18.1勾股定理(第二课时)教学设计
- 格式:docx
- 大小:61.07 KB
- 文档页数:7
勾股定理北师大版本第二课时教案教案标题:勾股定理北师大版本第二课时教案教案目标:1. 理解勾股定理的概念和原理;2. 掌握勾股定理的运用方法;3. 培养学生的逻辑思维和解决问题的能力;4. 培养学生的合作意识和团队合作能力。
教学重点:1. 理解勾股定理的概念和原理;2. 掌握勾股定理的运用方法。
教学难点:1. 运用勾股定理解决实际问题;2. 培养学生的逻辑思维和解决问题的能力。
教具准备:1. 黑板、白板或投影仪;2. 教学课件或教学PPT;3. 直角三角形模型或示意图;4. 学生练习册。
教学过程:一、导入(5分钟)1. 利用问题启发学生思考,如:在田地中,农民如何测量田地的边长?2. 引出勾股定理的概念和作用,并与学生进行简要讨论。
二、理论讲解(15分钟)1. 使用教学课件或教学PPT,介绍勾股定理的定义和原理。
2. 结合直角三角形模型或示意图,讲解勾股定理的几何意义。
3. 解释勾股定理的运用方法,并给出相关的例题进行讲解。
三、示范演练(15分钟)1. 在黑板、白板或投影仪上,给出几个勾股定理的应用题,引导学生思考解决方法。
2. 选择几个学生上台讲解解题过程,并与全班共同讨论解题思路和方法。
四、合作实践(20分钟)1. 将学生分成小组,每个小组由3-4名学生组成。
2. 每个小组发放一份勾股定理的练习册,要求小组成员共同完成练习册中的题目。
3. 鼓励小组成员之间合作讨论,互相帮助解决问题。
4. 指导学生在解题过程中体会勾股定理的应用,并及时给予指导和反馈。
五、总结归纳(10分钟)1. 让学生回顾勾股定理的概念、原理和运用方法。
2. 强调勾股定理在实际生活中的应用价值。
3. 鼓励学生总结解题经验和方法,形成自己的学习笔记。
六、作业布置(5分钟)1. 布置相关的课后作业,要求学生独立完成。
2. 强调作业的重要性,并提醒学生按时提交。
教学反思:1. 教案设计合理,能够引导学生理解勾股定理的概念和原理。
2. 教学过程中注重培养学生的合作意识和团队合作能力。
18.1勾股定理(1)年级:八年级科目:数学课型:新授执笔:姜艳审核:徐中国,薛柏双备课时间:2010.3.28 上课时间:2010.3.31教学目标1.了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理。
2.培养在实际生活中发现问题总结规律的意识和能力。
3.介绍我国古代在勾股定理研究方面所取得的成就,激发学生的爱国热情,促其勤奋学习。
重点:勾股定理的内容及证明。
难点:勾股定理的证明。
课前预习导学过程阅读教材第64页至第67页的部分,完成以下问题在Rt△ABC,∠C=90°⑴已知a=b=5,求c。
⑵已知a=1,c=2, 求b。
⑶已知c=17,b=8, 求a。
⑷已知a:b=1:2,c=5, 求a。
⑸已知b=15,∠A=30°,求a,c课堂活动:活动1、预习反馈多种方法证明勾股定理活动2、例习题分析例1:一个门框的尺寸如图,一块3m,宽2.2m的薄木板能否从门框内通过?为什么?CA B例2:如图,一个3m 长的梯子AB ,斜靠在一竖直的墙AO ,这时AO 的距离为2.5m ,如果梯子的顶端A 沿墙下滑0.5m ,那么梯子底端B 也外移0.5m 吗?课堂练习:1.勾股定理的具体内容是:2.如图,直角△ABC 的主要性质是:∠C=90°,(用几何语言表示)⑴两锐角之间的关系: ;⑵若D 为斜边中点,则斜边中线 ;⑶若∠B=30°,则∠B 的对边和斜边: ;⑷三边之间的关系: 。
3.⑴在Rt △ABC ,∠C=90°,a=8,b=15,则c= 。
⑵在Rt △ABC ,∠B=90°,a=3,b=4,则c= 。
⑶在Rt △ABC ,∠C=90°,c=10,a :b=3:4,则a= ,b= 。
⑷一个直角三角形的三边为三个连续偶数,则它的三边长分别为 。
⑸已知直角三角形的两边长分别为3cm 和5cm ,,则第三边长为 。
⑹已知等边三角形的边长为2cm ,则它的高为 ,面积为 。
课题:1、1探索勾股定理(第二课时)教学目标1、知识与技能目标掌握勾股定理及其验证,并能应用勾股定理解决一些实际问题.2、过程与方法在上节课对具体的直角三角形探索发现了勾股定理的基础上,经历勾股定理的验证过程,体会数形结合的思想和从特殊到一般的思想.3、情感态度与价值观在勾股定理的验证活动中,培养探究能力和合作精神;通过对勾股定理历史的了解,感受数学文化,增强爱国情感,并通过应用勾股定理解决实际问题,培养应用数学的意识.教学重点:用面积法验证勾股定理,应用勾股定理解决简单的实际问题.教学难点:验证勾股定理.教学准备:多媒体课件教学过程:第一环节:复习设疑,激趣引入(3分钟,问答式)内容:教师提出问题:(1)勾股定理的内容是什么?(2)上节课我们仅仅是通过测量和数格子,对具体的直角三角形探索发现了勾股定理,对一般的直角三角形,勾股定理是否成立呢?这需要进一步验证,如何验证勾股定理呢?事实上,现在已经有几百种勾股定理的验证方法,这节课我们也将去验证勾股定理.第二环节:小组活动,拼图验证.(15分钟,学生合作,全班交流)内容:活动1:教师导入,小组拼图.