17.1 勾股定理 第2课时
- 格式:docx
- 大小:113.15 KB
- 文档页数:7
17.1 勾股定理第2课时勾股定理的应用课前预习1.应用勾股定理的前提条件是在直角三角形中.如果三角形不是直角三角形,要先构建直角三角形,再利用勾股定理求未知边的长.2.利用勾股定理可以解决与直角三角形有关的计算和证明,其主要应用如下:(1)已知直角三角形的任意两边求第三边;(2)已知直角三角形的任意一边,确定另外两边的关系;(3)证明包含平方关系的几何问题;(4)构造方程(或方程组)计算有关线段的长.3.一般地,n为正整数),通常是利用勾股定理作图.课堂练习知识点1 勾股定理的实际应用1.如图,AB=BC=CD=DE=1,AB⊥BC,AC⊥CD,AD⊥DE,则AE=___2___.2.【核心素养·数学抽象】如图,在高为3米,斜坡长为5米的楼梯表面铺地毯,则地毯的长度至少需要___7___米.3.(教材改编)如图,滑竿在机械槽内运动,∠ACB为直角,已知滑竿AB长2.5米,顶点A在AC上滑动,量得滑竿下端B距C点的距离为1.5米,当端点B向右移动0.5米时,滑竿顶端A下滑___0.5___米.【解析】在Rt△ACB中,根据勾股定理,得AC=22-=2.在2.5 1.5AB CB-=22Rt△ECD中,根据勾股定理,得CE=22-=1.5.∴AE=AC -ED CD2.52-=22CE=2-1.5=0.5.即滑竿顶端A下滑0.5米.故答案为0.5.4.如图,小旭放风筝时,风筝线断了,风筝挂在了树上.他想知道风筝距地面的高度﹒于是他先拉住风筝线垂直到地面上,发现风筝线多出1米,然后把风筝线沿直线向后拉开5米,发现风筝线未端刚好接触地面.请你帮小旭求出风筝距离地面的高度AB.解:根据题意,得AC=AB+1,BC=5米.在Rt△ABC中,BC2+AB2=(1+AB)2.解得AB=12(米).答:风筝距离地面的高度AB 为12米.5.放学以后,小东和晓晓从学校分手,分别沿东南方向和西南方向回家,若小东和晓晓行走的速度都是40米/分钟,小东用15分钟到家,晓晓用20分钟到家,求小东和晓晓家的直线距离.解:根据题意作图,由图可知△ABO是直角三角形,OA=40×20=800(米),OB=40×15=600(米).在Rt△OAB中,根据勾股定理,得(米).答:小东和晓晓家的直线距离为1 000米.知识点2 在数轴上表示无理数6.(2020玉溪红塔区期末)如图,数轴上的点A表示的数是-2,点B表示的数是1,CB⊥AB于点B,且BC=2,以点A为圆心,AC为半径画弧交数轴于点D,则点D表示的数为(C).7.用直尺和圆规在如图所示的数轴上作出表示解:∵32+22=13,3和2的直角三角形的斜边长.∴课时作业练基础1.如图是由4个边长为1的正方形构成的“田字格”,只用没有刻度的直尺在这___8___条.30°,则以它的腰长为边2.有一个面积为的正方形的面积为___20___.3.如图,有两棵树,一棵高10米,另一棵高4米,两树相距8米,一只小鸟从一棵树的树顶飞到另一棵树的树顶,小鸟至少飞行(B)A.8米B.10米C.12米D.14米4.《九章算术》是古代东方数学代表作,书中记载:今有开门去阃(读kǔn,门槛的意思)一尺,不合二寸,问门广几何?题目大意是:如图1,图2,推开双门,双门间隙C,D的距离为2寸,点C和点D距离门槛AB都为1尺(1尺=10 寸),则AB的长是(C)A.50.5寸B.52寸C.101寸D.104寸5.(2020盘龙区期末)如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离BC为0.7米,梯子顶端到地面的距离AC为2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,梯子顶端到地面的距离A′D为 1.5米,则小巷的宽为(C)A.2.5米B.2.6米C.2.7米D.2.8米【解析】在Rt△ACB中,∵∠ACB=90°,BC=0.7米,AC=2.4米,∴AB2=0.72+2.42=6.25.