN ==,故选B .6、(2020届山东省德州市高三上期末)双曲线22221x y a b-=(0a >,0b >)的右焦点为()1F ,点A 的坐标为()0,1,点P 为双曲线左支上的动点,且1APF ∆周长的最小值为8,则双曲线的离心率为( )AB C .2 D .【答案】D【解析】如下图所示:设该双曲线的左焦点为点F ,由双曲线的定义可得12PF PF a =+,所以,1APF ∆的周长为11123262AP AF PF AF AP PF a AF a a ++=+++≥++=+,当且仅当A 、P 、F 三点共线时,1APF ∆的周长取得最小值,即628a +=,解得1a =.因此,该双曲线的离心率为e == 故选:D.7、【2020年高考北京】已知双曲线22:163x y C -=,则C 的右焦点的坐标为_________;C 的焦点到其渐近线的距离是_________.【答案】()3,0【解析】在双曲线C 中,a =b =3c ==,则双曲线C 的右焦点坐标为()3,0,双曲线C 的渐近线方程为2y x =±,即0x =,所以,双曲线C=.故答案为:()3,08、【2019年高考江苏卷】在平面直角坐标系xOy 中,若双曲线2221(0)y x b b-=>经过点(3,4),则该双曲线的渐近线方程是 ▲ .【答案】y =【解析】由已知得222431b-=,解得b =b =,因为0b >,所以b =因为1a =,所以双曲线的渐近线方程为y =.9、【2020年高考江苏】在平面直角坐标系xOy 中,若双曲线222105()x y a a -=>的一条渐近线方程为y =,则该双曲线的离心率是 ▲ . 【答案】32【解析】双曲线22215x y a -=,故b =由于双曲线的一条渐近线方程为2y x =,即22b a a =⇒=,所以3c ==,所以双曲线的离心率为32c a =.故答案为:3221/ 21。
重难点13六种双曲线解题方法(核心考点讲与练)能力拓展题型一:待定系数法求双曲线方程一、单选题1.(2022·河南·模拟预测(文))已知双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点分别为1F ,2F ,一条渐近线方程为y =,过双曲线C 的右焦点2F 作倾斜角为3π的直线l 交双曲线的右支于A ,B 两点,若1AF B △的周长为36,则双曲线C 的标准方程为()A .22124x y -=B .22142x y -=C .2212y x -=D .2212x y -=2.(2022·四川·宜宾市教科所三模(理))若等轴双曲线的焦距为4,则它的一个顶点到一条渐近线的距离为()A .1B .32C .2D .33.(2022·宁夏·石嘴山市第一中学三模(理))双曲线E 与椭圆22:162x y C +=焦点相同且离心率是椭圆C 离E 的标准方程为()A .2213y x -=B .2221yx -=C .22122x y -=D .2213x y -=4.(2022·内蒙古包头·二模(理))已知1F ,2F 是双曲线()2222:10,0x yC a b a b-=>>的两个焦点,R 是C 上的一点,且12120F RF =∠︒,1241::RF RF =,C 经过点2,3Q ⎛ ⎝⎭,则C 的实轴长为()AB .C .6D .3二、多选题5.(2022·江苏·扬州中学高三阶段练习)已知双曲线E :()222210x y a b a b-=>>的左、右焦点分别为()13,0F -,()23,0F ,两条渐近线的夹角正切值为直线l :30kx y k --=与双曲线E 的右支交于A ,B 两点,设1F AB的内心为I ,则()A .双曲线E 的标准方程为22163x y -=B .满足AB =l 有2条C .2IF AB⊥D .1F AB 与IAB △的面积的比值的取值范围是(]2,66.(2022·全国·高三专题练习)已知双曲线22:1C mx ny +=,其焦点()0,5到渐近线的距离为3,则下列说法正确的是()A .双曲线C 的方程为221169y x -=B .双曲线C 的渐近线方程为34y x=±C .双曲线C 的离心率为54D .双曲线C 上的点到焦点距离的最小值为17.(2022·全国·高三专题练习)已知双曲线1C :2222111x y a b -=(10a >,10b >)的一条渐近线的方程为y =,且过点31,2⎛⎫ ⎪⎝⎭,椭圆2C :22221x ya b+=(0a b >>)的焦距与双曲线1C 的焦距相同,且椭圆2C 的左右焦点分别为12,F F ,过1F 的直线交2C 于()11,A y (10y >),B 两点,则下列叙述正确的是()A .双曲线的离心率为2B .双曲线的实轴长为12C .点B 的横坐标的取值范围为()2,1--D .点B 的横坐标的取值范围为()3,1--三、填空题8.(2022·福建宁德·模拟预测)若过点)的双曲线的渐近线为2y x =±,则该双曲线的标准方程是___________.四、解答题9.(2022·全国·模拟预测)已知双曲线()2222:10,0x y E a b a b-=>>的一条渐近线的倾斜角为30 ,点(在双曲线E 上.(1)求双曲线E 的标准方程;(2)若动直线l 与双曲线E 相切,过点()2,0P 作直线l 的垂线,垂足为H ,试判断OH 是否为定值?如果是,请求出该值;如果不是,请说明理由.10.(2022·上海市七宝中学高三期中)双曲线C :22221x y a b-=(a >0,b >0)经过点),且渐近线方程为y x =±.(1)求a ,b 的值;(2)点A ,B ,D 是双曲线C 上不同的三点,且B ,D 两点关于y 轴对称,ABD △的外接圆经过原点O .求证:点A 与点B 的纵坐标互为倒数;(3)在(2)的条件下,试问是否存在一个定圆与直线AB 相切,若有,求出定圆方程,没有说明理由.11.(2022·全国·高三专题练习)如图,已知双曲线C :2221x y a-=(0a >)的右焦点F ,点,A B 分别在C 的两条渐近线上,AF x ⊥轴,,AB OB BF ⊥∥OA (O 为坐标原点).(1)求双曲线C 的方程;(2)过C 上一点()()00,0o P x y y ≠的直线002:1x xl y y a -=与直线AF 相交于点M ,与直线32x =相交于点N ,证明:当点P 在C 上移动时,MFNF恒为定值,并求此定值.12.(2022·河北衡水中学一模)在平面直角坐标系xOy中,双曲线()2222:10,0y xC a b a b-=>>,实轴长为4.(1)求C 的方程;(2)如图,点A 为双曲线的下顶点,直线l 过点()0,P t 且垂直于y 轴(P 位于原点与上顶点之间),过P 的直线交C 于G ,H 两点,直线AG ,AH 分别与l 交于M ,N 两点,若O ,A ,N ,M 四点共圆,求点P 的坐标.13.(2022·河南·三模(理))已知双曲线()2222:10,0x y C a b a b-=>>的右焦点为(),0F c ,a ,b ,c 成等差数列,过F 的直线交双曲线C 于P 、Q 两点,若双曲线C 过点165,3T ⎛⎫- ⎪⎝⎭.(1)求双曲线C 的标准方程;(2)过双曲线C 的左顶点A 作直线AP 、AQ ,分别与直线x m =交于M 、N 两点,是否存在实数m ,使得以MN 为直径的圆恒过F ,若存在,求出m 的值;若不存在,请说明理由.题型二:相同渐近线双曲线方程求法一、单选题1.(2022·浙江嘉兴·模拟预测)已知双曲线C 的渐近线方程为340x y ±=,且焦距为10,则双曲线C 的标准方程是()A .221916x y -=B .221169x y -=C .221169x y -=或221916y x -=D .221916x y -=或221169y x -=2.