教师:今天我们将研究利用拼图的方法验证勾股定理,请你利用自己准备的四个全等的直角三角形,拼出一个以斜边为边长的正方形.活动2:层层设问,完成验证一.学生通过自主探究,小组讨论得到两个图形:图2 在此基础上教师提问: (1)如图1你能表示大正方形的面积吗?能用两种方法吗?(学生先独立思考,再4人小组交流);(2)你能由此得到勾股定理吗?为什么?(在学生回答的基础上板书(a+b)2=4×21ab+c 2.并得到222c b a =+)从而利用图1验证了勾股定理.活动3 : 自主探究,完成验证二.教师小结:我们利用拼图的方法,将形的问题与数的问题结合起来,联系整式运算的有关知识,从理论上验证了勾股定理,你还能利用图2验证勾股定理吗?第三环节: 例题讲解 初步应用(7分钟,学生合作探究)内容:例题:飞机在空中水平飞行,某一时刻刚好飞到一个男孩子头顶上方4000米处,过了20秒,飞机距离这个男孩子头顶5000米,飞机每小时飞行多少千米?(1)初步运用勾股定理解决实际问题,培养学生应用数学的意识和能力;(2)体会勾股定理的应用价值.第四环节 : 拓展练习 能力提升(10分钟,学生独立完成)内容:(1)教材 P10练习题. (2)一个25m 长的梯子AB ,斜靠在一竖直的墙AO 上,这时的AO 距离为24m ,如果梯子的顶端A 沿墙下滑4m ,那么梯子底端B 也外移4m 吗?图1(3)受台风麦莎影响,一棵高18m的大树断裂,树的顶部落在离树根底部6米处,这棵树折断后有多高?第五环节:回顾反思提炼升华(3分钟,师生问答)内容:教师提问:通过这节课的学习,你有什么样的收获?师生共同畅谈收获.第六环节:布置作业,课堂延伸(2分钟,学生分别记录)内容:教师布置作业1.习题1.2 1,2,32.上网或查阅有关书籍,搜集至少1种勾股定理的其它证法,至少1个勾股定理的应用问题,一周后进行展评.A组:完成1 、2B组:完成1C组:完成1。
勾股定理◆课标要求:探索勾股定理,并能运用勾股定理解决一些简单的实际问题。
◆内容分析:本课内容主要有探索勾股定理,并简单应用。
前面教材已经安排了三角形三边关系、完全平方式、直角三角形的有关性质,二次根式的有关运算。
后续教材安排了勾股定理的逆定理及其应用,四边形的有关知识,因此本节课起到了承上启下的作用,特别是勾股定理的探究历程和方法是学习探究新知的基本方法。
◆学情分析:从学生的知识储备看:学生已经学习了三角形三边关系,并且通过直角三角形、等腰三角形有关知识的积累,已经具有了研究特殊三角形的基本方法与初步经验。
从学生的思维发展看,八年级学生模仿能力强,思维多依赖具体直观的形象,对几何说理内容有一定的难度。
为此,在教材处理时添加了引例,调整了探究思路,补充例题,让教学过程具有渐进性和知识结构具有完整性,使得教与学达到和谐的统一。
◆教学目标:1.了解勾股定理的有关历史及证明;理解勾股定理的内容;运用勾股定理解决问题。
2.经历勾股定理的探究过程,提高观察、分析和推理能力,以及从特殊到一般的归纳概括能力。
3.体会数学来源于生活,体会从感性到理性的思维过程;体会数形结合思想,养成用联系的观点,辩证地看待人和事物的思维习惯。
◆教学重点:体验勾股定理的探究历程,理解并运用勾股定理。
◆教学难点:勾股定理的面积证法。
◆教学方法:1.教法:启发讲授、引导发现、探究讨论等教学方法。
2.学法:认真听讲、自主探究、合作交流等学习方法。
3.手段:借助多媒体辅助教学,增强课堂教学的生动性与直观性,体会数学的本质。
◆教学过程:一、创设情境,引入新课问题情境:如图1,一棵大树被风吹断,折断处离地面高8 米,树的顶端离树根6 米,求折断前树的高度。
【设计意图】通过问题情景引入课题,让学生在课堂的一开始就感受到数学就在我们身边,让学生学会用数学的眼光去关注生活。
既激发了学生浓厚的学习兴趣,又为新知做好铺垫。
图1二、复习回顾,探索新知问题1 对于三角形的三边,我们已经学习了哪些关系?2 两边之和大于第三边,两边之差小于第三边,等腰三角形两腰相等,等边三角形三边相 等。
课题:勾股定理(2)学情分析:本节课是在学生学习勾股定理的基础上,学习应用勾股定理进行直角三角形的边长计算,解决一些简单的实际问题。
学习目标:知识与技能1.能运用勾股定理求线段长度,并解决一些简单的实际问题;2.在利用勾股定理解决实际生活问题的过程中,能从实际问题中抽象出直角三角形这一几何模型,利用勾股定理建立已知边与未知边长度之间的联系,并进一步求出未知边长.过程与方法:通过不同的问题情景,使学生明白数学来源于生活,有应用于生活,积累应用数学知识解决日常生活中实际问题的经验和方法。
情感、态度和价值观:使学生认识到数学来自生活,并服务于生活,从而增强学生学数学、用数学的意识,体会勾股定理的文化价值,发展运用数学的信心和能力。
教学重点:运用勾股定理计算线段长度,解决实际问题.教学难点:把实际问题划归成勾股定理的几何模型(直角三角形)。
教学过程:一、复习引入勾股定理的内容是什么?如果直角三角形的两条直角边长分别为a,b,斜边长为c,那么a2+b2=c2.(学生回答,教师补充,并强调条件:1、是在直角三角形中2、是指明直角边和斜边,培养学生严谨思考的习惯。
