2019年徐州市区中考二模试题数学
- 格式:pdf
- 大小:1.82 MB
- 文档页数:4
2019年江苏省徐州市铜山区利国镇厉湾中学中考数学二模试卷一.选择题(共8小题,满分24分,每小题3分)1.若实数a、b互为相反数,则下列等式中成立的是()A.a﹣b=0B.a+b=0C.ab=1D.ab=﹣12.下列运算正确的是()A.(2a)3=6a3B.2a2﹣a2=2C.﹣=D.a2•a3=a63.近年来,中国高铁发展迅速,高铁技术不断走出国门,成为展示我国实力的新名片.现在中国高速铁路营运里程将达到22000公里,将22000用科学记数法表示应为()A.2.2×104B.22×103C.2.2×103D.0.22×1054.下列4个对事件的判断中,所有正确结论的序号是()①“哥哥的年龄比弟弟的年龄大”是必然事件②“书柜里有6本大小相同,厚度差不多的书,从中随机摸出一本是小说”是随机事件③在1万次试验中,每次都不发生的事件是不可能事件④在1万次试验中,每次都发生的事件是必然事件A.①B.①②C.①③④D.①②③④5.第14届中国(深圳)国际茶产业博览会在深圳会展中心展出一只如图所示的紫砂壶,从不同方向看这只紫砂壶,你认为是从上面看到的效果图是()A.B.C.D.6.关于x的方程x2﹣mx﹣1=0根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.不能确定7.二次函数y=ax2+bx+c的图象如图所示,它的对称轴是经过(﹣1,0)且平行于y轴的直线,当m取任意实数时,am2+bm与a﹣b的大小关系是()A.am2+bm>a﹣b B.am2+bm<a﹣b C.am2+bm≥a﹣b D.am2+bm≤a﹣b8.如图,在平面直角坐标系中,将正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1,依此方式,绕点O连续旋转2019次得到正方形OA2019B2019C2019,如果点A的坐标为(1,0),那么点B2019的坐标为()A.(1,1)B.C.D.(﹣1,1)二.填空题(共10小题,满分30分,每小题3分)9.分解因式:a3﹣a=.10.若x,y满足方程组,则x﹣6y=.11.对于任何实数,我们规定符号的意义是:=ad﹣bc,按照这个规定计算:当x2﹣3x+1=0时,的值为.12.关于x的一元二次方程x2+mx+3=0的一个根是1,则m的值为.13.点A(2,﹣4)在反比例函数y=的图象上,则k的值等于.14.如图,在△ABC中,AC=BC,∠ACB=100°,点D在线段AB上运动(D不与A,B重合),连接CD,作∠CDE=40°,DE交BC于点E.若△CDE是等腰三角形,则∠ADC的度数是.15.把抛物线y=x2﹣6向左平移1个单位后所得新抛物线的解析式为.16.已知△ABC内接于半径为2的⊙O,若BC=,则∠A=.17.如图是底面为正方形的长方体,下面有关它的从三个方向看到的形状图的说法:①从上面和正面看到的形状图相同;②从左面和正面看到的形状图相同;③从左面和上面看到的形状图相同;④从正面、上面和左面看到的形状图都相同.其中正确的是.18.已知点C在反比例函数y=的图象上,点D在x轴正半轴上,∠COD=60°,OB平分∠COD交反比例函数y=的图象于点B,过点B作AB∥x轴,交OC于点A,若△AOB的面积为2,则k的值为.三.解答题(共10小题,满分86分)19.(10分)计算:(1)(2)2﹣|﹣4|+3﹣1×6+20.(2)•﹣.20.(10分)(1)解方程:x2+2x﹣3=0;(2)解不等式组:21.(7分)袋中有一个红球和两个自球,它们除颜色外其余都相同,任意摸出一球,记下球的颜色,放回袋中,搅匀后再任意摸出一球,记下它的颜色.(1)请把树状图填写完整.(2)根据树状图求出两次都摸到白球的概率.22.(7分)近几年购物的支付方式日益增多,某数学兴趣小组就此进行了抽样调查.调查结果显示,支付方式有:A微信、B支付宝、C现金、D其他,该小组对某超市一天内购买者的支付方式进行调查统计,得到如下两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次调查的样本容量为;(2)请补全条形统计图;在扇形统计图中A种支付方式所对应的圆心角为度;(3)若该超市一周内有3000名购买者,请你估计一周内分别使用A和B两种支付方式的购买者人数.23.(8分)已知:如图,在▱ABCD中,E,F是对角线BD上两个点,且BE=DF.求证:AE=CF.24.(8分)某商场第1次用39万元购进A、B两种商品,销售完后获得利润6万元,它们的进价和售价如下表:(总利润=单件利润×销售量)(1)该商场第1次购进A、B两种商品各多少件?(2)商场第2次以原价购进A、B两种商品,购进A商品的件数不变,而购进B商品的件数是第1次的2倍,A商品按原价销售,而B商品打折销售,若两种商品销售完毕,要使得第2次经营活动获得利润等于54000元,则B种商品是打几折销售的?25.(8分)据调查,超速行驶是引发交通事故的主要原因之一.小强用所学知识对一条笔直公路上的车辆进行测速,如图所示,观测点C到公路的距离CD=200m,检测路段的起点A位于点C 的南偏东60°方向上,终点B位于点C的南偏东45°方向上.一辆轿车由东向西匀速行驶,测得此车由A处行驶到B处的时间为10s.问此车是否超过了该路段16m/s的限制速度?(观测点C离地面的距离忽略不计,参考数据:≈1.41,≈1.73)26.(8分)如图(1)所示,在A,B两地间有一车站C,一辆汽车从A地出发经C站匀速驶往B 地.如图(2)是汽车行驶时离C站的路程y(千米)与行驶时间x(小时)之间的函数关系的图象.(1)填空:a=km,AB两地的距离为km;(2)求线段PM、MN所表示的y与x之间的函数表达式;(3)求行驶时间x在什么范围时,小汽车离车站C的路程不超过60千米?27.(10分)已知:如图①,矩形ABCD中,AB=4,AD=6,点P是AD的中点,点F是AB上的动点,PE⊥PF交BC所在直线于点E,连接EF.(1)EF的最小值是为;(2)点F从A点向B点运动的过程中,∠PFE的大小是否改变?请说明理由;(3)如图②延长FP交CD延长线于点M,连接EM、Q点是EM的中点.①当AF=1时,求PQ的长;②请直接写出点F从A点运动到B点时,Q点经过的路径长为.28.(10分)已知:二次函数y=ax2+bx+c的图象与x轴交于A、B两点,其中点A为(﹣1,0),与y轴负半轴交于点C(0,﹣2),其对称轴是直线x=.(1)求二次函数y=ax2+bx+c的解析式;(2)圆O′经过点△ABC的外接圆,点E是AC延长线上一点,∠BCE的平分线CD交圆O′于点D,连接AD、BD,求△ACD的面积;(3)在(2)的条件下,二次函数y=ax2+bx+c的图象上是否存在点P,使得∠PDB=∠CAD?如果存在,请求出所有符合条件的P点坐标;如果不存在,请说明理由.2019年江苏省徐州市铜山区利国镇厉湾中学中考数学二模试卷参考答案与试题解析一.选择题(共8小题,满分24分,每小题3分)1.【分析】根据只有符号不同的两数叫做互为相反数解答.【解答】解:∵实数a、b互为相反数,∴a+b=0.故选:B.【点评】本题考查了相反数的定义,是基础题,熟记概念是解题的关键.2.【分析】根据幂的乘方与积的乘方,合并同类项法则、二次根式的加减运算法则和同底数幂的乘法法则逐一计算可得.【解答】解:A.(2a)3=8a3,此选项错误;B.2a2﹣a2=a2,此选项错误;C.﹣=2﹣=,此选项正确;D.a2•a3=a5,此选项错误;故选:C.【点评】本题主要考查二次根式的加减法,解题的关键是掌握幂的乘方与积的乘方,合并同类项法则、二次根式的加减运算法则和同底数幂的乘法法则.3.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:22000=2.2×104.