(2020·全国·高三专题练习)已知双曲线C 与双曲线22126x y -=有公共的渐近线,且经过点(P -,则双曲线C 的离心率为().A BC .4D .23.(2020·全国·高三专题练习)已知双曲线C 的一个焦点为()0,5,且与双曲线2214x y -=的渐近线相同,则双曲线C 的标准方程为A .2214y x -=B .221520y x -=C .221205x y -=D .2214x y -=二、多选题4.(2020·全国·高三阶段练习)已知双曲线C 过点(且渐近线为y =,则下列结论正确的是()A .C 的方程为2213y x -=B .C 的离心率为2C .曲线2331x y e -=-经过C 的一个焦点D 10y --=与C 有两个公共点5.(2021·全国·高三专题练习)已知双曲线2222:1(0,0)x y C a b a b-=>>的右焦点为F ,一条渐近线过点(,则下列结论正确的是()A .双曲线CB .双曲线C 与双曲线22124y x -=有相同的渐近线C .若F 到渐近线的距离为2,则双曲线C 的方程为22184x y -=D .若直线2:a l xc=与渐近线围成的三角形面积为则焦距为三、填空题6.(2022·辽宁·模拟预测)焦点在x 轴上的双曲线C 与双曲线22149x y-=有共同的渐近线,且C 的焦点到一条渐近线的距离为C 的方程为______.7.(2022·全国·高三专题练习)若双曲线2222:1y x C a b-=(0a >,0b >)与双曲线22:146x y D -=有相同的渐近线,且C 经过点()2,6,则C 的实轴长为_________四、解答题8.(2022·全国·高三专题练习)已知双曲线()22122:10,0x y C a b a b-=>>与222:193x x C -=有相同的渐近线,点()2,0F 为1C 的右焦点,,A B 为1C 的左,右顶点.(1)求双曲线1C 的标准方程;(2)若直线l 过点F 交双曲线1C 的右支于,M N 两点,设直线,AM BN 斜率分别为12,k k ,是否存在实数入使得12k k λ=?若存在,求出λ的值;若不存在,请说明理由.题型三:直接法解决离心率问题一、单选题1.(2022·广东·佛山市南海区艺术高级中学模拟预测)已知双曲线的方程2214x y -=,则该双曲线的离心率为()A BC .2D 2.(2022·黑龙江·哈九中模拟预测(理))如图1所示,双曲线具有光学性质:从双曲线右焦点发出的光线经过双曲线镜面反射,其反射光线的反向延长线经过双曲线的左焦点.若双曲线()2222:10,0x y E a b a b-=>>的左、右焦点分别为1F ,2F ,从2F 发出的光线经过图2中的A ,B 两点反射后,分别经过点C 和D .且3cos 5BAC ∠=-,AB BD ⊥,则E 的离心率为()A B .3C D .33.(2022·浙江金华·三模)已知双曲线C :()222210,0x y a b a b-=>>,O 为坐标原点,F 为双曲线C 的左焦点,若C 的右支上存在一点P ,使得OFP △外接圆M 的半径为1,且四边形MFOP 为菱形,则双曲线C 的离心率是()A 1B 1C 1D .24.(2022·重庆八中高三阶段练习)如图,已知1F ,2F 为双曲线E :22221(0,0)x y a b a b -=>>的左、右焦点,过点1F ,2F 分别作直线1l ,2l 交双曲线E 于A ,B ,C ,D 四点,使得四边形ABCD 为平行四边形,且以AD 为直径的圆过1F ,11DF AF =,则双曲线E 的离心率为()A BC .52D .25.(2022·贵州黔东南·一模(理))已知双曲线2222:1(0,0)x y C a b a b-=>>,直线2x a =与C 交于A 、B 两点(A在B 的上方),DA AB = ,点E 在y 轴上,且EA x ∥轴.若BDE 的内心到y 轴的距离为43a,则C 的离心率为().A .2B C D 二、多选题6.(2022·山东烟台·一模)已知双曲线C :22145x y -=,1F ,2F 为C 的左、右焦点,则()A .双曲线()221045x y m m m-=>++和C 的离心率相等B .若P 为C 上一点,且1290F PF ∠=︒,则12F PF △的周长为6+C .若直线1y tx =-与C 没有公共点,则2t <-或2t >D .在C 的左、右两支上分别存在点M ,N 使得114F M F N=三、填空题7.(2022·安徽·合肥一中模拟预测(理))已知双曲线C :22214x y b-=(0b >),以C 的焦点为圆心,3为半径的圆与C 的渐近线相交,则双曲线C 的离心率的取值范围是________________.8.(2022·山东日照·二模)如图1所示,双曲线具有光学性质:从双曲线右焦点发出的光线经过双曲线镜面反射,其反射光线的反向延长线经过双曲线的左焦点.若双曲线()2222:10,0x y E a b a b-=>>的左、右焦点分别为1F ,2F ,从2F 发出的光线经过图2中的A ,B 两点反射后,分别经过点C 和D ,且4cos 5BAC ∠=-,AB BD ⊥,则E 的离心率为___________.9.(2022·浙江·三模)已知双曲线222:1(0)4x y C b b-=>的两个焦点分别为12,F F ,点()00,P x y 是双曲线第一象限上一点,在点P 处作双曲线C 的切线l ,若点12,F F 到切线l 的距离之积为3,则双曲线C 的离心率为_______.四、解答题10.(2022·河北张家口·三模)已知0b a >>,点)A,2B b ⎛⎫ ⎪ ⎪⎝⎭,动点P满足||||PA PB =,点P 的轨迹为曲线C .(1)求曲线C 的方程;(2)直线y kx m =+与曲线C 相切,与曲线2222:1x yE a b-=交于M 、N 两点,且π2MON ∠=(O 为坐标原点),求曲线E 的离心率.题型四:构造齐次方程法求离心率的值或范围一、单选题1.(2022·湖北省天门中学模拟预测)已知共焦点的椭圆和双曲线,焦点为1F ,2F ,记它们其中的一个交点为P ,且12120F PF ∠=︒,则该椭圆离心率1e 与双曲线离心率2e 必定满足的关系式为()A .1213e e 144+=B .221231e e 144+=C .22123114e 4e +=D .22121314e 4e +=2.(2022·浙江·赫威斯育才高中模拟预测)已知1F ,2F 分别是双曲线2222:1(0,0)x y C a b a b -=>>的左、右焦点,过1F 的直线l 与双曲线C 左、右支分别交于A ,B 两点,若2||AB BF =,12BF F △2,双曲线C的离心率为e ,则2e =()AB .2C.2D.5+3.(2022·浙江·模拟预测)已知双曲线22221(0,0)x y a b a b-=>>的左、右焦点分别为12,F F ,M 为右支上一点,2112120,MF F MF F ∠=︒ 的内切圆圆心为Q ,直线MQ 交x 轴于点N ,||2||MQ QN =,则双曲线的离心率为()A .54B .43CD二、多选题4.(2022·全国·模拟预测)已知O 为坐标原点,双曲线()2222:10,0x y C a b a b-=>>的右焦点为F ,l 是C 的一条渐近线,以F 为圆心,a 为半径的圆与l 交于A ,B 两点,则()A .过点O 且与圆F 相切的直线与双曲线C 没有公共点B .CC .若0FA FB ⋅>,则C的离心率的取值范围是⎝D .若OA AB =uu r uu u r,则C的离心率为3三、双空题5.(2022·湖北武汉·模拟预测)已知1F ,2F ,是双曲线C :22213x yb-=的左右焦点,过1F 的直线与双曲线左支交于点A ,与右支交于点B ,12AF F △与12BF F △内切圆的圆心分别为1I ,2I ,半径分别为1r ,2r ,则1I 的横坐标为__________;若12:1:3r r =,则双曲线离心率为__________.