)已知一个直角三角形的两边,应用勾股定理可以求出第三边,这在求距离时会起到重要作用.二、新知探究例1一个门框的尺寸如图所示,一块长3 m,宽2.2 m的长方形薄木板能否从门框内通过?为什么?解:在Rt△ABC中,AC2=AB2+BC2=12+22=5.AC = 5≈2.24因为AC 大于木板的宽2.2 m,所以木板能从门框内通过.(将实际问题转化为数学问题,建立几何模型,画出图形,分析已知量、待求量,是掌握解决实际问题的一般套路。
)例2如图,一架2.6米长的梯子AB 斜靠在一竖直的墙AO上,这时AO 为2.4米.(1)求梯子的底端B距墙角O多少米?(2)如果梯子的顶端A沿墙下滑0.5米,那么梯子底端B也外移0.5米吗?(学生思考、组内讨论解决,选一名学生演板)思考问题:如果知道平面直角坐标系坐轴上任意两点的坐标为A (x ,0),B (0,y ),你能求这两点之间的距离吗?三、拓展提高:1、今有池方一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐.问水深、葭长各几何?分析:可设AB=x,则AC=x+1,有 AB 2+BC 2=AC 2,可列方程,得 x 2+52= (x+1)2通过解方程可得.师生共同小结:利用勾股定理解决实际问题的一般思路:(1)正确理解实际问题的题意;(2)从实际问题中建立对应的数学模型,运用相应的数学知识;(3)运用方程思想解决问题。
第一章勾股定理探索勾股定理(第2课时)深圳市光明新区实验学校孔晓康一、学情分析学生的知识技能基础:学生在上节课的学习中已经用数格子的办法发现了勾股定理,会用勾股定理解决较为简单的计算题。
但是数格子的办法只是验证了直角边为整数的直角三角形的情况,并没有对一般的直角三角形进行验证。
学生活动经验基础:学生在以前数学学习中已经经历了很多独立探究和合作学习的过程,具有了一定的自主探究经验和合作学习的经验,具备了一定的探究能力和合作与交流的能力;学生在活动中学会合作,愿意合作,能够在合作中体验到成功的喜悦。
二、教学目标知识与技能目标:1.掌握勾股定理以及利用拼图验证勾股定理的方法。
2.能应用勾股定理解决一些简单的实际问题.过程与方法目标:1.在拼图的过程中,学习切割拼补的方法,在寻找等量关系的过程中体会同一面积法。
2.经历勾股定理的验证过程,体会数形结合思想,体会从特殊到一般,再从一般到特殊的思想。
情感、态度与价值观目标:1.在勾股定理的验证活动中,培养探究能力和合作精神;通过对勾股定理历史的了解,感受数学文化,增强爱国情感,并通过应用勾股定理解决实际问题,培养应用数学的意识.三、教学重难点教学重点:1.利用拼图验证勾股定理的思路和方法2.理解并掌握勾股定理,会用勾股定理解决简单的实际问题。
教学难点: 勾股定理的验证四、教学过程本节课设计了五个教学环节:(一)问题情境;(二)合作探究;(三)拓展练习(四) 课堂小结(五)布置作业第一环节: 问题情境内容:教师提出问题:上节课,我们利用方格纸探究了几个简单的直角三角形,发现这几个直角三角形的三边都存在一种相同的数量关系,大家还记得吗?(请一名学生回答)直角三角形两直角边的平方和等于斜边的平方,如果用a ,b ,c 分别表示直角三角形的两直角边和斜边,那么222c b a =+课件展示:(勾股定理:222c b a =+)前面,我们利用方格纸只是解决了几个直角边是整数的特殊情况,如果给你一个任意的直角三角形,比如直角边分别等于a 和b ,(这里不妨假设a <b )斜边为c ,我们还能利用上节课中的这个图说明勾股定理的正确性吗?第二环节:合作探究活动1:现在没有方格纸可用,但是上节课中探究勾股 定理的方法也许仍然有效,同学们可以先试一试。
沪科版数学八年级下册18.1《勾股定理》教学设计一. 教材分析《勾股定理》是沪科版数学八年级下册第18章第1节的内容。
本节主要介绍勾股定理的证明和应用。
学生通过学习本节内容,能够理解和掌握勾股定理,并能够运用勾股定理解决一些实际问题。
二. 学情分析八年级的学生已经学习了平面几何的基本概念和性质,具备了一定的逻辑思维能力和空间想象能力。
但是,对于证明勾股定理的理解可能会存在一定的困难,因此需要教师在教学过程中进行引导和解释。
三. 教学目标1.理解勾股定理的内容和证明方法。
2.能够运用勾股定理解决一些实际问题。
3.培养学生的逻辑思维能力和空间想象能力。
四. 教学重难点1.勾股定理的证明方法的理解和应用。
2.解决实际问题时,如何运用勾股定理。
五. 教学方法1.讲授法:教师讲解勾股定理的证明方法和应用。
2.案例分析法:通过具体案例,让学生学会如何运用勾股定理解决实际问题。
3.讨论法:学生分组讨论,分享各自的解题方法和思路。
六. 教学准备1.PPT课件:包括勾股定理的证明过程和应用案例。
2.练习题:包括不同难度的练习题,用于巩固所学知识。
3.板书:勾股定理的公式和关键点。
七. 教学过程1.导入(5分钟)教师通过PPT展示勾股定理的历史背景和古希腊数学家毕达哥拉斯的故事,激发学生的学习兴趣。
2.呈现(10分钟)教师讲解勾股定理的证明方法,包括几何画图法和代数法。
同时,通过PPT展示勾股定理的证明过程,让学生理解和掌握证明方法。