故选:A.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【分析】根据事件发生的可能性大小判断相应事件的类型.【解答】解:“哥哥的年龄比弟弟的年龄大”是必然事件,①正确;“书柜里有6本大小相同,厚度差不多的书,从中随机摸出一本是小说”,无法确定事件类型,②错误;在1万次试验中,每次都不发生的事件不一定是不可能事件,③错误;在1万次试验中,每次都发生的事件不一定是必然事件,④错误;故选:A.【点评】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.5.【分析】俯视图就是从物体的上面看物体,从而得到的图形.【解答】解:由立体图形可得其俯视图为:.故选:C.【点评】此题主要考查了简单组合体的三视图,正确把握三视图的观察角度是解题关键.6.【分析】先计算△=(﹣m)2﹣4×1×(﹣1)=m2+4,由于m2为非负数,则m2+4>0,即△>0,根据一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac的意义即可判断方程根的情况.【解答】解:△=(﹣m)2﹣4×1×(﹣1)=m2+4,∵m2≥0,∴m2+4>0,即△>0,∴方程有两个不相等的实数根.故选:A.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.7.【分析】根据函数的图象确定开口方向和最大值,然后确定答案即可.【解答】解:观察图象得:二次函数y=ax2+bx+c的图象的开口向下,对称轴为x=﹣1,所以当x=﹣1时有最大值y=a﹣b+c,∵当x=m时,y=am2+bm+c,∴am2+bm+c≤a﹣b+c,∴am2+bm≤a﹣b,故选:D.【点评】本题考查了二次函数的图象及二次函数的性质的知识,解题的关键是根据题意确定最值,难度不大.8.【分析】根据图形可知:点B在以O为圆心,以OB为半径的圆上运动,由旋转可知:将正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1,相当于将线段OB绕点O逆时针旋转45°,可得对应点B的坐标,根据规律发现是8次一循环,可得结论.【解答】解:∵四边形OABC是正方形,且OA=1,∴B(1,1),连接OB,由勾股定理得:OB=,由旋转得:OB=OB1=OB2=OB3=…=,∵将正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1,相当于将线段OB绕点O逆时针旋转45°,依次得到∠AOB=∠BOB1=∠B1OB2=…=45°,∴B1(0,),B2(﹣1,1),B3(﹣,0),…,发现是8次一循环,所以2019÷8=252 (3)∴点B2019的坐标为(﹣,0)故选:C.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角.也考查了坐标与图形的变化、规律型:点的坐标等知识,解题的关键是学会从特殊到一般的探究规律的方法,属于中考常考题型.二.填空题(共10小题,满分30分,每小题3分)9.【分析】先提取公因式a,再对余下的多项式利用平方差公式继续分解.【解答】解:a3﹣a,=a(a2﹣1),=a(a+1)(a﹣1).故答案为:a(a+1)(a﹣1).【点评】本题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次分解,注意要分解彻底.10.【分析】方程组的两方程相减即可求出所求.【解答】解:,②﹣①得:x﹣6y=8,故答案为:8【点评】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.11.【分析】原式利用题中的新定义化简即可得到结果.【解答】解:根据题中的新定义得:原式=(x+1)(x﹣1)﹣3x(x﹣2)=x2﹣1﹣3x2+6x=﹣2x2+6x﹣1=﹣2(x2﹣3x)﹣1,由x2﹣3x+1=0,得到x2﹣3x=﹣1,则原式=2﹣1=1,故答案为:1【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.12.【分析】把x=1代入方程得到一个关于m的方程,求出方程的解即可.【解答】解:把x=1代入得:4+m=0解得:m=﹣4,故答案为:﹣4.【点评】本题主要考查对一元二次方程的解,解一元一次方程,等式的性质等知识点的理解和掌握,能得到方程4+m=0是解此题的关键.13.【分析】直接把点A(2,﹣4)代入反比例函数y=(k≠0),求出k的值即可.【解答】解:∵点A(2,﹣4)在反比例函数y=的图象上,∴k=xy=2×(﹣4)=﹣8.故答案是:﹣8.【点评】本题考查的是反比例函数图象上点的坐标特点,即反比例函数图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.14.【分析】分类讨论:当CD=DE时;当DE=CE时;当EC=CD时;然后利用等腰三角形的性质和三角形的内角和定理进行计算.【解答】解:分三种情况:①当CD=DE时,∵∠CDE=40°,∴∠DCE=∠DEC=70°,∴∠ADC=∠B+∠DCE=110°,②当DE=CE时,∵∠CDE=40°,∴∠DCE=∠CDE=40°,∴∠ADC=∠DCE+∠B=80°.③当EC=CD时,∠BCD=180°﹣∠CED﹣∠CDE=180°﹣40°﹣40°=100°,∵∠ACB=100°,∴此时,点D与点A重合,不合题意.综上所述,若△ADC是等腰三角形,则∠ADC的度数为80°或110°.故答案为:80°或110°.【点评】本题主要考查了等腰三角形的性质,解决问题的关键是学会用分类讨论的思想解决问题.15.【分析】根据“左加右减、上加下减”的原则进行解答即可.【解答】解:将抛物线y=x2﹣6向左平移1个单位后所得新抛物线的解析式为:y=(x+1)2﹣6.故答案是:y=(x+1)2﹣6.【点评】本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.16.【分析】作直径BD,连接CD,根据圆周角定理得到∠BCD=90°,根据正弦的定义求出∠D,根据圆周角定理解答.【解答】解:作直径BD,连接CD,则∠BCD=90°,在Rt△BCD中,sin D==,∴∠D=60°,由圆周角定理得,∠A=∠D=60°,故答案为:60°.【点评】本题考查的是三角形的外接圆与外心、正弦的定义,掌握圆周角定理、正弦的定义是解题的关键.17.【分析】根据三视图的定义与图形可知从左面、从上面和从正面看到的形状图,可作判断.【解答】解:①从上面看到的是正方形,从正面看到的是长方形,两个方向的形状图不相同,故①不正确;②从左面和正面看到的都是长方形,形状相同,故②正确;③从左面看到的是长方形,从上面看到的是正方形,两个方向的形状图不相同,故③不正确;④从正面和左面看到的是长方形,从上面看到的是正方形,三个方向的形状图不相同,故④不正确;正确的有②,故答案为:②.【点评】此题主要考查了三视图的定义,正确利用观察角度不同分别得出符合题意的图形是解题关键.18.【分析】根据题意设B(m,m),则A(m,m),然后根据AOB的面积为2,列出•m•m=2,得到m2=6,即可求得k的值.【解答】解:∵∠COD=60°,OB平分∠COD交反比例函数y=的图象于点B,∴∠BOD=30°,∴直线OC为y=x,直线OB为y=x,∴设B(m,m),则A(m,m),∵AB∥x轴,∴AB=m﹣m=m,∵△AOB的面积为2,∴•m•m=2,∴m2=6,∵点B(m,m)在反比例函数y=的图象上,∴k=m•m=m2,∴k=6,故答案为6.【点评】此题考查了反比例函数的系数k的几何意义,反比例函数图象上点的坐标特征,三角形的面积等知识.