四、填空题6.(2022·河北·模拟预测)已知12,F 分别为双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点,过点1F 的直线与双曲线C 的左、右两支分别交于,M N 两点,且()12112221sin 2,0sin 3NF F MF MN F F NF NF F ∠∠=++⋅= ,则双曲线C 的离心率是__________.7.(2022·福建三明·模拟预测)已知双曲线()222210,0x y a b a b -=>>的左、右焦点分别为1F 、2F ,双曲线上一点A 关于原点O 对称的点为B ,且满足110AF BF ⋅= ,21tan 3ABF ∠=,则该双曲线的离心率为___________.8.(2022·安徽马鞍山·三模(文))已知双曲线E 的焦点在x 轴上,中心为坐标原点,F 为E 的右焦点,过点F 作直线1l 与E 的左右两支分别交于A ,B 两点,过点F 作直线2l 与E 的右支交于C ,D 两点,若点B 恰为ACD △的重心,且ACD △为等腰直角三角形,则双曲线E 的离心率为___________.五、解答题9.(2022·全国·高三专题练习)设A ,B 为双曲线2222:1x y C a b-=(0,0)a b >>的左、右顶点,直线l 过右焦点F 且与双曲线C 的右支交于M ,N 两点,当直线l 垂直于x 轴时,AMN 为等腰直角三角形.(1)求双曲线C 的离心率;(2)已知直线AM ,AN 分别交直线2ax =于,P Q 两点,当直线l 的倾斜角变化时,以PQ 为直径的圆是否过定点,若过定点,求出定点的坐标;若不过定点,请说明理由.10.(2021·全国·高三专题练习)设双曲线1C 的方程为22221(0,0)x y a b a b-=>>,A 、B 为其左、右两个顶点,P 是双曲线1C 上的任意一点,引QB PB ⊥,QA PA ⊥,AQ 与BQ 交于点Q .(1)求Q 点的轨迹方程;(2)设(1)中所求轨迹为2C ,1C 、2C 的离心率分别为1e 、2e ,当1e ≥2e 的取值范围.题型五:渐近线综合问题一、单选题1.(2022·安徽·安庆一中高三阶段练习(文))已知O 为坐标原点,双曲线2222:1(0,0)x y C a b a b-=>>的右焦点为(),0F c ,离心率3e =,过F 的直线与C 的两条渐近线的交点分别为,,A B OAB 为直角三角形,3AB =,则C 的方程为()A .22142x y -=B .2213x y -=C .22163x y -=D .22184x y -=2.(2022·山西吕梁·三模(文))已知双曲线2222:1(0,0)x y C a b a b -=>>的离心率e 是它的一条渐近线斜率的2倍,则e =()AB C D .23.(2022·江西宜春·模拟预测(文))若双曲线()222210,0x y a b a b-=>>的一个顶点为A ,过点A 的直线330x y --=与双曲线只有一个公共点,则该双曲线的焦距为()A .B .C .D .4.(2022·四川遂宁·模拟预测(文))设双曲线C :22221x y a b-=(0a >,0b >)的左、右焦点是1F ,2F ,O为原点,若以12F F 为直径的圆与C 的渐近线的一个交点为P ,且1=F P ,则C 的渐近线方程为()A .y =B .y x=±C .y =D .y =5.(2022·海南·模拟预测)已知双曲线222:1(0)y E x b b-=>的一条渐近线与直线20x y +=垂直,则E 的焦点坐标为()A .⎛⎫ ⎪ ⎪⎝⎭B .⎛⎫⎪ ⎪⎝⎭C .(D .(二、多选题6.(2022·福建南平·三模)已知双曲线C 的方程为()222210,0x y a b a b-=>>,1F ,2F 分别为双曲线C 的左、右焦点,过2F 且与x 轴垂直的直线交双曲线C 于M ,N 两点,又8MN a =,则()A .双曲线C 的渐近线方程为2y x=±B .双曲线C 的顶点到两渐近线距离的积的5倍等于焦点到渐近线距离的平方C .双曲线C 的实轴长、虚轴长、焦距成等比数列D .双曲线C 上存在点P ,满足213PF PF =7.(2022·湖南·一模)已知双曲线2222:1(0,0)x y C a b a b-=>>的左焦点为F ,过点F 作C 的一条渐近线的平行线交C 于点A ,交另一条渐近线于点B .若2=FA AB ,则下列说法正确的是()A .双曲线C 的渐近线方程为2y x =±B .双曲线CC .点A 到两渐近线的距离的乘积为23b D .O 为坐标原点,则tan AOB ∠=8.(2022·全国·高三专题练习)下列双曲线的渐近线方程为12y x =±的是()A .2214x y -=B .22142x y -=C .2214y x -=D .221416y x -=三、填空题9.(2022·全国·模拟预测)已知1F ,2F 分别是双曲线()2222:10,0x yC a b a b-=>>的左、右焦点,则下列说法正确的序号是___________.①122a F F >;②若a b =,则双曲线C ;③若点P 在双曲线C 的右支上,1PF 与y 轴交于M ,112PM F P =-,则22bPF a =;④若双曲线C 35.四、解答题10.(2022·全国·模拟预测)已知双曲线()22220,0:1T a x y b b a >->=的一条渐近线1l 的方程为3y x =,且右焦点F 到1l 的距离为1.(1)求双曲线T 的标准方程;(2)若点P 为直线1l 上一点,倾斜角为60︒的直线l '与双曲线T 的右支交于M ,N 两点,且PMN 为等边三角形,求直线l '在x 轴上的截距.题型六:利用自变量范围求离心率范围一、单选题1.(2022·山西太原·二模(理))已知双曲线()222210,0x y a b a b-=>>的右焦点为()F ,点Q 为双曲线左支上一动点,圆221x y +=与y 轴的一个交点为P ,若8PQ QF +≥,则双曲线离心率的最大值为()AB C D .2.(2022·全国·高三专题练习)已知双曲线C :22221x y a b-=(0a >,0b >)的右焦点F (0),点Q 是双曲线C 的左支上一动点,圆E :221x y +=与y 轴的一个交点为P ,若13PQ QF PF ++≥,则双曲线C 的离心率的最大值为()A .3B .3C .5D .3.(2022·全国·高三专题练习(文))已知点F 为双曲线2222:1(,0)x y C a b a b -=>的右焦点,直线y kx =,k ∈⎣与双曲线C 交于A ,B 两点,若AF BF ⊥,则该双曲线的离心率的取值范围是()A .+B .1⎤⎦C .1⎡⎤⎣⎦D .2⎡⎣4.(2022·全国·高三专题练习)已知双曲线2222:1(0,0)x y C a b a b -=>>,若双曲线不存在以点()2,a a 为中点的弦,则双曲线离心率e 的取值范围是()A .1,3⎛ ⎝⎦B .23⎣⎦C .3⎡⎫+∞⎪⎢⎪⎣⎭D .2⎫+∞⎪⎪⎣⎭二、多选题5.(2022·全国·高三专题练习)已知曲线C :()22142x y m R m m +=∈--,则下列说法正确的是()A .若24m <<,则曲线C 为椭圆B .若4m >,则曲线C 为焦点在y 轴上的双曲线C .若曲线C 为双曲线,则其焦距是定值D .若曲线C 为焦点在x三、填空题6.(2021·重庆一中高三阶段练习)已知椭圆C :()222124x y a a +=>的左、右焦点分别为1F ,2F ,若C 上存在点P 使得12PF PF ⊥,则双曲线Γ:22218x y a -=的离心率的取值范围是______.7.(2022·浙江绍兴·高三期末)已知12,F F 是双曲线2222:1(0,0)x y C a b a b-=>>.左,右焦点,若C 上存在一点M ,使得123MF MF MO +=成立,其中O 是坐标原点,则C 的离心率的取值范围是__________.四、解答题8.(2021·新疆昌吉·高三阶段练习(文))已知双曲线22221(0,0)x y a b a b-=>>的左、右焦点分别为12F F 、,点P 在双曲线的右支上(点P 不在x 轴上),且125PF PF =.(1)用a 表示12,PF PF ;(2)若12F PF ∠是钝角,求双曲线离心率e 的取值范围.9.(2022·全国·高三专题练习)如图,已知梯形ABCD 中2AB CD =,点E 分有向线段AC 所成的比为λ,双曲线过C 、D 、E 三点,且以A 、B 为焦点当2334λ≤≤时,求双曲线离心率e 的取值范围.高考一轮复习专项。