3.操练(10分钟)学生根据PPT上的练习题,独立完成勾股定理的证明和应用。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)学生分组讨论,分享各自的解题方法和思路。
教师选取一些学生的解题过程,进行讲解和分析,巩固所学知识。
5.拓展(10分钟)教师通过PPT展示一些勾股定理的实际应用案例,让学生学会如何运用勾股定理解决实际问题。
同时,教师提出一些拓展问题,引导学生思考。
6.小结(5分钟)教师对本节课的主要内容进行总结,强调勾股定理的证明方法和应用。
课题名称勾股定理(2)授课类型新授上课时间教学目标 1.知识与技能:掌握勾股定理,会运用勾股定理解决简单问题。
2.过程与方法:通过运用勾股定理能够掌握在直角三角形中已知两边求第三边的方法。
3.情感态度与价值观:通过了解勾股定理的发展历史让学生感受到数学的魅力,激发学生探索的欲望和爱国热情。
重点难点教学重点:勾股定理的应用教学难点:实现让学生利用面积不变完成拼图证明的过程,体会数形结合的数学思想。
教学方式疑探式、小组合作技术准备多媒体教学过程预设问题:1、勾股定理怎样应用?一、创生情境,导入新课一)、勾股定理:________________ ________________ ________________几何语言:∵________________∴________________(勾股定理)求斜边: C=求直角边:a=b=二)、应用 1、已知:在Rt△ABC中,∠C=90°若(1)a=6cm,b=8cm,求c的长。
(2)a=9cm,c=15cm,求b的长。
二、自探、合探2mA B1mD C1、在Rt △ABC 中,∠C=90°,填出表格中所缺的边长,并思考各组边长间的关系。
注:如3,4,5这样的满足勾股定理结论,即:两个数的平方和等于第三个数的平方,这样一组数称为勾股数。
2、问题:一个门框的尺寸如图所示,一块长3m ,宽2.1m的薄木板能否从门框内通过?为什么?分析:木板横竖都不能从门框通过,只能斜着试试,门框的对角线AC 的长度是斜着能通过烦人最大长度。
求出AC ,再与木板的宽比较,就知道木板能否通过。
3、已知:在Rt △ABC 中,∠C=90°,∠A=30°,AB=6cm ,求1)AC 的长; 2)△ABC 面积4、如果,∠C=90°∠A=45°,C=2,求a 和b 的长。
三、学生展示与评价a b c 3 4 56 8915 0.4 0.5CA BD1、如图,在△ABC中,∠ACB=90°,CD⊥AB于D,AC=4,BC=3,求AB和CD的长。
第十八章勾股定理18.1 勾股定理课时安排: 4课时第1课时 18.1 .1 勾股定理(1)三维目标一、知识与技能让学生通过观察、计算、猜想直角三角形两条直角边的平方和等于斜边的平方的结论.二、过程与方法1.在学生充分观察、归纳、猜想、探索直角三角形两条直角边的平方和等于斜边的平方的过程中,发展合情推理能力,体会数形结合的思想.2.在探索上述结论的过程中,发展学生归纳、概括和有条理地表达活动的过程和结论.三、情感态度与价值观1.培养学生积极参与、合作交流的意识,2.在探索勾股定理的过程中,体验获得结论的快乐,锻炼克服困难的勇气.教学重点探索直角三角形两条直角边的平方和等于斜边的平方的结论。
从而发现勾股定理.教学难点以直角三角形的边为边的正方形面积的计算.教具准备学生准备若干张方格纸。
教学过程一、创设问题情境,引入新课活动1问题1:在我国古代,人们将直角三角形中的短的直角边叫做勾,长的直角边叫做股,斜边叫做弦.根据我国古算书《周髀算经》记载,在约公元前1100年,人们已经知道,如果勾是三,股是四,那么弦是五,你知道是为什么吗?问题2:某楼房三楼失火,消防队员赶来救火,了解到每层楼高3米,消防队员取来6.5米长的云梯,如果梯子的底部离墙基的距离是2.5米,请问消防队能否进入三楼灭火?问题3:我们再来看章头图,在下角的图案,它有什么童义?为什么选定它作为2002年在北京召开的国际数学家大会的会徽?二.实际操作,探索直角三角形的三边关系活动2问题1:毕达哥拉斯是古希腊著名的哲学家、数学家、天文学家,相传2500年前,一次,毕达哥拉斯去朋友家作客.在宴席上,其他的宾客都在尽情欢乐,高谈阔论,只有毕达哥拉斯却看着朋友家的方砖地而发起呆来.原来,朋友家的地是用一块块直角三角形形状的砖铺成的,黑白相间,非常美观大方.主人看到毕达哥拉斯的样子非常奇怪,就想过去问他.谁知毕达哥拉斯突然恍然大悟的样子,站起来,大笑着跑回家去了.同学们,我们也来观察下面图中的地面,看看你能发现什么?是否也和大哲学家有同样的发现呢?问题2:你能发现下图中等腰直角三角形ABC有什么性质吗?问题3:等腰直角三角形都有上述性质吗?观察下图,并回答问题:(1)观察图1正方形A中含有________个小方格,即A的面积是________个单位面积;正方形B中含有________个小方格,即B的面积是________个单位面积;正方形C中含有________个小方格,即C的面积是________个单位面积.(2)在图2、图3中,正方形A、B、C中各含有多少个小方格?它们的面积各是多少?你是如何得到上述结果的?与同伴交流.(3)?活动3问题1:等腰三角形有上述性质,其他的三角形也有这个性质吗?