注意根据三角形的面积列出方程是关键.三.解答题(共10小题,满分86分)19.【分析】(1)先计算乘方、绝对值、负整数指数幂和零指数幂,再计算乘法,最后计算加减运算可得;(2)先将分子、分母因式分解,再计算乘法,最后计算减法即可得.【解答】解:(1)原式=8﹣4+×6+1=8﹣4+2+1=7.(2)原式===.【点评】本题主要考查实数和分式的混合运算,解题的关键是掌握绝对值性质、负整数指数幂、零指数幂及分式混合运算顺序和运算法则.20.【分析】(1)利用因式分解法解方程即可;(2)先求出各个不等式的解集,再求出这些解集的公共部分即可.【解答】解:(1)x2+2x﹣3=0,(x+3)(x﹣1)=0,∴x+3=0或x﹣1=0,∴x1=﹣3,x2=1;(2)由①得,x>1,由②得,x<2,所以不等式组的解集为1<x<2.【点评】本题考查了解一元二次方程,利用因式分解解法一元二次方程的关键是对方程因式分解将次转化成两个一元一次方程;也考查了解一元一次不等式组.21.【分析】(1)利用画树状图展示所有9种等可能的结果数,(2)找出两次都是白球的结果数,然后根据概率公式求解.【解答】解:(1)画树状图为:(2)由树状图知,共有9种等可能的结果数,其中两次都摸到白球的结果数为4,所以两次都摸到白球的概率=.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.22.【分析】(1)根据D种支付方式的人数和所占的百分比可以求得样本容量;(2)根据(1)中的答案和统计图中的数据可以求得B和C种支付方式的人数,从而可以将条形统计图补充完整,再根据统计图中的数据可以计算出在扇形统计图中A种支付方式所对应的圆心角的度数;(3)根据统计图中的数据可以估计一周内分别使用A和B两种支付方式的购买者人数.【解答】解:(1)本次调查的样本容量为:20÷10%=200,故答案为:200;(2)B种支付方式的人数为:200×30%=60,C种支付方式的人数为:200×20%=40,补全的条形统计图如右图所示,在扇形统计图中A种支付方式所对应的圆心角为:360°×=144°,故答案为:144;(3)A种支付方式的购买者人数为:3000×=1200,B种支付方式的购买者人数为:3000×30%=900,答:一周内分别使用A和B两种支付方式的购买者人数为1200、900.【点评】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.23.【分析】根据平行四边形的性质和全等三角形的判定和性质证明即可.【解答】证明:∵四边形ABCD为平行四边形,∴AB∥DC,AB=DC,∴∠ABE=∠CDF,又∵BE=DF,在△ABE与△CDF中,∴△ABE≌△CDF(SAS)∴AE=CF.【点评】此题考查平行四边形的性质,关键是根据平行四边形的性质和全等三角形的判定和性质解答.24.【分析】(1)设第1次购进A商品x件,B商品y件,根据该商场第1次用39万元购进A、B 两种商品且销售完后获得利润6万元,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设B商品打m折出售,根据总利润=单件利润×销售数量,即可得出关于m的一元一次方程,解之即可得出结论.【解答】解:(1)设第1次购进A商品x件,B商品y件.根据题意得:,解得:.答:商场第1次购进A商品200件,B商品150件.(2)设B商品打m折出售.根据题意得:200×(1350﹣1200)+150×2×(1200×﹣1000)=54000,解得:m=9.答:B种商品打9折销售的.【点评】本题考查了二元一次方程组的应用以及一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)找准等量关系,正确列出一元一次方程.25.【分析】根据直角三角形的性质和三角函数得出DB,DA,进而解答即可.【解答】解:由题意得:∠DCA=60°,∠DCB=45°,在Rt△CDB中,tan∠DCB=,解得:DB=200,在Rt△CDA中,tan∠DCA=,解得:DA=200,∴AB=DA﹣DB=200﹣200≈146米,轿车速度,答:此车没有超过了该路段16m/s的限制速度.【点评】本题考查了解直角三角形的应用﹣方向角问题,解答本题的关键是利用三角函数求出AD 与BD的长度,难度一般.26.【分析】(1)根据图象中的数据即可得到A,B两地的距离;(2)根据函数图象中的数据即可得到两小时后,货车离C站的路程y2与行驶时间x之间的函数关系式;(3)根据题意可以分相遇前和相遇后两种情况进行解答.【解答】解:(1)由题意和图象可得,a=千米,A,B两地相距:150+240=390千米,故答案为:240,390(2)由图象可得,A与C之间的距离为150km汽车的速度,PM所表示的函数关系式为:y1=150﹣60xMN所表示的函数关系式为:y2=60x﹣150(3)由y1=60得150﹣60x=60,解得:x=1.5由y2=60得60x﹣150=60,解得:x=3.5由图象可知当行驶时间满足:1.5h≤x≤3.5h,小汽车离车站C的路程不超过60千米【点评】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想和函数的思想解答.27.【分析】(1)当PF和PE最短时,EF有最小值,此时点F与A重合,则四边形PABE是矩形,得出PE=AB=4,由矩形的性质得出BC=AD=6,CD=AB=4,∠A=∠ADC=90°,由勾股定理求出EF即可;(2)∠PFE的大小不改变,作EG⊥AD于G,则EG=CD=4,证明△APF∽△GEP,得出==,求出tan∠PFE==即可;(3)①证明△APF≌△DPM,得出AF=DM=1,PF=FM,求出CM=5,由线段垂直平分线的性质得出EF=EM,设CE=x,则BE=6﹣x,由勾股定理得出32+(6﹣x)2=x2+52,求出CE=,由勾股定理求出EM的长,再由直角三角形斜边上的中线性质即可得出结果;②点Q的运动轨迹是线段QQ1.作QH⊥AD于H.当点F与A重合时,点Q是矩形CDPE对角线DE的中点,则QH=2,DH=,当点F与B重合时,点Q1在AD的延长线上,设BE1=M1E1=m,在Rt△CM1E1中,由勾股定理得出m2=(m﹣6)2+82,求出m=,得出CE1=,DQ1=CE1=,求出HQ1=,然后在Rt△HQQ1中,由勾股定理求出QQ1的长即可.【解答】解:(1)当PF和PE最短时,EF有最小值,此时点F与A重合,如图1所示:则四边形PABE是矩形,∴PE=AB=4,∵四边形ABCD是矩形,∴BC=AD=6,CD=AB=4,∠A=∠ADC=90°,∵点P是AD的中点,∴PA=3,即PF=3,由勾股定理得:EF===5,即EF的最小值为5;故答案为:5;(2)∠PFE的大小不改变,理由如下:作EG⊥AD于G,如图2所示:则EG=CD=4,∵PE⊥PF,∴∠EPF=90°,∴∠APF+∠GPE=90°,∵∠APF+∠AFP=90°,∴∠AFP=∠GPE,又∵∠A=∠EPF=90°,∴△APF∽△GEP,∴==,∴tan∠PFE==,∴∠PFE的大小不改变;(3)①如图,∵∠ADC=90°,∴∠PDM=90°,在△APF和△DPM中,,∴△APF≌△DPM(ASA),∴AF=DM=1,PF=FM,∴CM=4+1=5,∵PE⊥PF,∴PE垂直平分FM,∴EF=EM,设CE=x,则BE=6﹣x,由勾股定理得:EF2=bf2+BE2=32+(6﹣x)2,EM2=CE2+CM2=x2+52,∴32+(6﹣x)2=x2+52解得:x=,∴CE=,EM==,∵∠EPF=90°,Q点是EM的中点,∴PQ=EM=;②如图③中,点Q的运动轨迹是线段QQ1.作QH⊥AD于H.