抛物线【九大题型】专练【题型1 抛物线的定义及其应用】........................................................................................................................3【题型2 抛物线的标准方程】................................................................................................................................5【题型3 抛物线的焦点坐标及准线方程】............................................................................................................6【题型4 抛物线的轨迹方程】................................................................................................................................7【题型5 抛物线上的点到定点的距离及最值】....................................................................................................9【题型6 抛物线上的点到定点和焦点距离的和、差最值】..............................................................................11【题型7 抛物线的焦半径公式】..........................................................................................................................14【题型8 抛物线的几何性质】..............................................................................................................................16【题型9 抛物线中的三角形(四边形)面积问题】 (18)1、抛物线【知识点1 抛物线及其性质】1.抛物线的定义(1)定义:平面内与一个定点F和一条定直线l(l不经过点F)的距离相等的点的轨迹叫作抛物线.点F叫作抛物线的焦点,直线l叫作抛物线的准线.(2)集合语言表示设点M(x,y)是抛物线上任意一点,点M到直线l的距离为d,则抛物线就是点的集合P={M||MF|=d}.2.抛物线的标准方程与几何性质(0,0)(0,0)3.抛物线与椭圆、双曲线几何性质的差异抛物线与椭圆、双曲线几何性质的差异:①它们都是轴对称图形,但椭圆和双曲线又是中心对称图形;②顶点个数不同,椭圆有4个顶点,双曲线有2个顶点,抛物线只有1个顶点;③焦点个数不同,椭圆和双曲线各有2个焦点,抛物线只有1个焦点;④离心率取值范围不同,椭圆的离心率范围是0<e<1,双曲线的离心率范围是e>1,抛物线的离心率是e=1;⑤椭圆和双曲线都有两条准线,而抛物线只有一条准线;⑥椭圆是封闭式曲线,双曲线和抛物线都是非封闭式曲线.【知识点2 抛物线标准方程的求解方法】1.抛物线标准方程的求解待定系数法:求抛物线标准方程的常用方法是待定系数法,其关键是判断焦点位置、开口方向,在方程的类型已经确定的前提下,由于标准方程只有一个参数p,只需一个条件就可以确定抛物线的标准方程.【知识点3 抛物线的焦半径公式】1.焦半径公式设抛物线上一点P的坐标为,焦点为F.(1)抛物线:;(2)抛物线:(3)抛物线:;(4)抛物线:.注:在使用焦半径公式时,首先要明确抛物线的标准方程的形式,不同的标准方程对应于不同的焦半径公式.【知识点4 与抛物线有关的最值问题的解题策略】1.与抛物线有关的最值问题的两个转化策略(1)转化策略一:将抛物线上的点到准线的距离转化为该点到焦点的距离,构造出“两点之间线段最短”“三角形两边之和大于第三边”,使问题得以解决.(2)转化策略二:将抛物线上的点到焦点的距离转化为到准线的距离,利用“与直线上所有点的连线中垂线段最短”原理解决.【方法技巧与总结】1.通径:过焦点与对称轴垂直的弦长等于2p.2.抛物线P,也称为抛物线的焦半径.【题型1 抛物线的定义及其应用】【例1】(2024·贵州贵阳·二模)抛物线y2=4x上一点M与焦点间的距离是10,则M到x轴的距离是()A.4B.6C.7D.9【解题思路】借助抛物线定义计算即可得.【解答过程】抛物线y2=4x的准线为x=―1,由抛物线定义可得x M+1=10,故x M=10―1=9,则|y M|===6,即M到x轴的距离为6.故选:B.【变式1-1】(2024·河北·模拟预测)已知点P为平面内一动点,设甲:P的运动轨迹为抛物线,乙:P到平面内一定点的距离与到平面内一定直线的距离相等,则()A.甲是乙的充分条件但不是必要条件B.甲是乙的必要条件但不是充分条件C.甲是乙的充要条件D.甲既不是乙的充分条件也不是乙的必要条件【解题思路】根据已知条件,结合充分条件、必要条件的定义,即可求解.【解答过程】解:当直线经过定点时,点的轨迹是过定点且垂直于该直线的另一条直线,当直线不经过该定点时,点的轨迹为抛物线,故甲是乙的充分条件但不是必要条件.故选:A.【变式1-2】(2024·北京大兴·三模)已知抛物线y2=4x的焦点为F,过F且斜率为―1的直线与直线x=―1交于点A,点M在抛物线上,且满足|MA|=|MF|,则|MF|=()A.1B C.2D.【解题思路】由题意先求出过F且斜率为―1的直线方程,进而可求出点A,接着结合点M在抛物线上且|MA|=|MF|可求出x M,从而根据焦半径公式|MF|=x M+1即可得解.【解答过程】由题意可得F(1,0),故过F且斜率为―1的直线方程为y=―(x―1)=―x+1,令x=―1⇒y=2,则由题A(―1,2),因为|MA|=|MF|,所以MA垂直于直线x=―1,故y M=2,又M 在抛物线上,所以由22=4x M ⇒x M =1,所以|MF |=x M +1=2.故选:C.【变式1-3】(2024·福建莆田·模拟预测)若抛物线C 的焦点到准线的距离为3,且C 的开口朝左,则C 的标准方程为( )A .y 2=―6xB .y 2=6xC .y 2=―3xD .y 2=3x【解题思路】根据开口设抛物线标准方程,利用p 的几何意义即可求出.【解答过程】依题意可设C 的标准方程为y 2=―2px(p >0),因为C 的焦点到准线的距离为3,所以p =3,所以C 的标准方程为y 2=―6x .