在Rt△A′BD中,∵∠A′DB=90°,A′D=1.5米,BD2+A′D2=A′B2,∴BD2+1.52=6.25.∴BD2=4.∵BD>0,∴BD=2米.∴CD=BC+BD=0.7+2=2.7米.故选C.6.如图,在平面直角坐标系中,点P的坐标为(-2,3),以点O为圆心,OP的长为半径画弧,交x轴的负半轴于点A,则点A的横坐标在(B)A.-3和-2之间B.-4和-3之间C.-5和-4之间D.-6和-5之间7.如图,在边长为1的正方形网格中,△ABC的三边a,b,c的大小关系是(B)A.c<b<aB.c<a<bC.a<c<bD.a<b<c8.(教材改编)小明拿着一根竹竿要通过一个长方形的门,如果把竹竿竖放比门高出1尺,斜放就恰好等于门的对角线,已知门宽4尺,求竹竿的长和门的高. 解:根据题意作图,由图可知AD=4尺.设门高AB为x尺,则竹竿的长BD为(x+1)尺.在Rt△ABD中,由勾股定理得AB2+AD2=BD2,即x2+42=(x+1)2,解得x=7.5.则x+1=8.5.答:竹竿的长为8.5尺,门高为7.5尺.9.【核心素养·数学抽象】一根直立的旗杆AB长 8 m,一阵大风吹过,旗杆从C点处折断,顶部(B)着地,离杆脚(A)4 m,如图.工人在修复的过程中,发现在折断点C的下面1.25 m 的D处,有一明显伤痕,如果下次大风将旗杆从D 处刮断,则杆脚周围多大范围内有被砸伤的危险?解:在Rt △ABC 中,设AC 的长为x m ,则BC 的长为(8-x )m.根据勾股定理,得AC 2+AB 2=BC 2,即x 2+42=(8-x )2.解得x=3,即AC=3.当从点D 处折断时,AD=AC-CD=3-1.25=1.75,∴BD=8-1.75=6.25.∴AB=3675.125.62222=-=-AD BD =6 (m ).答:杆脚周围6 m 范围内有被砸伤的危险.10.如图,铁路上A ,B 两站(视为直线上的两点)相距25 km ,DA ⊥AB 于点A ,CB ⊥AB 于点B ,DA=15 km ,CB=10 km ,现要在铁路上建设一个土特产收购站E ,使得C ,D 两村到收购站E 的距离相等,则收购站E 应建在距离A 站多少km 处?解:∵C ,D 两村到E 点的距离相等,∴CE=DE.在Rt △DAE 和Rt △CBE 中,根据勾股定理,得DE 2=AD 2+AE 2,CE 2=BE 2+BC 2,∴AD 2+AE 2=BE 2+BC 2.设AE=x km ,则BE=(25-x )km.x 2+152=(25-x)2+102.解得x=10.答:收购站E 应建在距离A 站10 km 处.提能力11.如图,小正方形的边长为1,连接小正方形的三个顶点,可得△ABC ,则BC 边上的高是( A )A.223 B.1055 C.553 D.554【解析】由图形,根据勾股定理可得ABC 的面积为2×2-12×1×1-12×1×2-12×1×2=4-12-2=32,再根据△ABC 面积的不同计算方法得32=12BC 边上的高.故选A. 12.有一辆装满货物的卡车,高5 m ,宽3.2 m (货物的顶部是水平的),要通过如图所示的截面的上半部分是半圆,下半部分是长方形的隧道,已知半圆的直径为4 m ,长方形竖直的一条边长是4.6 m.这辆卡车能否通过此隧道?请说明理由.解:能通过. 理由如下:如图,设O 为半圆的圆心,AB 为半圆的直径,在OB 上截取OE=3.2÷2=1.6(m ),过点E 作EF ⊥AB 交半圆于点F ,连接OF.在Rt △OEF 中,OF 2=OE 2+EF 2,即22=1.62+EF 2,解得EF=1.2 m.因为1.2+4.6=5.8(m )>5 m ,所以这辆卡车能通过此隧道.。
第十七章勾股定理
在八年级上册中,我们曾经通过画图得到结论:斜边和一条直角边分别相等的两个直角
两点间的距离.