当点F与A重合时,点Q是矩形CDPE对角线DE的中点,则QH=2,DH=,当点F与B重合时,点Q1在AD的延长线上,设BE1=M1E1=m,在Rt△CM1E1中,m2=(m﹣6)2+82,解得:m=,∴CE1=﹣6=,∴DQ1=CE1=,∴HQ1=+=,在Rt△HQQ1中,QQ1==,∴点P的运动路径为;故答案为:.【点评】本题是四边形综合题,考查了全等三角形的判定和性质、矩形的性质、相似三角形的判定与性质、线段的垂直平分线的性质、直角三角形的斜边中线性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,属于中考压轴题.28.【分析】(1)根据抛物线具有对称性,可以求出点B的坐标,再用待定系数法求解析式即可.(2)根据△AOC∽△COB以及圆的相关性质,可知△ABD为等腰直角三角形,从而得出O′D 与AB的数量关系,列式求解即可.(3)使得∠PDB=∠CAD的点P存在两种情况,利用相似导出线段之间的比值,再用直线和抛物线解析式联立求得相关点的坐标.【解答】解:(1)∵A(﹣1,0),对称轴为直线x=,∴B(4,0),由题意可知,解得∴抛物线的解析式为y =﹣x ﹣2.(2)∵A (﹣1,0),B (4,0),C (0,﹣2),∴OA =1,OB =4,OC =2,∴,又∵∠AOC =∠COB =90°,∴△AOC ∽△COB ,∴∠BAC =∠BCO ,∴∠ACB =90°,∴AB 为圆O ′的直径,O ′点坐标为(,0),∴∠ADB =90°,又∵CD 平分∠BCE ,∴∠BCD =∠ECD =45°,∴∠BAD =45°,△ADB 为等腰直角三角形,连接O ′D ′,则DO ′=AB ,DO ′⊥AB ,∴DO ′=,D 的坐标为(,﹣),设AD 与y 轴交于点F ,∵∠DAB =45°,∴OF =OA =1,∴CF =1,过D 作DH 垂直于y 轴,∵D (,﹣),∴DH =,OH =,∴S △ACD =S △ACF +S △DCF =×1×1+×1×=.(3)抛物线上存在点P,使得∠PDB=∠CAD,分两种情况讨论:①过D作MN∥BC,交y轴于点M,∵MN∥BC,∴∠BDN=∠CBD,∠OCB=∠HMD,又∵∠CBD=∠CAD,∴∠BDN=∠CAD,直线MN与抛物线在D点右侧的交点即为点P,∵∠OCB=∠HMD,∠COB=∠MHD=90°,∴△HDM∽△OCB,∴,∵DH=,∴MH=,M(0,﹣).设直线MD的解析式为y=mx+n,则有解得直线MD的解析式为y=﹣,∴解得,(舍)∴P1(,).②过点D作∠O′DG=∠O′BC,交x轴于点G点,∵∠O′DB=∠O′BD=45°,∴∠GDB=∠CBD=∠CAD,即直线DG与抛物线在点D右侧的交点即为P点,又∵∠DO′G=∠COB,∴△O′GD∽△OCB∴,∴∴O′G=,∴G(,0),设直线DG的解析式为y=kx+b,则有,解得∴直线DG的解析式为y=2x﹣,,解得(舍),∴P(,).综上所述,点P的坐标为(,)或(,).【点评】此题考查了待定系数法求函数解析式,以及几何图形和二次函数相结合的应用,利用相似找到线段之间的比例关系,从而求出点坐标是解题关键.。
2019年江苏省徐州市铜山区中考数学二模试卷一.选择题(共8小题,满分24分,每小题3分)1.﹣2018的绝对值的相反数是()A.B.﹣C.2018D.﹣20182.下列计算正确的是()A.3a﹣a=2B.a2+a3=a5C.a6÷a2=a4D.(a2)3=a53.在下图的四个立体图形中,从正面看是四边形的立体图形有()A.1个B.2个C.3个D.4个4.式子有意义的x的取值范围是()A.x≥﹣且x≠1B.x≠1C.D.x>﹣且x≠15.下面四个图形分别是绿色食品、节水、节能和回收标志,在这四个标志中,是中心对称图形的是()A.B.C.D.6.为庆祝首个“中国农民丰收节”,十渡镇西河村举办“西河稻作文化节”活动.西河水稻种植历史悠久,因“色白粒粗,味极香美,七煮不烂”而享誉京城.已知每粒稻谷重约0.000035千克,将0.000035用科学记数法表示应为()A.35×10﹣6B.3.5×10﹣6C.3.5×10﹣5D.0.35×10﹣47.如图,在⊙O中,点A、B、C在⊙O上,且∠ACB=110°,则∠α=()A.70°B.110°C.120°D.140°8.如图,矩形ABCD中,AB=3,BC=4,点P从A点出发,按A→B→C的方向在AB和BC上移动.记PA=x,点D到直线PA的距离为y,则y关于x的函数大致图象是()A.B.C.D.二.填空题(共10小题,满分30分,每小题3分)9.如图,将一副三角板叠在一起,使它们的直角顶点重合于O点,且∠AOB=155°,则∠COD=.10.在九年级体育考试中,某校某班参加仰卧起坐测试的8名女生成绩如下(单位:次/分):44,45,42,48,46,43,47,45,则这组数据的众数为.11.已知A(m,3)、B(﹣2,n)在同一个反比例函数图象上,则=.12.如果一个正多边形每一个内角都等于144°,那么这个正多边形的边数是.13.关于x的一元二次方程x2+2x+m=0有两个相等的实数根,则m的值是.14.下列四个命题中:①对顶角相等;②同位角相等;③全等三角形对应边相等;④菱形的对角线相等.其中,真命题的有(填序号).15.在Rt△ABC中,∠ABC=90°,AB=6,BC=8,则这个三角形的外接圆的直径长为.16.如图,△ABC中,∠C=90°,AC=3,∠B=30°,点P是BC边上的动点,则在①3.6②4,③5.5,④7,这四个数中AP长不可能是(填序号)17.如图:已知正方形的边长为a,将此正方形按照下面的方法进行剪拼:第一次,先沿正方形的对边中点连线剪开,然后对接为一个长方形,则此长方形的周长为;第二次,再沿长方形的对边(长方形的宽)中点连线剪开,对接为新的长方形,如此继续下去,第n次得到的长方形的周长为.18.如图,在矩形ABCD中,AB=4,BC=6,E是矩形内部的一个动点,且AE⊥BE,则线段CE的最小值为.三.解答题(共10小题,满分86分)19.计算:(1)|﹣2|+2 0100﹣(﹣)﹣1+3tan30°.(2)÷(a+1)﹣.20.解方程:(1)x2﹣8x+1=0(2)=1(3)解不等式组21.为了解某校学生对《最强大脑》、《朗读者》、《中国诗词大会》、《出彩中国人》四个电视节目的喜爱情况,随机抽取了x名学生进行调查统计(要求每名学生选出并且只能选出一个自己最喜爱的节目),并将调查结果绘制成如图统计图表:学生最喜爱的节目人数统计表节目人数(名)百分比最强大脑510%朗读者15b%中国诗词大会a40%出彩中国人1020%根据以上提供的信息,解答下列问题:(1)x=,a=,b=;(2)补全上面的条形统计图;(3)若该校共有学生1000名,根据抽样调查结果,估计该校最喜爱《中国诗词大会》节目的学生有多少名.22.在一个不透明的袋中装有5个只有颜色不同的球,其中3个黄球,2个黑球.(1)求从袋中同时摸出的两个球都是黄球的概率;(2)现将黑球和白球若干个(黑球个数是白球个数的2倍)放入袋中,搅匀后,若从袋中摸出一个球是黑球的概率是,求放入袋中的黑球的个数.23.如图,▱ABCD的对角线AC、BD相交于点O,AE=CF.(1)求证:△BOE≌△DOF;(2)若BD=EF,连接DE、BF,判断四边形EBFD的形状,并证明你的结论.24.从甲地到乙地有两条公路,一条是全长600km的普通公路,另一条是全长480km的高速公路,某客车在高速公路上行驶的平均速度比在普通公路上快45km/h,由高速公路从甲地到乙地所需的时间是由普通公路从甲地到乙地所需时间的一半,求该客车由高速公路从甲地到乙地所需的时间.25.小亮一家到桃林口水库游玩.在岸边码头P处,小亮和爸爸租船到库区游玩,妈妈在岸边码头P处观看小亮与爸爸在水面划船,小船从P处出发,沿北偏东60°方向划行,划行速度是20米/分钟,划行10分钟后到A处,接着向正南方向划行一段时间到B处,在B处小亮观测到妈妈所在的P处在北偏西37°的方向上,这时小亮与妈妈相距多少米?