故选:A.【题型2 抛物线的标准方程】【例2】(2024·山东菏泽·模拟预测)已知点A (a,2)为抛物线x 2=2py (p >0)上一点,且点A 到抛物线的焦点F 的距离为3,则p =( )A .12B .1C .2D .4【解题思路】由题意,根据抛物线的性质,抛物线x 2=2py (p >0),则抛物线焦点为F 0,M (x 1,y 1)为 抛物线上一点,有|MF |=y 1+p 2,可得|AF |=2+p2=3,解得p =2.【解答过程】因为抛物线为x 2=2py (p >0),则其焦点在y 轴正半轴 上,焦点坐标为由于点A (a,2)为抛物线x 2=2py ,(p >0)为上一点,且点A 到抛物线的焦点F 的距离为3, 所以点A 到抛物线的焦点F 的距离为|AF |=2+p2=3,解得p =2,故选:C.【变式2-1】(2024·陕西安康·模拟预测)过点(2,―3),且焦点在y 轴上的抛物线的标准方程是( )A .x 2=―3yB .x 2=―43yC .x 2=―23yD .x 2=―4y【解题思路】利用待定系数法,设出抛物线方程,把点代入求解即可.【解答过程】设抛物线的标准方程为x 2=ay (a ≠0),将点点(2,―3)代入,得22=―3a,解得a=―43,所以抛物线的标准方程是x2=―43y.故选:B.【变式2-2】(2024·新疆·三模)已知抛物线y2=2px(p>0)上任意一点到焦点F的距离比到y轴的距离大1,则抛物线的标准方程为()A.y2=x B.y2=2x C.y2=4x D.y2=8x【解题思路】根据抛物线的定义求解.【解答过程】由题意抛物线y2=2px(p>0)上任意一点到焦点F的距离与它到直线x=―1的距离相,因此―p2=―1,p=2,抛物线方程为y2=4x.故选:C.【变式2-3】(2024·宁夏石嘴山·三模)如图,过抛物线y2=2px(p>0)的焦点F的直线l交抛物线于两点A、B,交其准线于C,AE与准线垂直且垂足为E,若|BC|=2|BF|,|AE|=3,则此抛物线的方程为()A.y2=3x2B.y2=9xC.y2=9x2D.y2=3x【解题思路】过点A,B作准线的垂线,设|BF|=a,得到|AC|=3+3a,结合抛物线的定义,求得a=1,再由BD//FG,列出方程求得p的值,即可求解.【解答过程】如图所示,分别过点B作准线的垂线,垂足为D,设|BF|=a,则|BC|=2|BF|=2a,由抛物线的定义得|BD|=|BF|=a,在直角△BCD中,可得sin∠BCD=|BD||BC|=12,所以∠BCD=30∘,在直角△ACE中,因为|AE|=3,可得|AC|=3+3a,由|AC |=2|AE |,所以3+3a =6,解得a =1,因为BD //FG ,所以1p =2a3a ,解得p =32,所以抛物线方程为y 2=3x .故选:C.【题型3 抛物线的焦点坐标及准线方程】【例3】(2024·内蒙古赤峰·二模)已知抛物线C 的方程为 x =―116y 2, 则此抛物线的焦点坐标为( )A .(-4,0)B .―14,C .(-2,0)D .―12,【解题思路】由抛物线的几何性质求解.【解答过程】依题意得:y 2=―16x ,则此抛物线的焦点坐标为:―4,0,故选:A.【变式3-1】(2024·黑龙江大庆·模拟预测)已知抛物线C:y =6x 2,则C 的准线方程为( )A .y =―32B .y =32C .y =―124D .y =124【解题思路】根据抛物线的准线方程直接得出结果.【解答过程】抛物线C :y =6x 2的标准方程为x 2=16y ,所以其准线方程为y =―124.故选:C.【变式3-2】(2024·河南·三模)抛物线y 2=―28x 的焦点坐标为( )A .(0,―14)B .(0,―7)C .(―14,0)D .(―7,0)【解题思路】根据抛物线的标准方程直接得出结果.【解答过程】∵2p =28,∴p =14,∴抛物线y 2=―28x 的焦点坐标为(―7,0).故选:D.【变式3-3】(2024·福建厦门·模拟预测)若抛物线y 2=mx 的准线经过双曲线x 2―y 2=2的右焦点,则m的值为()A.―4B.4C.―8D.8【解题思路】根据题意,分别求得双曲线的右焦点以及抛物线的准线方程,代入计算,即可得到结果.【解答过程】因为双曲线x2―y2=2的右焦点为(2,0),又抛物线y2=mx的准线方程为x=―m4,则―m4=2,即m=―8.故选:C.【题型4 抛物线的轨迹方程】【例4】(2024·湖南衡阳·三模)已知点F(2,0),动圆P过点F,且与x=―2相切,记动圆圆心P点的轨迹为曲线Γ,则曲线Γ的方程为()A.y2=2x B.y2=4x C.y2=8x D.y2=12x【解题思路】分析题意,利用抛物线的定义判断曲线是抛物线,再求解轨迹方程即可.【解答过程】由题意知,点P到点F的距离和它到直线x=―2的距离相等,所以点P的轨迹是以(2,0)为焦点的抛物线,所以Γ的方程为y2=8x,故C正确.故选:C.【变式4-1】(23-24高二上·北京延庆·期末)到定点F(1,0)的距离比到y轴的距离大1的动点且动点不在x轴的负半轴的轨迹方程是()A.y2=8x B.y2=C.y2=2x D.y2=x【解题思路】根据抛物线的定义即可得解.【解答过程】因为动点到定点F(1,0)的距离比到y轴的距离大1,所以动点到定点F(1,0)的距离等于到x=―1的距离,所以动点的轨迹是以F(1,0)为焦点,x=―1为准线的抛物线,所以动点的轨迹方程是y2=4x.故选:B.【变式4-2】(23-24高二上·重庆·期末)已知点P(x,y)=|x+1|,则点P的轨迹为()A.椭圆B.双曲线C.抛物线D.圆【解题思路】根据已知条件及抛物线的定义即可求解.P(x,y)到点(1,0)的距离;|x+1|表示点P(x,y)到直线x=―1的距离.=|x+1|,所以点P(x,y)到点(1,0)的距离等于点P(x,y)到直线x=―1的距离,所以P的轨迹为抛物线.故选:C.【变式4-3】(23-24高二上·宁夏石嘴山·阶段练习)一个动圆与定圆F:(x+2)2+y2=1相内切,且与定直线l:x=3相切,则此动圆的圆心M的轨迹方程是( )A.y2=8x B.y2=4x C.y2=―4x D.y2=―8x【解题思路】先利用圆与圆的位置关系,直线与圆的位置关系找到动点M的几何条件,再根据抛物线的定义确定动点M的轨迹,最后利用抛物线的标准方程写出轨迹方程.【解答过程】设动圆M的半径为r,依题意:|MF|=r―1,点M到定直线x=2的距离为d=r―1,所以动点M到定点F(―2,0)的距离等于到定直线x=2的距离,即M的轨迹为以F为焦点,x=2所以此动圆的圆心M的轨迹方程是y2=―8x.故选:D.【题型5 抛物线上的点到定点的距离及最值】【例5】(2024·全国·模拟预测)已知A是抛物线C:y2=4x上的点,N(4,0),则|AN|的最小值为()A.2B.C.4D.【解题思路】由抛物线的方程,利用二次函数的性质求最值【解答过程】设,t,则|AN|===≥当且仅当t=±故选:D.【变式5-1】(2024高三·全国·专题练习)已知P是抛物线y2=2x上的点,Q是圆(x―5)2+y2=1上的点,则|PQ |的最小值是( )A .2B .C .D .3【解题思路】将问题转化为求|PC|的最小值,根据两点之间的距离公式,求得|PC|的最小值再减去半径即可.【解答过程】如图,抛物线上点P (x,y )到圆心C (5,0)的距离为|PC |,|CP |≤|CQ |+|PQ |,因此|PQ |≥|CP |―1,当|CP |最小时,|PQ |=|CP |―1最小,而|CP |2=(x ―5)2+y 2=―52+y 2=2―82+9,当y =±|CP |min =3,因此|PQ |的最小值是2.故选:A.