如下图,每个小方格的面积均为1,请分别计算出下图中正方形A、B、C,A'、B'、C'的面积,看看能得出什么结论.(提示:以斜边为边长的正方形的面积,等于虚线标出的正方形的面积减去四个直角三角形的面积.)问题2:给出一个边长为0.5,1.2,1.3,这种含小数的直角三角形,也满足上述结论吗?我们通过对A、B、C,A'、B'、C'几个正方形面积关系的分析可知:一般的以整数为边长的直角三角形两直角边的平方和也等于斜边的平方,一个边长为小数的直角三角形是否也有此结论?我们不妨设小方格的边长为0.1,我们不妨在你准备好的方格纸上画出一个两直角边为0,5,1.2的直角三角形来进行验证.生:也有上述结论.这一结论,在国外就叫做“毕达哥拉斯定理”,而在中国则叫做“勾股定理”.而活动1中的问题1提到的“勾三,股四,弦五”正是直角三角形三边关系的重要体现.勾股定理到底是谁最先发现的呢?我们可以自豪地说:是我们中国人最早发现的.证据就是《周髀算经》,不仅如此,我们汉代的赵爽曾用2002年在北京召开的国际数学家大会的徽标的图案证明了此结论,也正因为为了纪念这一伟大的发现而采用了此图案作徽标.下节课我们将要做更深入的研究.大哲学家毕达哥拉斯发现这一结论后,就已认识到,他的这个发现太重要了.所以,按照当时的传统,他高兴地杀了整整一百头牛来庆贺.三、例题剖析活动4问题:(1)如下图,一根旗杆在离地面9m处断裂,旗杆顶部落在离旗杆底部12m处,旗杆折断之前有多高?(2)求斜边长17cm,一条直角边长15cm的直角三角形的面积.解:(1)解:由勾股定理可求得旗杆断裂处到杆顶的长度是:92+122=15(m);15+9=24(m),所以旗杆折断之前高为24m.(2)解:另一直角边的长为172-152=8(cm),所以此直角三角形的面积为12×8×15=60(cm2).师:你能用直角三角形的三边关系解答活动1中的问题2.请同学们在小组内讨论完成.四、课时小结1.掌握勾股定理及其应用;2.会构造直角三角形,利用勾股定理解简单应用题.五.布置作业六.板书设计18.1.1勾股定理(1)第2课时勾股定理(2)三维目标一、知识与技能1.掌握勾股定理,了解利用拼图验证勾股定理的方法.2.运用勾股定理解决一些实际问题.二、过程与方法1.经历用拼图的方法验证勾股定理,培养学生的创新能力和解决实际问题的能力.2.在拼图的过程中,鼓励学生大胆联想,培养学生数形结合的意识.三、情感态度与价值观1.利用拼图的方法验证勾股定理,是我国古代数学家的一大贡献,借助此过程对学生进行爱国主义的教育.2.经历拼图的过程,并从中获得学习数学的快乐,提高学习数学的兴趣.教学重点经历用不同的拼图方法验证勾股定理的过程,体验解决同一问题方法的多样性,进一步体会勾股定理的文化价值.教学难点经历用不同的拼图方法证明勾股定理.教具准备每个学生准备一张硬纸板.教学过程一、创设问题情境,引入新课活动1问题:我们曾学习过整式的运算,其中平方差公式(a+b(a-b)=a2-b2,完全平方公式(a±b)2=a2±2ab+b2是非常重要的内容.谁还能记得当时这两个公式是如何推出的?生:这两个公式都可以用多项式乘以多项式的乘法法则推导.如下:(a+b)(a-b)=a2-ab+ab-b2=a2-b2,所以(a+b)(a-b)=a2-b2;(a+b)2=(a+b)(a+b)=a2+ab+ab+b2=a2+2ab+b2;(a-b)2=(a-b)(a-b)=a2-ab-ab+b2=a2-2ab+b2;所以(a±b)2=a2±2ab+b2;生:还可以用拼图的方法说明上面的公式成立.例如:图(1)中,阴影部分的面积为a2-b2,用剪刀将(1)中的长和宽分别为(a-b)和b的长方形剪下来拼接成图(2)的形式便可得图(2)中阴影部分的面积为(a+b)(a-b).而这两部分面积是相等的,因此(a+b)(a-b)=a2-b2成立.生:(a+b)2=a2+2ab+b2也可以用拼图的方法,通过计算面积证明,如图(3)我们用两个边长分别a和b的正方形,两个长和宽分别a和b的长方形拼成一个边长为(a+b)的正方形,因此这个正方形的面积为(a+b)2,也可以表示为a2+2ab+b2,所以可得(a+b)2=a2+2ab+b2.师:你能用类似的方法证明上一节猜想出的命题吗?二、探索研究活动2我们已用数格子的方法发现了直角三角形三边关系,拼一拼,完成下列问题:(1)在一张纸上画4个与图(4)全等的直角三角形,并把它们剪下来.(2)用这4个直角三角形拼一拼,摆一摆,看能否得到一个含有以斜边c为边长的正方形,你能利用拼图的方法,面积之间的关系说明上节课关于直角三角形三边关系的猜想吗?(3)有人利用图(4)这4个直角三角形拼出了图(5),你能用两种方法表示大正方形的面积吗?大正方形的面积可以表示为:_______________,又可以表示为________________.对比两种衷示方法,你得到直角三角形的三边关系了吗?生:我也拼出了图(5),而且图(5)用两种方法表示大正方形的面积分别为(a+b)2或4× ab+c2.由此可得(a+b)2=4×12 ab+c2.化简得a2+b2=c2.由于图(4)的直角三角形是任意的,因此a2+b2=c2,即直角三角形两直角边的平方和等于斜边的平方。