(精确到1m,参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.41,≈1.73)26.某文具商店销售功能相同的A、B两种品牌的计算器,购买2个A品牌和3个B品牌的计算器共需156元;购买3个A品牌和1个B品牌的计算器共需122元.(1)求这两种品牌计算器的单价;(2)学校开学前夕,该商店对这两种计算器开展了促销活动,具体办法如下:A品牌计算器按原价的八折销售,B品牌计算器超出5个的部分按原价的七折销售,设购买x个A品牌的计算器需要y1元,购买x(x >5)个B品牌的计算器需要y2元,分别求出y1、y2关于x的函数关系式;(3)当需要购买50个计算器时,买哪种品牌的计算器更合算?27.我们把两条中线互相垂直的三角形称为“中垂三角形”.例如图1,图2,图3中,AF,BE是△ABC 的中线,AF⊥BE,垂足为P.像△ABC这样的三角形均为“中垂三角形”.设BC=a,AC=b,AB=c.特例探索(1)①如图1,当∠ABE=45°,c=2时,a=,b=;②如图2,当∠ABE=30°,c=4时,求a和b的值.归纳证明(2)请你观察(1)中的计算结果,猜想三者之间的关系,用等式表示出来,并利用图3证明你发现的关系式.(3)利用(2)中的结论,解答下列问题:在边长为3的菱形ABCD中,O为对角线AC,BD的交点,E,F分别为线段AO,DO的中点,连接BE,CF并延长交于点M,BM,CM分别交AD于点G,H,如图4所示,求MG2+MH2的值.28.如图1,抛物线y=﹣x2+x+6与x轴交于A、B(B在A的左侧)两点,与y轴交于点C,将直线AC沿y轴正方向平移2个单位得到直线A′C′,将抛物线的对称轴沿x轴正方向平移个单位得到直线l.(1)求直线AC的解析式;(2)如图2,点P为直线A′C′上方抛物线上一动点,连接PC,PA与直线AC分别交于点E、F,过点P 作PP1⊥l于点P1,M是线段AC上一动点,过M作MN⊥A′C′于点N,连接P1M,当△PCA的面积最大时,求P1M+MN+NA′的最小值;(3)如图3,连接BC,将△BOC绕点A顺时针旋转60°后得到△B1O1C1,点R是直线l上一点,在直角坐标平面内是否存在一点S,使得以点O1、C1、R、S为顶点的四边形是矩形?若存在,求出点S的坐标;若不存在,请说明理由.2019年江苏省徐州市铜山区中考数学二模试卷参考答案与试题解析一.选择题(共8小题,满分24分,每小题3分)1.【分析】直接利用绝对值以及相反数的定义分析得出答案.【解答】解:﹣2018的绝对值为:2018,故2018的相反数是:﹣2018.故选:D.【点评】此题主要考查了绝对值以及相反数,正确把握相关定义是解题关键.2.【分析】依据合并同类项法则、同底数幂的除法法则以及幂的乘方法则进行判断即可.【解答】解:3a﹣a=2a,故A选项错误;a2+a3≠a5,故B选项错误;a6÷a2=a4,故C选项正确;(a2)3=a6,故D选项错误;故选:C.【点评】本题主要考查了合并同类项法则、同底数幂的除法法则以及幂的乘方,合并同类项是指同类项的系数的相加,并把得到的结果作为新的系数,要保持同类项的字母和字母的指数不变.3.【分析】找到从正面看所得到的图形比较即可.【解答】解:正方体的正视图是四边形;球的正视图是圆;圆锥的正视图是等腰三角形;圆柱的正视图是四边形;是四边形的有两个.故选:B.【点评】本题考查了三视图的知识,正视图是从物体的正面看得到的视图.4.【分析】根据被开方数是非负数且分母不等于零,可得答案.【解答】解:由题意,得2x+1≥0且x﹣1≠0,解得x≥﹣且x≠1,故选:A.【点评】本题考查了二次根式有意义的条件,利用被开方数是非负数且分母不等于零得出不等式是解题关键.5.【分析】根据中心对称图形的概念对各个选项中的图形进行判断即可.【解答】解:A、B、C都不是中心对称图形,D是中心对称图形,故选:D.【点评】本题考查的是中心对称图形的概念,如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形.6.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:0.000035=3.5×10﹣5,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.7.【分析】作所对的圆周角∠ADB,如图,利用圆内接四边形的性质得∠ADB=70°,然后根据圆周角定理求解.【解答】解:作所对的圆周角∠ADB,如图,∵∠ACB+∠ADB=180°,∴∠ADB=180°﹣110°=70°,∴∠AOB=2∠ADB=140°.故选:D.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.8.【分析】根据题意,分两种情况:(1)当点P在AB上移动时,点D到直线PA的距离不变,恒为4;(2)当点P在BC上移动时,根据相似三角形判定的方法,判断出△PAB∽△ADE,即可判断出y=(3<x≤5),据此判断出y关于x的函数大致图象是哪个即可.【解答】解:(1)当点P在AB上移动时,点D到直线PA的距离为:y=DA=BC=4(0≤x≤3).(2)如图1,当点P在BC上移动时,,∵AB=3,BC=4,∴AC=,∵∠PAB+∠DAE=90°,∠ADE+∠DAE=90°,∴∠PAB=∠ADE,在△PAB和△ADE中,∴△PAB∽△ADE,∴,∴,∴y=(3<x≤5).综上,可得y关于x的函数大致图象是:.故选:D.【点评】(1)此题主要考查了动点问题的函数图象,要熟练掌握,解答此题的关键是要明确:通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.用图象解决问题时,要理清图象的含义即会识图.(2)此题还考查了相似三角形的判定和性质的应用,要熟练掌握.二.填空题(共10小题,满分30分,每小题3分)9.【分析】先根据直角三角板的性质得出∠AOC+∠DOB=180°,进而可得出∠COD的度数.【解答】解:∵△AOC△BOD是一副直角三角板,∴∠AOC+∠DOB=180°,∴∠AOB+∠COD=∠DOB+∠AOD+∠COD=∠DOB+∠AOC=90°+90°=180°,∵∠AOB=155°,∴∠COD=180°﹣∠AOB=180°﹣155°=25°,故答案为:25°【点评】本题考查的是角的计算,熟知直角三角板的特点是解答此题的关键.10.【分析】根据众数的定义即一组数据中出现次数最多的数,即可得出答案.【解答】解:∵45出现了2次,出现的次数最多,∴这组数据的众数为45;故答案为:45.【点评】此题考查了众数,掌握众数的定义是解题的关键;众数是一组数据中出现次数最多的数.11.【分析】设反比例函数解析式为y=(k为常数,k≠0),根据反比例函数图象上点的坐标特征得到k=3m=﹣2n,即可得的值.【解答】解:设反比例函数解析式为y=,根据题意得:k=3m=﹣2n∴=﹣故答案为:﹣.【点评】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.12.【分析】设正多边形的边数为n,然后根据多边形的内角和公式列方程求解即可.【解答】解:设正多边形的边数为n,由题意得,=144°,解得n=10.故答案为:10.【点评】本题考查了多边形的内角与外角,熟记公式并准确列出方程是解题的关键.13.【分析】由于关于x的一元二次方程x2+2x+m=0有两个相等的实数根,可知其判别式为0,据此列出关于m的方程,解答即可.【解答】解:∵关于x的一元二次方程x2+2x+m=0有两个相等的实数根,∴△=0,∴22﹣4m=0,∴m=1,故答案为:1.【点评】本题主要考查了根的判别式的知识,解答本题的关键是掌握一元二次方程有两个相等的实数根,则可得△=0,此题难度不大.14.