【变式5-2】(2024·湖南益阳·三模)已知M 是抛物线y²=4x 上一点,圆C 1:(x ―1)2+(y ―2)2=1关于直线y =x ―1对称的圆为C 2,N 是圆C 2上的一点,则|MN |的最小值为( )A .1B ―1C―1D .37【解题思路】根据对称性求出圆C 2的方程,设y 0,求出|MC 2|的最小值,即可求出|MN |的最小值.【解答过程】圆C 1:(x ―1)2+(y ―2)2=1圆心为C 1(1,2),半径r =1,设C 2(a,b ),=―1―1=0,解得a =3b =0,则C 2(3,0),所以圆C2 :(x ―3)2+y 2=1,设y 0,则|MC 2|==所以当y 20=4,即y 0=±2时,|MC 2|min=所以|MN |的最小值是―1.故选:A.【变式5-3】(2024·黑龙江齐齐哈尔·二模)已知抛物线C:y2=8x的焦点为F,M为C上的动点,N为圆A:x2+ y2+2x+8y+16=0上的动点,设点M到y轴的距离为d,则|MN|+d的最小值为()A.1B C D.2【解题思路】作出图形,过点M作ME垂直于抛物线的准线,垂足为点E,利用抛物线的定义可知d=|MF|―2,分析可知,当且仅当N、M为线段AF分别与圆A、抛物线C的交点时,|MN|+d取最小值,即可得解.【解答过程】根据已知得到F(2,0),圆A:(x+1)2+(y+4)2=1,所以A(―1,―4),圆A的半径为1,抛物线C的准线为l:x=―2,过点M作ME⊥l,垂足为点E,则|ME|=d+2,由抛物线的定义可得d+2=|ME|=|MF|,所以,|MN|+d=|MN|+|MF|―2≥|AM|+|MF|―1―2≥|AF|―1―2=1―2=2.当且仅当N、M为线段AF分别与圆A、抛物线C的交点时,两个等号成立,因此,|MN|+d的最小值为3.故选:D.【题型6 抛物线上的点到定点和焦点距离的和、差最值】【例6】(2024·四川成都·模拟预测)设点A(2,3),动点P在抛物线C:y2=4x上,记P到直线x=―2的距离为d,则|AP|+d的最小值为()A.1B.3C1D【解题思路】根据抛物线的定义,P到焦点F的距离等于P到准线的距离,可得d=|PF|+1,从而转化为求|AP|+|PF|+1的值,当A,P,F三点共线时,d=|PF|+1取得最小值,即可求解.【解答过程】由题意可得,抛物线C的焦点F(1,0),准线方程为x=―1,由抛物线的定义可得d=|PF|+1,所以|AP|+d=|AP|+|PF|+1,因为|AP|+|PF|≥|AF|==所以|AP|+d=|AP|+|PF|+1≥+1.当且仅当A,P,F三点共线时取等号,所以|AP|+d+1.故选:D.【变式6-1】(2024·湖南常德·一模)已知抛物线方程为:y2=16x,焦点为F.圆的方程为(x―5)2+(y―1)2 =1,设P为抛物线上的点,Q|PF|+|PQ|的最小值为()A.6B.7C.8D.9【解题思路】根据抛物线定义将点到焦点的距离转化为点到直线的距离,即|PF|=|PN|,从而得到|PF|+ |PQ|=|PN|+|PQ|,P、Q、N三点共线时和最小;再由Q在圆上,|QN|min=|MN|―r得到最小值.【解答过程】由抛物线方程为y2=16x,得到焦点F(4,0),准线方程为x=―4,过点P做准线的垂线,垂足为N,因为点P在抛物线上,所以|PF|=|PN|,所以|PF|+|PQ|=|PN|+|PQ|,当Q点固定不动时,P、Q、N三点共线,即QN垂直于准线时和最小,又因为Q在圆上运动,由圆的方程为(x―5)2+(y―1)2=1得圆心M(5,1),半径r=1,所以|QN|min=|MN|―r=8,故选:C.【变式6-2】(2024·全国·模拟预测)在直角坐标系xOy中,已知点F(1,0),E(―2,0),M(2,2),动点P满足线段PE的中点在曲线y2=2x+2上,则|PM|+|PF|的最小值为()A.2B.3C.4D.5【解题思路】设P(x,y),由题意求出P的轨迹方程,继而结合抛物线定义将|PM|+|PF|的最小值转化为M 到直线l的距离,即可求得答案.【解答过程】设P(x,y),则PE y2=2x+2,可得y2=4x,故动点P的轨迹是以F为焦点,直线l:x=―1为准线的抛物线,由于22<4×2,故M(2,2)在抛物线y2=4x内部,过点P作PQ⊥l,垂足为Q,则|PM|+|PF|=|PM|+|PQ|,(抛物线的定义),故当且仅当M,P,Q三点共线时,|PM|+|PQ|最小,即|PM|+|PF|最小,最小值为点M到直线l的距离,所以(|PM|+|PF|)min=2―(―1)=3,故选:B.【变式6-3】(2024·陕西西安·一模)设P为抛物线C:y2=4x上的动点,A(2,6)关于P的对称点为B,记P到直线x=―1、x=―4的距离分别d1、d2,则d1+d2+|AB|的最小值为()A B.C+3D.+3【解题思路】根据题意得到d1+d2+|AB|=2d1+3+2|PA|=2(d1+|PA|)+3,再利用抛物线的定义结合三角不等式求解.【解答过程】抛物线C:y2=4x的焦点为F(1,0),准线方程为x=―1,如图,因为d 2=d 1+3,且A (2,6)关于P 的对称点为B ,所以|PA |=|PB |,所以d 1+d 2+|AB |=2d 1+3+2|PA |=2(d 1+|PA |)+3 =2(|PF |+|PA |)+3≥2|AF |+3 ==.当P 在线段AF 与抛物线的交点时,d 1+d 1+|AB |取得最小值,且最小值为.故选:D.【题型7 抛物线的焦半径公式】【例7】(2024·青海西宁·一模)已知F 是抛物线C:x 2=4y 的焦点,点M 在C 上,且M 的纵坐标为3,则|MF |=( )A .B .C .4D .6【解题思路】利用抛物线的标准方程和抛物线的焦半径公式即可求解.【解答过程】由x 2=4y ,得2p =4,解得p =2.所以抛物线C:x 2=4y 的焦点坐标为F (0,1),准线方程为y =―1,又因为M 的纵坐标为3,点M 在C 上,所以|MF |=y M +p2=3+22=4.故选:C.【变式7-1】(2024·河南·模拟预测)已知抛物线C:y 2=2px (p >0)上的点(m,2)到原点的距离为为F ,准线l 与x 轴的交点为M ,过C 上一点P 作PQ ⊥l 于Q ,若∠FPQ =2π3,则|PF |=( )A .13B .12C D .23【解题思路】根据点(m,2)到原点的距离为再设点P 坐标,利用抛物线的定义和等腰三角形的性质列出方程即可求解.【解答过程】因为点(m,2)到原点的距离为所以m 2+22=8,解得m =2,(负值舍),将点(2,2)代入抛物线方程y 2=2px (p >0),得4=4p ,所以p =1,所以C:y 2=2x,F(12,0),l:x =―12.由于抛物线关于x 轴对称,不妨设,因为|PQ|=|PF|=x +12,∠FPQ =2π3,所以△PQF 为等腰三角形,∠PQF =π6,所以|QF|=+12),所以|QF|==+12),解得x =16或x =―12(舍),所以|PF |=16+12=23.故选:D.【变式7-2】(2024·新疆·三模)已知抛物线C :y 2=x 的焦点为F ,在抛物线C 上存在四个点P ,M ,Q ,N ,若弦PQ 与弦MN 的交点恰好为F ,且PQ ⊥MN ,则1|PQ |+1|MN |=( )A B .1C D .2【解题思路】由抛物线的方程可得焦点F 的坐标,应用抛物线焦点弦性质|PF |=p1―cos θ,|QF |=p1+cos θ,|MF |=p1+sin θ,|NF |=p1―sin θ,结合三角的恒等变换的化简可得1|PQ |+1|MN |=12p ,即可求解.【解答过程】由抛物线C:y 2=x 得2p =1,则p =12,F(14,0),不妨设PQ 的倾斜角为θ0<θ<则由|PF |cos θ+p =|PF |,p ―|QF |cos θ=|QF |,得|PF |=p 1―cos θ,|QF |=p1+cos θ,所以|MF |==p1+sin θ,|NF |==p1―sin θ,得|PQ |=|PF |+|QF |=p1―cos θ+p1+cos θ=2psin 2θ,|MN |==2pcos 2θ,所以1|PQ |+1|MN |=12p =1.