《勾股定理》第2课时精品教案【教学目标】1.知识与技能利用勾股定理解决实际生活问题。
2.过程与方法灵活运用所学知识,主动参与讨论学习。
3.情感态度和价值观通过师生共同活动,促进学生在学习活动中培养良好的情感,合作交流,主动参与的意识。
【教学重点】正确利用勾股定理解决实际问题。
【教学难点】将实际问题转化为数学问题。
【教学方法】讲解与练习相结合的方法。
【课前准备】教学课件。
【课时安排】1课时【教学过程】一、复习导入【过渡】上节课我们学习了什么是勾股定理以及简单的应用,现在我们先来回忆一下,什么是勾股定理?(引导学生回答)【过渡】大家回答的都很正确,看来课下都进行了复习。
那么,现在我就要检验一下大家究竟会不会运用勾股定理。
课件展示简单的应用题。
学生回答。
【过渡】刚刚的问题只是非常简单的应用,这节课我们将学习勾股定理的深一步应用。
二、新课教学1.勾股定理的应用(1)生活中的数学问题【过渡】我们首先来看勾股定理在生活实际问题中的应用。
讲解例1。
【过渡】读过问题之后,我们知道,这是一道实际的问题。
在之前,我们学习过,遇到实际问题时,我们需要想办法将其转化为数学问题,而实际的图形就需要转化为数学图形。
【过渡】从题目中,我们知道,木板的长和宽都大于门的宽度和高度。
因此,不论是横着还是竖着,都是不可能将木板弄进屋里。
在这个时候,我们就需要考虑,斜着能否将其抬进去呢?【过渡】我们知道,在矩形中,其对角线的长度是最大的,因此,就将问题转化为比较对角线与木板长度的大小。
在这里,我们就需要用到勾股定理。
课件展示解题过程。
【过渡】现在,我们来看另一类问题。
讲解例2.【过渡】题目可以转化为比较BE与0.4m的大小,这样就能够将问题数学化,再利用勾股定理,就可以解决问题了。
课件展示解题过程。
(2)立体问题【过渡】除了以上的问题之外,我们还会遇到在立体图形中的问题。
例3:有一个圆柱,它的高等于12厘米,底面半径等于3厘米,在圆柱下底面上的A点有一只蚂蚁,它想从点A爬到点B , 蚂蚁沿着圆柱侧面爬行的最短路程是多少? (π的值取3)【过渡】求至少要爬多少路程,根据两点之间直线最短,把圆柱体展开,在得到的矩形上连接两点,求出距离即可。
人教版八年级下《勾股定理》教学设计江西赣县第二中学李小平一、教案背景1、面向学生:初中八年级2、学科:数学3、课时:1课时4、课前准备:百度搜索勾股定理相关内容和图片5、学情分析:在学习了一般三角形的有关性质,进一步学习特殊三角形的性质-—直角三角形三边的关系。
二、教学课题:用数形结合这一重要的数学思想来证明勾股定理,提高学生的解题技能。
三、教材分析(一)教材的地位与作用勾股定理是数学中几个重要定理之一,它揭示的是直角三角形中三边的数量关系。
它在数学的发展中起着重要的作用,在现实世界中也有着广泛的应用。
学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。
(二)教学目标基于以上分析和数学课程标准的要求,制定了本节课的教学目标。
知识与技能:1、了解勾股定理的文化背景,体验勾股定理的探索过程,了解利用拼图验证勾股定理的方法。
2、了解勾股定理的内容。
3、能利用已知两边求直角三角形另一边的长。
数学思考:在勾股定理的探索过程中,培养合情推理能力,体会数形结合和从特殊到一般的思想。
解决问题:1、通过拼图活动,体验数学思维的严谨性,发展形象思维。
2、在探索活动中,学会与人合作,并能与他人交流思维的过程和探索的结果。
情感与态度:1、通过对勾股定理历史的了解,对比介绍我国古代和西方数学家关于勾股定理的研究,激发学生热爱祖国悠久文化的情感,激励学生奋发学习。
2、在探索勾股定理的过程中,体验获得结论的快乐,锻炼克服困难的勇气,培养合作意识和探索精神。
(三)教学重、难点重点:探索和证明勾股定理难点:用拼图方法证明勾股定理(四)学情分析学生对几何图形的观察,几何图形的分析能力已初步形成。
部分学生解题思维能力比较高,能够正确归纳所学知识,通过学习小组讨论交流,能够形成解决问题的思路。
现在的学生已经厌倦教师单独的说教方式,希望教师设计便于他们进行观察的几何环境,给他们自己探索、发表自己见解和展示自己才华的机会;更希望教师满足他们的创造愿望。
“三部五环”教学模式设计《18.1.2勾股定理》教学设计1、教材内容义务教育课程标准实验教科书(人教版)《数学》八年级下册第18章第一节勾股定理第2课时。
2、设计理念本设计以“活动----参与”教学法为主,辅之小组合作、交流讨论。
以问题为主线,练习为核心,活动为载体,从学生已有的生活经验和认知基础出发,引导其经历探索运用勾股定理解决实际问题的全过程。
从而让学生感受数学源于生活,又服务生活,更好地理解勾股定理应用价值,强化“用数学”的意识。
体现“人人学有价值数学”的新课程理念。
整个数学设计流程突出以学定教,体现“设计问题化,过程活动化,活动练习化,练习要点化,要点目标化,目标课标化”的要求,充分利用现代信息技术的直观、动态功能,丰富教学可视性材料,增大课堂容量,优化教学结构,实现课堂教学效果最优化。
3、知识背景分析本节课在学习勾股定理后,要求学生能运用勾股定理进行简单计算以及运用能够够多了解决生活中的实际问题,从而进一步理解和掌握勾股定理。