【分析】要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.【解答】解:①对顶角相等是真命题;②两直线平行,同位角相等,是假命题;③全等三角形对应边相等是真命题;④菱形的对角线垂直,是假命题;故答案为:①③【点评】本题主要考查了命题与定理的运用,解题时注意:命题的“真”“假”是就命题的内容而言,任何一个命题非真即假.15.【分析】根据这个三角形的外接圆直径是斜边长即可得到结论.【解答】解:根据题意得:斜边是AC,即外接圆直径===10,这个三角形的外接圆的直径长为10,故答案为:10.【点评】本题考查的是直角三角形的外接圆半径,重点在于理解直角三角形的外接圆是以斜边中点为圆心,斜边长的一半为半径的圆.16.【分析】利用垂线段最短分析AP最小不能小于3;利用含30度角的直角三角形的性质得出AB=6,可知AP最大不能大于6.此题可解.【解答】解:根据垂线段最短,可知AP的长不可小于3;∵△ABC中,∠C=90°,AC=3,∠B=30°,∴AB=6,∴AP的长不能大于6.故答案为:④【点评】本题主要考查了垂线段最短和的性质和含30度角的直角三角形的理解和掌握,解答此题的关键是利用含30度角的直角三角形的性质得出AB=6.17.【分析】先根据题意列出前3个长方形的周长,得出规律即可.【解答】解:第1个长方形的周长为4a+2×a,第2个长方形的周长为2×4a+2×a,第3个长方形的周长为2×8a+2×a,……∴第n个长方形的周长为2n﹣1•4a+2×()n a,故答案为:4a+2×a,2n﹣1•4a+2×()n a.【点评】本题主要考查图形的变化规律,解题的关键是根据题意得出前几个长方形的周长,并据此得出周长的变化规律.18.【分析】由AE⊥BE知点E在以AB为直径的半⊙O上,连接CO交⊙O于点E′,当点E位于点E′位置时,线段CE取得最小值,利用勾股定理可得答案.【解答】解:如图,∵AE⊥BE,∴点E在以AB为直径的半⊙O上,连接CO交⊙O于点E′,∴当点E位于点E′位置时,线段CE取得最小值,∵AB=4,∴OA=OB=OE′=2,∵BC=6,∴OC===2,则CE′=OC﹣OE′=2﹣2,故答案为:2﹣2.【点评】本题主要考查圆周角定理、圆的基本性质及矩形的性质、勾股定理,根据AE⊥BE知点E在以AB 为直径的半⊙O上是解题的关键.三.解答题(共10小题,满分86分)19.【分析】(1)根据绝对值、零次幂、负整数指数幂、特殊角的三角函数值计算即可.(2)按照分式的混合运算法则化简即可.【解答】解:(1)原式=2﹣+1+3+3×=6;(2)原式=•﹣=﹣==﹣1.【点评】本题考查分式的混合运算,有理数的混合运算,零次幂,负整数指数幂,特殊角的三角函数值等知识,解题的关键是记住分式的混合运算,先乘方,再乘除,然后加减,有括号的先算括号里面的.20.【分析】(1)把1移到等号的右边,然后等号两边同时加上一次项一半的平方,再开方求解;(2)根据去分母、去括号、移项、合并同类项、化系数为1的步骤求出x的值,再把x的值代入原分式方程的公分母中进行检验;(3)分别求出各不等式的解集,再求出其公共解集即可.【解答】解:(1)x2﹣8x+1=0x2﹣8x=﹣1,x2﹣8x+16=﹣1+16,即(x﹣4)2=15,∴∴x﹣4=±,∴x1=4+,x2=4﹣;(2)去分母得,x(x+3)﹣3=x2﹣9,去括号得,x2+3x﹣3=x2﹣9,移项、合并同类项得,3x=﹣6,系数化为1得,x=﹣2,经检验,x=﹣2是原方程的根;(3),由①x≤1;由②x>﹣2;∴原不等式组的解是﹣2<x≤1.【点评】本题考查的是解一元二次方程、解分式方程及解一元一次不等式组,在解(2)时要注意验根,这是此题的易错点.21.【分析】(1)根据最强大脑的人数除以占的百分比确定出x的值,进而求出a与b的值即可;(2)根据a的值,补全条形统计图即可;(3)由中国诗词大会的百分比乘以1000即可得到结果.【解答】解:(1)根据题意得:x=5÷10%=50,a=50×40%=20,b=×100=30;故答案为:50;20;30;(2)中国诗词大会的人数为20人,补全条形统计图,如图所示:(3)根据题意得:1000×40%=400(名),则估计该校最喜爱《中国诗词大会》节目的学生有400名.【点评】此题考查了条形统计图,用样本估计总体,以及统计表,弄清题中的数据是解本题的关键.22.【分析】(1)画树状图展示所有20种等可能的结果数,再找出从袋中同时摸出的两个球都是黄球的结果数,然后根据概率公式求解;(2)设放入袋中的黑球的个数为x,利用概率公式得到=,然后解方程即可.【解答】解:(1)画树状图为:共有20种等可能的结果数,其中从袋中同时摸出的两个球都是黄球的结果数为6,所以从袋中同时摸出的两个球都是黄球的概率==;(2)设放入袋中的黑球的个数为x,根据题意得=,解得x=2,所以放入袋中的黑球的个数为2.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.23.【分析】(1)根据平行四边形的性质得出BO=DO,AO=OC,求出OE=OF,根据全等三角形的判定定理推出即可;(2)根先推出四边形EBFD是平行四边形,再根据矩形的判定得出即可.【解答】(1)证明:∵四边形ABCD是平行四边形,∴BO=DO,AO=OC,∵AE=CF,∴AO﹣AE=OC﹣CF,即:OE=OF,在△BOE和△DOF中,∴△BOE≌△DOF(SAS);(2)矩形,证明:∵BO=DO,OE=OF,∴四边形BEDF是平行四边形,∵BD=EF,∴平行四边形BEDF是矩形.【点评】本题考查了平行四边形的性质和判定,全等三角形的判定和矩形的判定,能灵活运用定理进行推理是解此题的关键.24.【分析】本题依据题意先得出等量关系即客车由高速公路从A地道B的速度=客车由普通公路的速度+45,列出方程,解出检验并作答.【解答】解:设客车由高速公路从甲地到乙地需x小时,则走普通公路需2x小时,根据题意得:,解得x=4经检验,x=4原方程的根,答:客车由高速公路从甲地到乙地需4时.【点评】本题主要考查分式方程的应用,找到关键描述语,找到合适的等量关系是解决问题的关键.根据速度=路程÷时间列出相关的等式,解答即可.25.【分析】作PQ⊥AB于Q,根据已知,∠APQ=30°.解直角三角形求出PB即可;【解答】解:作PQ⊥AB于Q,根据已知,∠APQ=30°.则AQ=AP∵AP=20×10=200∴AQ=100∴PQ==100,在Rt△BPQ中,sin B=,∴PB=100÷0.60≈288米∴此时,小亮与妈妈相距288米.【点评】本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.26.【分析】(1)根据题意列出二元一次方程组,解方程组即可得到答案;(2)根据题意用含x的代数式表示出y1、y2即可;(3)把x=50代入两个函数关系式进行计算,比较得到答案.【解答】解:(1)设A、B两种品牌的计算器的单价分别为x、y元,由题意得,,解得.答:A、B两种品牌的计算器的单价分别为30元、32元;(2)y1=24x,y2=160+(x﹣5)×32×0.7=22.4x+48;(3)当x=50时,y1=24x=1200,y2=22.4x+48=1168,∵1168<1200,∴买B品牌的计算器更合算.【点评】本题考查的是二元一次方程组的应用和一次函数的应用,正确找出等量关系列出方程组并正确解出方程组、掌握一次函数的性质是解题的关键.27.【分析】(1)在图1中,PB=AB sin45°=2=PA,即可求解;同理可得:a=2,b=2;(2)PB=AB cosα=c cosα,PA=c sinα,PF=PA=c sinα,PE=c sinα,则a2+b2=(2AE)2+(2BF)2,即可求解;(3)证明:MG=ME=MB,MH=MC,则MG2+MH2=(MB2+MC2),即可求解.