故选:B.【变式7-3】(2024·北京西城·三模)点F 抛物线y 2=2x 的焦点,A ,B ,C 为抛物线上三点,若FA +FB +FC =0,则|FA |+|FB |+|FC |=( )A .2B .C .3D .【解题思路】设A(x 1,y 1),B(x 2,y 2),C(x 3,y 3),根据抛物线方程求出焦点坐标和准线方程,再由FA +FB +FC =0可得F 为△ABC 的重心,从而可求出x 1+x 2+x 3,再根据抛物线的定义可求得结果.【解答过程】设A(x 1,y 1),B(x 2,y 2),C(x 3,y 3),由y 2=2x ,得p =1,所以F(12,0),准线方程为x =―12,因为FA +FB +FC =0,所以F 为△ABC 的重心,所以x 1+x 2+x 33=12,所以x 1+x 2+x 3=32,所以|FA |+|FB |+|FC |=x 1+12+x 2+12+x 3+12=x 1+x 2+x 3+32=32+32=3,故选:C.【题型8 抛物线的几何性质】【例8】(2024·重庆·模拟预测)A,B 是抛物线y 2=2px(p >0)上的不同两点,点F 是抛物线的焦点,且△OAB 的重心恰为F ,若|AF|=5,则p =( )A .1B .2C .3D .4【解题思路】根据重心可得x 1+x 2=3p 2y 1=―y 2,结合对称性可得x 1=3p4,再根据抛物线的定义运算求解.【解答过程】设A (x 1,y 1),B (x 2,y 2),因为△OAB 的重心恰为F=p2=0,解得x 1+x 2=3p2y 1=―y 2,由y 1=―y 2可知A,B 关于x 轴对称,即x 1=x 2,则x 1+x 2=2x 1=3p2,即x 1=3p 4,又因为|AF |=x 1+p2=5p 4=5,解得p =4.故选:D.【变式8-1】(23-24高二下·福建厦门·期末)等边三角形的一个顶点位于原点,另外两个顶点在抛物线y 2=2x 上,则这个等边三角形的边长为( )A .2B .C .4D.【解题思路】正三角形的另外两个顶点关于x 轴对称,设另外两个顶点坐标分别是A ),B―a),把顶点代入抛物线方程化简即可求解.【解答过程】设正三角形得边长为2a ,由图可知正三角形的另外两个顶点关于x 轴对称,可设另外两个顶点坐标分别是A),B―a ),把顶点代入抛物线方程得a 2=解得a =所以正三角形的边长为故选:D.【变式8-2】(23-24高三下·北京·阶段练习)设抛物线C 的焦点为F ,点E 是C 的准线与C 的对称轴的交点,点P 在C 上,若∠PEF =30°,则sin ∠PFE =( )A B C D 【解题思路】先设P(x 0,y 0),根据图形分别表示出tan ∠ P EF 和sin ∠ P FE 即可得解.【解答过程】由于抛物线的对称性,不妨设抛物线为C:y 2=2px(p >0),则其焦点为F(p2,0),点E 是C 的准线与C 的对称轴的交点,其坐标为E(―p2,0),点P 在C 上,设为P(x 0,y 0),若∠ P EF =30∘,则tan ∠ P EF =|y 0|x 0+p 2=且|PF|=x 0+p 2,则sin ∠ P FE =sin (π―∠ P FE )=|y 0||PF|=故选:B.【变式8-3】(23-24高二下·重庆·阶段练习)已知x 轴上一定点A (a,0)(a >0),和抛物线y 2=2px (p >0)上的一动点M ,若|AM |≥a 恒成立,则实数a 的取值范围为( )A .B .(0,p ]C .D .(0,2p ]【解题思路】设M (x 0,y 0) (x 0≥0),表示出|AM |,依题意可得x 20―(2a ―2p )x 0≥0恒成立,分x 0=0和x 0>0两种情况讨论,当x0>0时x0≥2a―2p恒成立,即可得到2a―2p≤0,从而求出a的取值范围.【解答过程】设M(x0,y0)(x0≥0),则y20=2px0,所以|AM|====因为|AM|≥a恒成立,所以x20―(2a―2p)x0+a2≥a2恒成立,所以x20―(2a―2p)x0≥0恒成立,当x0=0时显然恒成立,当x0>0时x0≥2a―2p恒成立,所以2a―2p≤0,则a≤p,又a>0,所以0<a≤p,即实数a的取值范围为(0,p].故选:B.【题型9 抛物线中的三角形(四边形)面积问题】【例9】(2024·江西新余·二模)已知点Q(2,―2)在抛物线C:y2=2px上,F为抛物线的焦点,则△OQF (O为坐标原点)的面积是()A.12B.1C.2D.4【解题思路】将点Q代入抛物线C的方程,即可求解p,再结合抛物线的公式,即可求解【解答过程】∵点Q(2,―2)在抛物线C:y2=2px上,F为抛物线C的焦点,∴4=4p,解得p=1,故抛物线C的方程为y2=2x,F(12,0),则△OQF的面积S△OQF=12×12×2=12.故选:A.【变式9-1】(23-24高二上·广东广州·期末)已知抛物线C:y2=2px(p>0)的焦点为F,直线l与C相交于A、B两点,与y轴相交于点E.已知|AF|=5,|BF|=3,若△AEF的面积是△BEF面积的2倍,则抛物线C的方程为()A .y 2=2xB .y 2=4xC .y 2=6xD .y 2=8x【解题思路】过A,B 分别作C 的准线的垂线交y 轴于点M,N ,根据抛物线定义可得|AM |=5―p2,|BN |=3―p 2,再由S △AEF S △BEF=|AE ||BE |=|AM ||BN |即可求参数p ,进而可得抛物线方程.【解答过程】如图,过A,B 分别作C 的准线的垂线交y 轴于点M,N ,则AM //BN ,故|AE ||BE |=|AM ||BN |,因为C 的准线为x =―p2,所以|AM |=|AF |―p2=5―p2,|BN |=|BF |―p2=3―p2,所以S △AEFS △BEF=12|EF ||AE |sin ∠AEF 12|EF ||BE |sin ∠BEF =|AE ||BE |=|AM ||BN |=5―p 23―p 2=2,解得p =2,故抛物线C 的方程为y 2=4x .故选:B.【变式9-2】(23-24高二上·广东广州·期末)设F 为抛物线y 2=4x 的焦点,A,B,C 为该抛物线上不同的三点,且FA +FB +FC =0,O 为坐标原点,若△OFA 、△OFB 、△OFC 的面积分别为S 1、S 2、S 3,则S 21+S 22+S 23=( )A .3B .4C .5D .6【解题思路】设点A,B,C 的坐标,再表示出△OFA,△OFB,△OFC 的面积,借助向量等式即可求得答案.【解答过程】设点A,B,C 的坐标分别为(x 1,y 1),(x 2,y 2),(x 3,y 3),而抛物线的焦点F(1,0),|OF|=1,FA =(x 1―1,y 1),FB =(x 2―1,y 2),FC =(x 3―1,y 3),由FA +FB +FC =0,得x 1+x 2+x 3=3,于是S 1=12|y 1|,S 2=12|y 2|,S 3=12|y 3|,所以S 21+S 22+S 23=14(y 21+y 22+y 23)=x 1+x 2+x 3=3.故选:A.【变式9-3】(23-24高二·全国·课后作业)已知抛物线C:y2=8x,点P为抛物线上任意一点,过点P向圆D:x2+y2―4x+3=0作切线,切点分别为A,B,则四边形PADB的面积的最小值为()A.1B.2C D【解题思路】由题意圆的圆心与抛物线的焦点重合,可得连接PD,则S四边形PADB=2S Rt△PAD=|PA|,而|PA|=|PD|最小时,四边形PADB的面积最小,再抛物线的定义转化为点P到抛物线的准线的距离的最小值,结合抛物线的性质可求得结果【解答过程】如图,连接PD,圆D:(x―2)2+y2=1,该圆的圆心与抛物线的焦点重合,半径为1,则S四边形PADB=2S Rt△PAD=|PA|.