上任意两点
处放上了点儿火腿肠粒,你
的西8km北7km 处,他想把他的马牵到小河边去饮水,然后回家.他要完成这件事情所走的最短路程是多
求直线同侧的两点到直线上一点所连线段的和的最短路径的方法:先找到其中一点关于这条直线的对称点,连接对称点与另一点的线段就是最短路径长,以连接对称点与另一个点的线段为斜边,构造出直角三角形,再运用勾股定理求最短路径.
第1题图第2题图
如图,一支铅笔放在圆柱体笔筒中,笔筒的内部底面直径是
的长度可能是()
A.9cm
B.12cm
C.15cm
D.18cm
10cm和6cm,A和B是。
17.1勾股定理(第二课时)【教学目标】1.进一步理解巩固勾股定理联系二次根式的计算2.运用勾股定理进行简单的计算【重点难点】重点:勾股定理的简单应用难点:勾股定理的应用【教学过程设计】【活动一】(一)介绍勾股定理与第一次数学危机:“一切数均可表成整数或整数之比”则是这一学派的数学信仰。
然而,具有戏剧性的是由毕达哥拉斯建立的毕达哥拉斯定理却成了毕达哥拉斯学派数学信仰的“掘墓人”。
毕达哥拉斯定理提出后,其学派中的一个成员希帕索斯考虑了一个问题:边长为1的正方形其对角线长度是多少呢?他发现这一长度既不能用整数,也不能用分数表示,而只能用一个新数来表示。
希帕索斯的发现导致了数学史上第一个无理数的诞生。
天真的希帕索斯无意中向别人谈到了他的发现,结果被杀害。
但根2很快就引起了数学思想的大革命。
科学史上把这件事称为“第一次数学危机”,也让数学向前大大发展了一步。
引入斜边长为无理数时勾股定理的应用。
【活动二】讲解例1一个门框的尺寸如图所示,一块长3m,宽2.2m的长方形薄木板能否从门框内通过?为什么?分析:可以看出,木板横着和竖着都不能通过,只能试着斜着通过师生活动:教师和学生共同完成练习:一个门框的尺寸如图所示,一块长4m,宽3m的薄木板(能或不能)从门框内通过.1m2m师生活动:学生板演,教师进行点评【活动三】例2 如图,一架2.6m长的梯子AB斜靠在一竖直的墙AO上,这时AO为2.4m,如果梯子的顶端A沿墙下滑0.5m,那么梯子底端B也外移动0.5m吗?师生活动:学生先思考如何解决这个问题教师讲解例题规范解题步骤【活动四】巩固提高完成书上26页练习题练习1 如图,池塘边有两点A,B,点C是与BA方向成直角的AC方向上一点,测得BC=60m,AC=20m,求A,B两点间的距离(结果取整数)2.在平面直角坐标系中有两点A(5,0)和B(0,4),求这两点之间的距离课堂小结1.本节课主要学习了哪些内容2.勾股定理如何应用到简单问题的解决中?作业1.复习本节课的内容2.完成练习册上的相关内容3.预习下节课内容板书设计课后反思。
人教版数学八年级下册17.1第2课时《勾股定理的应用》说课稿一. 教材分析《勾股定理的应用》是人教版数学八年级下册17.1第2课时的一节内容。
本节课主要让学生掌握勾股定理的应用,能够运用勾股定理解决实际问题。
教材通过引入古希腊数学家毕达哥拉斯的故事,引导学生探究直角三角形三边的关系,从而得出勾股定理。
学生通过前面的学习,已经掌握了勾股定理的证明,本节课则是将勾股定理应用到实际问题中,进一步巩固学生的数学思维和解决问题的能力。
二. 学情分析八年级的学生已经具备了一定的数学基础,对勾股定理有了初步的认识。
但是,他们在解决实际问题时,可能会因为不能准确地找出直角三角形中的直角边和斜边而感到困惑。
因此,在教学过程中,我将会引导学生正确地找出直角三角形中的直角边和斜边,并通过实际问题,让学生理解并掌握勾股定理的应用。
三. 说教学目标1.知识与技能:学生能够理解勾股定理的含义,并能运用勾股定理解决实际问题。
2.过程与方法:学生通过观察、操作、思考,培养数形结合的思维方式,提高解决问题的能力。
3.情感态度与价值观:学生体验到数学与生活的紧密联系,增强对数学的兴趣和自信心。
四. 说教学重难点1.教学重点:学生能够运用勾股定理解决实际问题。