【解答】解:如图1、2、3、4,连接EF,则EF是△ABC的中位线,则EF=AB,EF∥AB,∴△EFP∽△BPA,∴…①,(1)在图1中,PB=AB sin45°=2=PA,由①得:PF=1,b=2BF=2=2=a;②同理可得:a=2,b=2;(2)关系为:a2+b2=5c2,证明:如图3,设:∠EAB=α,则:PB=AB cosα=c cosα,PA=c sinα,由①得:PF=PA=c sinα,PE=c sinα,则a2+b2=(2AE)2+(2BF)2=c2×5[(sinα)2+(cosα)2]=5c2;(3)∵AE=OE=EC,AG∥BC,∴AG=BC=AD,则EF=BC=AD,同理HG=AD,∴GH=AD,∴GH=EF,∵GH∥BC,EF∥BC,∴HG∥EF,∴MG=ME=MB,同理:MH=MC,则MG2+MH2=(MB2+MC2)=×5×BC2=5.【点评】本题为四边形综合题,考查了三角形相似、中位线等知识,其中(3),直接利用(2)的结论是本题的新颖点和突破点.28.【分析】(1)根据抛物线的解析式,令y=0,求出点A和点B的横坐标,令x=0,求出点C的纵坐标,再根据待定系数法求出直线AC的解析式;(2)先求出使△PCA面积最大时点P的坐标,再根据题意求出点P1的坐标,因为直线A'C'与直线AC的距离是定值,所以MN的长度不变,然后通过作对称点,平移,由两点之间线段最终最短求出结果;(3)根据题意画出图形,由旋转求出相关点的坐标,再通过矩形的性质和平移规律求出点S的坐标.【解答】解:(1)令y=0,则﹣x2+x+6=0,解得x1=6,x2=﹣2,∵B在A的左侧∴A(6,0),B(﹣2,0)令x=0,则y=6,即C(0,6),设直线AC解析式为y=kx+b,把A(6,0),C(0,6)代入,∴,解得:,所以直线AC解析式为:.(2)如图,过P作PH⊥x轴交AC于点H,∴S=PH•(x A﹣x C)=3PH,△PCA最大,∴当PH取最大值时,S△PCA设P(m,m2+m+6),H(m,m+6),∴PH=m2+m,(0<m<6),=(m﹣3)2+,∴当m=3时,PH取最大值,此时P(3,),在抛物线y=﹣x2+x+6中,对称轴为x==2,∴由平移知直线l为:x=,∴P1(,),设直线l与x轴的垂足为Q,连接P1A,在Rt△P1AQ中,QA=,P1Q=,P1A=5,∴tan∠P1AQ=,∴∠P1AQ=60°,作P1关于直线AC的对称点P1′,连接P1P1′,与直线AC、A’C’分别交于S、T点,则△AP1P1′是等边三角形,∴P1′A=P1A=5,P1′(,0),∵MN⊥AC,CC'=2,∠C'A'A=30°,∴MN=,将P1′沿MN方向平移个单位得到P1′'(,),将直线A’C’绕点A’顺时针旋转45°得到直线l1,过点P1′'作P1′'G⊥l1于点G,与A’C’的交点即为N点,易知△P1′'TN和△A'GN都为等腰直角三角形,∴P1′'N=P1′'T=,A'N=A'T﹣TN=,∴GN=﹣,∴(P1M+MN+NA′)=+;最小(3)连接OO1,则△OO1B为等边三角形,∴∠O1OA=∠OAO1=∠OO1A=60°,OO1=O1A=OA=6,∴O1(3,9),B1(2,12),C1(6,12),①如图2﹣1,当四边形Q1RS1C1为矩形时,x R﹣x O1=﹣3=,∵由题意知,QR与直线l的夹角为30°,∴y Q1﹣y R=×=,∴x S1=x C1+=,y S1=y C1﹣=,∴S1(,),同理可求出S2(,),S3(,﹣),S4(,+),综上所述:在直角坐标平面内存在一点S,使得以点O1、C1、R、S为顶点的四边形是矩形,坐标是S1(,),S2(,),S3(,﹣),S4(,+).【点评】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.。
江苏省徐州市2019-2020学年中考第二次模拟数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图所示,点E 在AC 的延长线上,下列条件中能判断AB ∥CD 的是( )A .∠3=∠AB .∠D=∠DCEC .∠1=∠2D .∠D+∠ACD=180° 2.若分式12x -有意义...,则x 的取值范围是( ) A .2x =;B .2x ≠;C .2x >;D .2x <. 3.如图,直线m ∥n ,∠1=70°,∠2=30°,则∠A 等于( )A .30°B .35°C .40°D .50°4.已知a 为整数,且3<a<5,则a 等于( )A .1B .2C .3D .45.近似数25.010⨯精确到( )A .十分位B .个位C .十位D .百位6.舌尖上的浪费让人触目惊心,据统计中国每年浪费的食物总量折合粮食约499.5亿千克,这个数用科学记数法应表示为( )A .4.995×1011B .49.95×1010C .0.4995×1011D .4.995×10107.如图,边长为2a 的等边△ABC 中,M 是高CH 所在直线上的一个动点,连接MB ,将线段BM 绕点B 逆时针旋转60°得到BN ,连接HN .则在点M 运动过程中,线段HN 长度的最小值是( )A .12aB .aC .32aD .3a8.下列运算正确的是( )A .(﹣2a )3=﹣6a 3B .﹣3a 2•4a 3=﹣12a 5C .﹣3a (2﹣a )=6a ﹣3a 2D .2a 3﹣a 2=2a9.一个不透明的袋中有四张完全相同的卡片,把它们分别标上数字1、2、3、1.随机抽取一张卡片,然后放回,再随机抽取一张卡片,则两次抽取的卡片上数字之积为偶数的概率是( )A .14B .12C .34D .5610.下列计算正确的是( )A .2x ﹣x =1B .x 2•x 3=x 6C .(m ﹣n)2=m 2﹣n 2D .(﹣xy 3)2=x 2y 611.去年二月份,某房地产商将房价提高40%,在中央“房子是用来住的,不是用来炒的”指示下达后,立即降价30%.设降价后房价为x ,则去年二月份之前房价为( )A .(1+40%)×30%xB .(1+40%)(1﹣30%)xC .x (140%)30%+⨯D .()()130%140%x +﹣ 12.如图,已知∠1=∠2,要使△ABD ≌△ACD ,需从下列条件中增加一个,错误的选法是( )A .∠ADB =∠ADC B .∠B =∠C C .AB =ACD .DB =DC二、填空题:(本大题共6个小题,每小题4分,共24分.)13.轮船沿江从A 港顺流行驶到B 港,比从B 港返回A 港少用3h ,若静水时船速为26km/h ,水速为2km/h ,则A 港和B 港相距_____km .14.若334x x --+,则x+y= .15.小明掷一枚均匀的骰子,骰子的六个面上分别刻有1,2,3,4,5,6点,得到的点数为奇数的概率是 .16.如图,等边三角形AOB 的顶点A 的坐标为(﹣4,0),顶点B 在反比例函数k y x=(x <0)的图象上,则k= .17.如图,小红作出了边长为1的第1个正△A1B1C1,算出了正△A1B1C1的面积,然后分别取△A1B1C1三边的中点A2,B2,C2,作出了第2个正△A2B2C2,算出了正△A2B2C2的面积,用同样的方法,作出了第3个正△A3B3C3,算出了正△A3B3C3的面积…,由此可得,第8个正△A8B8C8的面积是_____.18.可燃冰是一种新型能源,它的密度很小,31cm可燃冰的质量仅为0.00092kg.数字0.00092用科学记数法表示是__________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)在同一时刻两根木竿在太阳光下的影子如图所示,其中木竿AB=2m,它的影子BC=1.6m,木竿PQ落在地面上的影子PM=1.8m,落在墙上的影子MN=1.1m,求木竿PQ的长度.20.