又|PA|=PADB的面积最小时,|PD|最小.过点P向抛物线的准线x=―2作垂线,垂足为E,则|PD|=|PE|,当点P与坐标原点重合时,|PE|最小,此时|PE|=2.==故S四边形PADBmin故选:C.一、单选题1.(2024·江西·模拟预测)若抛物线x 2=8y 上一点(x 0,y 0)到焦点的距离是该点到x 轴距离的2倍.则y 0=( )A .12B .1C .32D .2【解题思路】根据抛物线的方程,结合抛物线的标准方程,得到抛物线的焦点和准线,利用抛物线的定义,得到抛物线上的点(x 0,y 0)到焦点的距离,根据题意得到关于y 0的方程,求解即可.【解答过程】已知拋物线的方程为x 2=8y ,可得p =4.所以焦点为F (0,2),准线为l :y =―2.抛物线上一点A (x 0,y 0)到焦点F 的距离等于到准线l 的距离,即|AF |=y 0+2,又∵A 到x 轴的距离为y 0,由已知得y 0+2=2y 0,解得y 0=2.故选:D .2.(2024·四川·模拟预测)已知抛物线C:x 2=8y 的焦点为F,P 是抛物线C 上的一点,O 为坐标原点,|OP |=4|PF |=( )A .4B .6C .8D .10【解题思路】求出抛物线焦点和准线方程,设P (m,n )(m ≥0),结合|OP |=n =4,由焦半径公式得到答案.【解答过程】抛物线C:x 2=8y 的焦点为F (0,2),准线方程为y =―2,设P (m,n )(m ≥0)=,解得n =4或n =―12(舍去),则|PF |=n +2=6.故选:B .3.(23-24高二下·甘肃白银·期中)若圆C 与x 轴相切且与圆x 2+y 2=4外切,则圆C 的圆心的轨迹方程为( )A .x 2=4y +4B .x 2=―4y +4C .x 2=4|y |+4D .x 2=4y ―4【解题思路】设圆心坐标为(x,y )=2+|y |,化简整理即可得解.【解答过程】设圆心坐标为(x,y)=2+|y|,化简得x2=4|y|+4,即圆C的圆心的轨迹方程为x2=4|y|+4.故选:C.4.(2024·北京海淀·三模)已知抛物线y2=4x的焦点为F、点M在抛物线上,MN垂直y轴于点N,若|MF|=6,则△MNF的面积为()A.8B.C.D.【解题思路】确定抛物线的焦点和准线,根据|MF|=6得到M.【解答过程】因为抛物线y2=4x的焦点为F(1,0),准线方程为x=―1,所以|MF|=x M+1=6,故x M=5,不妨设M在第一象限,故M×(5―0)×=所以S△MNF=12故选:C.5.(2024·西藏林芝·模拟预测)已知抛物线y2=8x上一点P到准线的距离为d1,到直线l:4x―3y+12=0的距离为d2,则d1+d2的最小值为()A.1B.2C.3D.4【解题思路】点P到直线l:4x―3y+12=0的距离为|PA|,到准线l1:x=―2的距离为|PB|,利用抛物线的定义得|PF|=|PB|,当A,P和F共线时,点P到直线l:4x―3y+12=0和准线l1:x=―2的距离之和的最小,由点到直线的距离公式求得答案.【解答过程】由抛物线y2=8x知,焦点F(2,0),准线方程为l:x=―2,根据题意作图如下;点P到直线l:4x―3y+12=0的距离为|PA|,到准线l1:x=―2的距离为|PB|,由抛物线的定义知:|PB|=|PF|,所以点P到直线l:4x―3y+12=0和准线l1:x=―2的距离之和为|PF|+|PA|,=4,且点F(2,0)到直线l:4x―3y+12=0的距离为d=|8―0+12|5所以d1+d2的最小值为4.故选:D.6.(2024·四川雅安·三模)已知过圆锥曲线的焦点且与焦点所在的对称轴垂直的弦被称为该圆锥曲线的通径,清代数学家明安图在《割圆密率捷法》中,也称圆的直径为通径.已知圆(x―2)2+(y+1)2=4的一条直径与拋物线x2=2py(p>0)的通径恰好构成一个正方形的一组邻边,则p=()B.1C.2D.4A.12【解题思路】根据圆的通径的上端点就是抛物线通径的上右端点,可得抛物线x2=2py(p>0)经过点(2,1),从而可得答案.【解答过程】因为圆(x―2)2+(y+1)2=4的一条直径与抛物线x2=2py(p>0)的通径恰好构成一个正方形的一组邻边,而抛物线x2=2py(p>0)的通径与y轴垂直,所以圆(x―2)2+(y+1)2=4的这条直径与x轴垂直,且圆的直径的上端点就是抛物线通径的右端点,因为圆(x―2)2+(y+1)2=4的圆心为(2,―1),半径为2,所以该圆与x轴垂直的直径的上端点为(2,1),即抛物线x2=2py(p>0)经过点(2,1),则4=2p,即p=2.故选:C.7.(2024·山西运城·三模)已知抛物线C:y 2=4x 的焦点为F ,动点M 在C 上,点B 与点A (1,―2)关于直线l:y =x ―1对称,则|MF ||MB |的最小值为( )AB .12CD .13【解题思路】根据对称性可得B(―1,0),即点B 为C 的准线与x 轴的交点,作MM ′垂直于C 的准线于点M ′,结合抛物线的定义可知|MF ||MB |=|MM ′||MB |= cos θ(∠MBF =θ),结合图象可得当直线MB 与C 相切时,cos θ最小,求出切线的斜率即可得答案.【解答过程】依题意,F(1,0),A(1,―2),设B(m,n)=―1m+12―1,解得m =―1n =0,即B(―1,0),点B 为C 的准线与x 轴的交点,由抛物线的对称性,不妨设点M 位于第一象限,作MM ′垂直于C 的准线于点M ′,设∠MBF =θ,θ∈ (0,π2),由抛物线的定义得|MM ′|=|MF |,于是|MF ||MB |=|MM ′||MB |= cos θ,当直线MB 与C 相切时,θ最大,cos θ最小,|MF||MB|取得最小值,此时直线BM 的斜率为正,设切线MB 的方程为x =my ―1(m >0),由x =my ―1y 2=4x消去x 得y 2―4my +4=0,则Δ=16m 2―16=0,得m =1,直线MB 的斜率为1,倾斜角为π4,于是θmax =π4,(cos θ)min =,所以|MF||MB|的最小值为故选:A.8.(2024·江西九江·二模)已知抛物线C:y 2=2px 过点A (1,2),F 为C 的焦点,点P 为C 上一点,O 为坐标原点,则( )A .C 的准线方程为x =―2B .△AFO 的面积为1C .不存在点P ,使得点P 到C 的焦点的距离为2D .存在点P ,使得△POF 为等边三角形【解题思路】求解抛物线方程,得到准线方程,判断A ;求解三角形的面积判断B ;利用|PF|=2.判断C ;判断P 的位置,推出三角形的形状,判断D .【解答过程】由题意抛物线C:y 2=2px 过点A(1,2),可得p =2,所以抛物线方程为C:y 2=4x ,所以准线方程为x =―1,A 错误;可以计算S △AFO =12×1×2=1,B 正确;当P(1,2)时,点P 到C 的焦点的距离为2,C 错误;△POF 为等边三角形,可知P 的横坐标为:12,当x =12时,纵坐标为:则12×=≠则△POF 为等腰三角形,不是等边三角形,故等边三角形的点P 不存在,所以D 错误.故选:B .二、多选题9.(2024·湖南长沙·二模)已知抛物线C 与抛物线y 2=4x 关于y 轴对称,则下列说法正确的是( )A .抛物线C 的焦点坐标是(―1,0)B .抛物线C 关于y 轴对称C .抛物线C 的准线方程为x =1D .抛物线C 的焦点到准线的距离为4【解题思路】依题意可得抛物线C 的方程为y 2=―4x ,即可得到其焦点坐标与准线方程,再根据抛物线的性。