通过对问题的探究,从中抽象出直角三角形这一模型,初步掌握转化和数形结合的思想。
4、学情背景分析教学对象是八年级学生,在学习本节前,学生已经掌握了勾股定理的知识,通过本节的学习使学生能运用勾股定理进行简单计算以及运用能够够多了解决生活中的实际问题。
在解决问题时,进一步体会数形结合的思想。
鉴于学生的知识基础和学习方法的积累本节课以学生练习与合作探究为主,教师根据反馈信息进行指导、点评。
5、学习目标5.1知识与技能目标1.熟练的叙述勾股定理的文化的内容,能运用勾股定理进行简单计算。
2.了解利用拼图验证勾股定理的方法.3.运用勾股定理解决生活中问题。
5.2过程与方法目标1.通过对问题的探究,从中抽象出直角三角形这一模型,初步掌握转化和数形结合的思想。
2.经历探究勾股定理在实际问题中的应用过程,感受勾股定理的应用方法。
5.3情感态度与价值观目标在数学活动中发展了学生的探究意识和合作交流的习惯;体会勾股定理的应用价值,通过本节课的学习,让学生体会到数学来源于生活,有应用到生活中,增加学生应用数学知识解决实际问题的经验和感受。
17.1 勾股定理第2课时一、教学目标【知识与技能】1.能应用勾股定理计算直角三角形的边长.2.能应用勾股定理解决简单的实际问题.3.能说出勾股定理,能运用勾股定理的数学模型解决现实世界的实际问题.【过程与方法】1.通过从实际问题中抽象出直角三角形这一模型,强化转化思想,培养学生解决现实问题的意识和能力.2.经历探究勾股定理在实际问题中的应用过程,进一步体会勾股定理的应用方法.【情感态度与价值观】在例题分析和解决过程中,让学生感受勾股定理在实际生活中的应用.同时在学习过程中体会获得成功的喜悦,提高学生学习数学的兴趣和信心.二、课型新授课三、课时第2课时共3课时四、教学重难点【教学重点】运用勾股定理解决实际问题.【教学难点】勾股定理的灵活运用.五、课前准备教师:课件、三角尺、直尺等.学生:三角尺、铅笔、直尺、练习本、三角形模型.六、教学过程(一)导入新课(出示课件2)波平如镜一湖面,3尺高处出红莲.亭亭多姿湖中立,突遭狂风吹一边.离开原处6尺远,花贴湖面像睡莲.请君动脑想一想,湖水在此深几尺?示意图见课件,就是求AD的长教师:这节课我们就来学习用勾股定理解决实际问题,学完本节课知识后,自己再想想怎么计算此题吧!(二)探索新知1.出示课件4-6,探究勾股定理解决线段长度问题教师问:一个门框的尺寸如图所示,一块长3m,宽2.2 m的长方形薄木板能否从门框内通过?为什么?学生答:不能,因为木板的长3m大于2m,宽2.2m大于1m. 教师问:木板能横着或竖着从门框通过吗?学生答:不能.教师问:这个门框能通过的最大长度是多少?学生讨论后回答:如图所示,小于线段AC的长度才可以.教师问:怎样判定这块木板能否通过木框?学生回答:求出斜边AC的长,与木板的宽比较.师生一起解答:解:在Rt△ABC中,根据勾股定理,AC2=AB2+BC2=12+22=5.AC= √5≈2.24.因为AC大于木板的宽2.2 m,所以木板能从门框内通过.出示课件7,学生自主练习后口答,教师订正.2.出示课件8-9,探究勾股定理解决线段移动问题教师问:如图,一架2.6米长的梯子AB 斜靠在一竖直的墙AO 上,这时AO 为2.4米.求梯子的底端B距墙角O多少米?学生回答:解:(1)在Rt△AOB中,根据勾股定理,OB2=AB2-OA2=2.62-2.42=1.OB=1.答:梯子的底端B距墙角O为1米.教师问:如果梯子的顶端A沿墙下滑0.5米,那么梯子底端B也外移0.5米吗?学生回答:在Rt△COD中,根据勾股定理,OD2=CD2-OC2=2.62-(2.4-0.5)2=3.15.OD=√3.15≈1.77.BD=OD-OB≈1.77-1=0.77答:梯子底端B也外移约0.77米.出示课件10,学生自主练习后口答,教师订正.教师:学了前面的知识,接下来做几道练习题看看你掌握的怎么样吧。
第二课时
一、教学目标
知识与技能
会用勾股定理进行简单的计算。
过程与方法
1.数形结合,让学生每做一道题都画图形,并写出应用公式的过程或公式的推倒过程,在做题过程中熟记公式,灵活运用。
2.分类讨论,让学生画好图后标图,从不同角度考虑条件和图形,考虑问题要全面,在讨论的过程中提高学生的灵活应用能力
情感、态度与价值观
树立数形结合的思想、分类讨论思想。
培养思维意识,发展数学理念,体会勾股定理的应用价值。
二、教学重、难点
重点:勾股定理的简单计算。
难点:勾股定理的灵活运用。
三、教学准备
多媒体,作图工具
四、教学方法
讲练结合
五、教学过程
(一)复习回顾,引入新课
复习勾股定理的文字叙述;勾股定理的符号语言及变形。
学习勾股定理重在应用。
预习新知(阅读教材第66至67页,并完成预习内容。
)
1.①在解决问题时,每个直角三角形需知道几个条件?
②直角三角形中哪条边最长?
2.在长方形ABCD中,宽AB为1m,长BC为2m,求AC的长.
问题:(1)在长方形ABCD 中,AB 、BC 、AC 的大小关系? (2)一个门框的尺寸如图1所示.
①若有一块长3米,宽0.8米的薄木板,问怎样从门框通过? ②若薄木板长3米,宽1.5米呢? ③若薄木板长3米,宽2.2米呢?为什么?