2.教学难点:学生能够准确地找出直角三角形中的直角边和斜边,并运用勾股定理进行计算。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、小组合作法等,引导学生主动探究、积极参与。
2.教学手段:利用多媒体课件、实物模型、几何画板等辅助教学,提高教学效果。
六. 说教学过程1.导入:通过讲述毕达哥拉斯的故事,引导学生回顾勾股定理的证明过程,激发学生的学习兴趣。
2.新课导入:介绍勾股定理的应用,让学生尝试解决实际问题。
3.案例分析:分析一组实际问题,引导学生找出直角三角形中的直角边和斜边,并运用勾股定理进行计算。
4.小组讨论:学生分组讨论,交流解题心得,互相学习,共同提高。
“师”之概念,大体是从先秦时期的“师长、师傅、先生”而来。
其中“师傅”更早则意指春秋时国君的老师。
《说文解字》中有注曰:“师教人以道者之称也”。
“师”之含义,现在泛指从事教育工作或是传授知识技术也或是某方面有特长值得学习者。
“老师”的原意并非由“老”而形容“师”。
“老”在旧语义中也是一种尊称,隐喻年长且学识渊博者。
“老”“师”连用最初见于《史记》,有“荀卿最为老师”之说法。
慢慢“老师”之说也不再有年龄的限制,老少皆可适用。
只是司马迁笔下的“老师”当然不是今日意义上的“教师”,其只是“老”和“师”的复合构词,所表达的含义多指对知识渊博者的一种尊称,虽能从其身上学以“道”,但其不一定是知识的传播者。
今天看来,“教师”的必要条件不光是拥有知识,更重于传播知识。
一般说来,“教师”概念之形成经历了十分漫长的历史。
杨士勋(唐初学者,四门博士)《春秋谷梁传疏》曰:“师者教人以不及,故谓师为师资也”。
这儿的“师资”,其实就是先秦而后历代对教师的别称之一。
《韩非子》也有云:“今有不才之子……师长教之弗为变”其“师长”当然也指教师。
这儿的“师资”和“师长”可称为“教师”概念的雏形,但仍说不上是名副其实的“教师”,因为“教师”必须要有明确的传授知识的对象和本身明确的职责。
唐宋或更早之前,针对“经学”“律学”“算学”和“书学”各科目,其相应传授者称为“博士”,这与当今“博士”含义已经相去甚远。
而对那些特别讲授“武事”或讲解“经籍”者,又称“讲师”。
“教授”和“助教”均原为学官称谓。
前者始于宋,乃“宗学”“律学”“医学”“武学”等科目的讲授者;而后者则于西晋武帝时代即已设立了,主要协助国子、博士培养生徒。
“助教”在古代不仅要作入流的学问,其教书育人的职责也十分明晰。
唐代国子学、太学等所设之“助教”一席,也是当朝打眼的学官。
至明清两代,只设国子监(国子学)一科的“助教”,其身价不谓显赫,也称得上朝廷要员。
至此,无论是“博士”“讲师”,还是“教授”“助教”,其今日教师应具有的基本概念都具有了。
1
第2课时 勾股定理的实际应用
知能演练提升
能力提升
1.一架5 m 长的梯子斜靠在一竖直的墙上,这时梯足距墙脚3 m .若梯子的顶端下滑1 m,则梯足将滑动 ( ) A.0 m
B.1 m
C.2 m
D.3 m
2.一个台阶示意图如图所示,每一层台阶的高都是20 cm,长都是50 cm,宽都是40 cm,一只蚂蚁沿台阶从点A 出发到点B ,其爬行的最短路线的长度是( )
A.100 cm
B.120 cm
C.130 cm
D.150 cm
3.一个圆柱形饮料罐如图所示,底面半径是5,高是12,上底面中心有一个小圆孔,则一根到达底部的直吸管在罐内部分a 的长度(罐壁的厚度和小圆孔的大小忽略不计)范围是( )
A.12≤a ≤13
B.12≤a ≤15
C.5≤a ≤12
D.5≤a ≤
13
4.如图,A是高为10 cm的圆柱底面圆周上一点,一只蜗牛从点A出发,沿30°角绕圆柱侧面爬行,当它爬到顶上时,它沿圆柱侧面爬行的最短距离是()
A.10 cm
B.20 cm
C.30 cm
D.40 cm
★5.输油管道的一部分如图所示,延伸外围的支路恰好构成一个直角三角形,两直角边分别为6和8.