(二)新课教授
例1、在Rt △ABC 中,∠C=90° ⑴已知a=b=5,求c ; ⑵已知a=1,c=2, 求b ; ⑶已知c=17,b=8, 求a ; ⑷已知a :b=1:2,c=5, 求a ;
⑸已知b=15,∠A=30°,求a ,c 。
分析:刚开始使用定理,让学生画好图形,并标好图形,理
清边之间的关系。
⑴已知两直角边,求斜边直接用勾股定理。
⑵⑶已知斜边和一直角边,求另一直角边,用勾股定理的便形式。
⑷⑸已知一边和两边比,求未知边。
通过前三题让学生明确在直角三角形中,已知任意两边都可以求出第三边。
后两题让学生明确已知一边和两边关系,也可以求出未知边,学会见比设参的数学方法,体会由角转化为边的关系的转化思想。
例2、已知直角三角形的两边长分别为5
和12,求第三边。
1m
m
C
分析:已知两边中较大边12可能是直角边,也可能是斜边,因此应分两种情况分别进形计算。
让学生知道考虑问题要全面,体会分类讨论思想。
例3、已知:如图,等边△ABC的边长是6cm。
⑴求等边△ABC的高。
⑵求S△ABC。
分析:勾股定理的使用范围是在直角三角形中,因此注意要
创造直角三角形,作高是常用的创造直角三角形的辅助线做
法。
欲求高CD,可将其置身于Rt△ADC或Rt△BDC中,
但只有一边已知,根据等腰三角形三线合一性质,可求
1AB=3cm,则此题可解。
AD=BD=
2
例4:如图2,一个3米长的梯子AB,斜着靠在竖直的墙AO上,这时AO的距离为2.5米.
(1)求梯子的底端B距墙角O多少米?
(2)如果梯的顶端A沿墙下滑0.5米至C.
算一算,底端滑动的距离近似值(结果保留两位小数).
(三)例题讲解
例1.填空题
⑴在Rt△ABC,∠C=90°,a=8,b=15,则c= 。
⑵在Rt△ABC,∠B=90°,a=3,b=4,则c= 。
⑶在Rt△ABC,∠C=90°,c=10,a:b=3:4,则a= ,
b= 。
⑷一个直角三角形的三边为三个连续偶数,则它的三边长分
别为 。
⑸已知直角三角形的两边长分别为3cm 和5cm ,,则第三边
长为 。
⑹已知等边三角形的边长为2cm ,
则它的高为 ,面积为 。
解:
17;
; 6,8; 6,8,10;
4
例2.已知:如图,在△ABC 中,∠C=60°,AB=34,AC=4,AD 是BC 边上的高,求BC 的长。
解:8;
例3.已知等腰三角形腰长是10,底边长是16,求这个等腰三角形的面积。
解:48。
(四)巩固练习
1.填空题
在Rt △ABC 中,∠C=90°, ⑴如果a=7,c=25,则b= ; ⑵如果∠A=30°,a=4,则b= ; ⑶如果∠A=45°,a=3,则c= ; ⑷如果c=10,a-b=2,则b= ;
⑸如果a 、b 、c 是连续整数,则a+b+c= ;
A
B
⑹如果b=8,a :c=3:5,则c= 。
2.已知:如图,四边形ABCD 中,AD ∥BC ,AD ⊥DC ,
AB ⊥AC ,∠B=60°,CD=1cm ,求BC 的长。
答案
1.(1)24;(2) 43;(3) 32;(4) 6; (5)12;
(6)10;
2.
3
3
2
(五)课堂小结
1、进一步了解勾股定理的含义。
2、学会利用勾股定理解决简单的问题。
3、学着体会数形结合的思想。
B
七、课后作业
1.填空题
在Rt △ABC ,∠C=90°,
⑴如果a=7,c=25,则b= 。
⑵如果∠A=30°,a=4,则b= 。
⑶如果∠A=45°,a=3,则c= 。
⑷如果c=10,a-b=2,则b= 。
⑸如果a 、b 、c 是连续整数,则
a+b+c= 。
⑹如果b=8,a :c=3:5,则c= 。
2.已知:如图,四边形ABCD 中,AD ∥BC ,AD ⊥DC ,
AB ⊥AC ,∠B=60°,CD=1cm ,求BC 的长
3.已知:如图,在△ABC 中,∠C=60°,
AB=AC=4,AD 是BC 边上的高,求BC 的长。
4.已知等腰三角形腰长是10,底边长是16,求这个等腰三角形的面积。
答1.24;
;
; 6; 12; 10; 2
.
3
3.8; 4.48。
八、教学反思
荷兰数学教育家赖登塔尔认为,学习数学唯一正确的方法是
实现再创造.也就是由学生本人把要学习的东西自己去发现或创造出来,教师的任务是引导和帮助学生去进行这种再创造的工作,而不是把现成的知识灌输给学生.
B
而课程标准对勾股定理这部分的教学要求与旧大纲的要求不同,课程标准对勾股定理这部分的教学要求是:体验勾股定理的探索过程,会运用勾股定理解决简单的问题
勾股定理是中学数学几个重要定理之一,它揭示了直角三角形三边之间的数量关系,既是直角三角形性质的拓展,也是后续学习“解直角三角形”的基础.它紧密联系了数学中两个最基本的量——数与形,能够把形的特征(三角形中一个角是直角)转化成数量关系(三边之间满足a2+ b2= c2)堪称数形结合的典范,在理论上占有重要地位.
另外八年级学生已具备一定的分析与归纳能力,初步掌握了探索图形性质的基本方法. 但是学生对用割补方法和面积计算证明几何命题的意识和能力存在障碍,对于如何将图形与数有机的结合起来还很陌生.
基于以上三点的原因,本节课把学生的探索活动放在首位,一方面要求学生在教师引导下自主探索,合作交流,另一方面要求学生对探究过程中用到的数学思想方法有一定的领悟和认识.从而教给学生探求知识的方法,教会学生获取知识的本领.。