按照输油中心O到三条支路的距离相等来连接管道,则O到三条支路的管道总长(计算时视管道为线,中心O为点)是()
A.2
B.3
C.6
D.9
6.小丽从家出发先向正东方向直线前进了40 m,接着又向正北方向直线前进了9 m.此时小丽若以20 m/min的速度回家,最少需要 min.
7.如图,小亮将升旗的绳子拉到旗杆底端,绳子末端刚好接触到地面,然后将绳子末端拉到距离旗杆8 m处,发现此时绳子末端距离地面2 m,则旗杆的高度为(滑轮部分忽略不计)为 m.
8.如图,一个长方体形的木柜放在墙角处(与墙面和地面均没有缝隙),有一只蚂蚁从柜角A处沿着木柜表面爬到柜角C1处.
2
(1)请你画出蚂蚁能够最快到达目的地的可能路径;
(2)当AB=4,BC=4,CC1=5时,求蚂蚁爬过的最短路径的长.
9.在一次缉私行动中,警方获得可靠消息:一辆走私车将路过一段水平且笔直的2号公路,但由于车上有威力巨大的爆炸装置,在方圆120 m范围内有危险,缉私警察无法靠近.为保证我警员的安全,决定利用远程射击的方法,警方选中一个距离2号公路120 m的高地作为隐蔽处,当射程为200 m时开始射击.若走私车与警方隐蔽处的距离为255 m时,警方做好了射击准备.走私车又行驶了多少米后,警方可以对其进行射击?
3
创新应用
10.为筹备元旦晚会,同学们准备在教室的灯管上缠绕5圈彩带,如图.若灯管长100 cm,灯管截面周长是15 cm,彩带至少应剪多长?
4
5
知能演练·提升 能力提升 1.B
2.C 把题中图形伸展开,根据勾股定理,可得蚂蚁爬行的最短路线的长度是√1202+502=130(cm).
3.A
4.B 将圆柱侧面沿点A 所在的高展开,在Rt △ABC 中,∠BAC=30°,BC=10 cm,则AB=20 cm .
5. C 如图,设点O 到Rt △ABC 三边的距离为h ,由勾股定理,得BC 2=62+82=100,
∴BC=10,S △ABC =1
2AB ·AC=24.
又S △ABC =1
2
(AB+AC+BC )·h=24,
∴h=2,故O 到三条支路的管道总长为2×3=6.
6.2.05
7.17
8.解 (1)如图,把木柜的三个面展开,得两个矩形ABC 1'D 1和ACC 1A 1. 蚂蚁能够最快到达目的地的可能路径有AC 1'或AC 1.
(2)蚂蚁沿着木柜表面经线段A1B1到C1',
爬过的路径的长是l1=√42+(4+5)2=√97.
蚂蚁沿着木柜表面经线段BB1到C1,
爬过的路径的长是l2=√(4+4)2+52=√89.
l1>l2,最短路径的长是l2=√89.
9.分析根据题意画出示意图,如图,将实际问题转化为直角三角形的问题,利用勾股定理分别求
出BC,AC的长,进而可求得走私车由点A行驶到点B时的路程.
解如图,由于走私车所携带的爆炸装置在方圆120 m范围内有危险,为保证警员的安全,当走私车行驶到C点之前就对其进行射击.
∵∠ACD=90°,DC=120 m,BD=200 m,AD=255 m,
∴BC=√BD2-DC2=√2002-1202=160(m),
AC=2-DC2=√2552-1202225(m).
∴AB=225-160=65(m).
因此,走私车又行驶了65 m后,警方可以对其进行射击.
创新应用
10.解如图,灯管展开后是一个长方形,整个彩带被平分成5段,可先求AC的长.
6
=20,
在Rt△ABC中,AB=15,BC=100×1
5
∴AC2=152+202=625.
∴AC=25.
故彩带至少应剪25×5=125(cm).
7。