(6分)如图,已知抛物线经过点A(﹣1,0),B(4,0),C(0,2)三点,点D与点C关于x轴对称,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P做x轴的垂线l交抛物线于点Q,交直线BD于点M.(1)求该抛物线所表示的二次函数的表达式;(2)已知点F(0,12),当点P在x轴上运动时,试求m为何值时,四边形DMQF是平行四边形?(3)点P在线段AB运动过程中,是否存在点Q,使得以点B、Q、M为顶点的三角形与△BOD相似?若存在,求出点Q的坐标;若不存在,请说明理由.21.(6分)一家蔬菜公司收购到某种绿色蔬菜140吨,准备加工后进行销售,销售后获利的情况如下表所示:销售方式粗加工后销售精加工后销售每吨获利(元) 1000 2000已知该公司的加工能力是:每天能精加工5吨或粗加工15吨,但两种加工不能同时进行.受季节等条件的限制,公司必须在一定时间内将这批蔬菜全部加工后销售完.(1)如果要求12天刚好加工完140吨蔬菜,则公司应安排几天精加工,几天粗加工?(2)如果先进行精加工,然后进行粗加工.①试求出销售利润W元与精加工的蔬菜吨数m之间的函数关系式;②若要求在不超过10天的时间内,将140吨蔬菜全部加工完后进行销售,则加工这批蔬菜最多获得多少利润?此时如何分配加工时间?22.(8分)如图,平面直角坐标系中,直线AB:13y x b=-+交y轴于点A(0,1),交x轴于点B.直线x=1交AB于点D,交x轴于点E,P是直线x=1上一动点,且在点D的上方,设P(1,n).求直线AB 的解析式和点B的坐标;求△ABP的面积(用含n的代数式表示);当S△ABP=2时,以PB为边在第一象限作等腰直角三角形BPC,求出点C的坐标.23.(8分)如图,矩形ABCD中,AB=4,AD=5,E为BC上一点,BE∶CE=3∶2,连接AE,点P 从点A出发,沿射线AB的方向以每秒1个单位长度的速度匀速运动,过点P作PF∥BC交直线AE于点F.(1)线段AE=______;(2)设点P的运动时间为t(s),EF的长度为y,求y关于t的函数关系式,并写出t的取值范围;(3)当t为何值时,以F为圆心的⊙F恰好与直线AB、BC都相切?并求此时⊙F的半径.24.(10分)如图,在△ABC中,AB=AC,若将△ABC绕点C顺时针旋转180°得到△EFC,连接AF、BE.(1)求证:四边形ABEF是平行四边形;(2)当∠ABC为多少度时,四边形ABEF为矩形?请说明理由.25.(10分)为了保护视力,学校开展了全校性的视力保健活动,活动前,随机抽取部分学生,检查他们的视力,结果如图所示(数据包括左端点不包括右端点,精确到0.1);活动后,再次检查这部分学生的视力,结果如表所示分组频数4.0≤x<4.2 24.2≤x<4.4 34.4≤x<4.6 54.6≤x<4.8 84.8≤x<5.0 175.0≤x<5.2 5(1)求活动所抽取的学生人数;(2)若视力达到4.8及以上为达标,计算活动前该校学生的视力达标率;(3)请选择适当的统计量,从两个不同的角度评价视力保健活动的效果.26.(12分)我校对全校学生进传统文化礼仪知识测试,为了了解测试结果,随机抽取部分学生的成绩进行分析,现将成绩分为三个等级:不合格、一般、优秀,并绘制成如下两幅统计图(不完整).请你根据图中所给的信息解答下列问题:(1)本次随机抽取的人数是人,并将以上两幅统计图补充完整;(2)若“一般”和“优秀”均被视为达标成绩,则我校被抽取的学生中有人达标;(3)若我校学生有1200人,请你估计此次测试中,全校达标的学生有多少人?27.(12分)如图,四边形ABCD的四个顶点分别在反比例函数y=与y=(x>0,0<m<n)的图象上,对角线BD∥y轴,且BD⊥AC于点P.已知点B的横坐标为1.(1)当m=1,n=20时.①若点P的纵坐标为2,求直线AB的函数表达式.②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.(2)四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】由平行线的判定定理可证得,选项A,B,D能证得AC∥BD,只有选项C能证得AB∥CD.注意掌握排除法在选择题中的应用.【详解】A.∵∠3=∠A,本选项不能判断AB∥CD,故A错误;B.∵∠D=∠DCE,∴AC∥BD.本选项不能判断AB∥CD,故B错误;C.∵∠1=∠2,∴AB∥CD.本选项能判断AB∥CD,故C正确;D.∵∠D+∠ACD=180°,∴AC∥BD.故本选项不能判断AB∥CD,故D错误.故选:C.【点睛】考查平行线的判定,掌握平行线的判定定理是解题的关键.2.B【解析】【分析】分式的分母不为零,即x-2≠1.【详解】∵分式12x-有意义...,∴x-2≠1,∴2x≠.故选:B.【点睛】考查了分式有意义的条件,(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.3.C【解析】试题分析:已知m∥n,根据平行线的性质可得∠3=∠1=70°.又因∠3是△ABD的一个外角,可得∠3=∠2+∠A.即∠A=∠3-∠2=70°-30°=40°.故答案选C.考点:平行线的性质.4.B【解析】【分析】351,进而得出答案.【详解】∵a35∴a=1.故选:B.【点睛】考查了估算无理数大小,正确得出无理数接近的有理数是解题关键.5.C【解析】【分析】【详解】根据近似数的精确度:近似数5.0×102精确到十位.故选C.考点:近似数和有效数字6.D【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n是负数.【详解】将499.5亿用科学记数法表示为:4.995×1.故选D.【点睛】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.7.A【解析】【分析】取CB的中点G,连接MG,根据等边三角形的性质可得BH=BG,再求出∠HBN=∠MBG,根据旋转的性质可得MB=NB,然后利用“边角边”证明∴△MBG≌△NBH,再根据全等三角形对应边相等可得HN=MG,然后根据垂线段最短可得MG⊥CH时最短,再根据∠BCH=30°求解即可.【详解】如图,取BC的中点G,连接MG,∵旋转角为60°,∴∠MBH+∠HBN=60°,又∵∠MBH+∠MBC=∠ABC=60°,∴∠HBN=∠GBM,∵CH是等边△ABC的对称轴,∴HB=12 AB,∴HB=BG ,又∵MB 旋转到BN ,∴BM=BN ,在△MBG 和△NBH 中,BG BH MBG NBH MB NB ⎧⎪∠∠⎨⎪⎩===,∴△MBG ≌△NBH (SAS ),∴MG=NH ,根据垂线段最短,MG ⊥CH 时,MG 最短,即HN 最短,此时∵∠BCH=12×60°=30°,CG=12AB=12×2a=a , ∴MG=12CG=12×a=2a , ∴HN=2a , 故选A .【点睛】本题考查了旋转的性质,等边三角形的性质,全等三角形的判定与性质,垂线段最短的性质,作辅助线构造出全等三角形是解题的关键,也是本题的难点.8.B【解析】【分析】先根据同底数幂的乘法法则进行运算即可。
2019年江苏省徐州市中考数学二模试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.随机掷两枚硬币,落地后全部正面朝上的概率是( ) A .1B .21C .31 D .412.下列图形中,中心对称图形是( )A .B .C .D .3.样本频数分布反映了( )A .样本数据的多少B .样本数据的平均水平C .样本数据的离散程度D .样本数据在各个小范围内数量的多少4..已知平面直角坐标系内,0(0,0),A (1.3), C (3,0),若以0,A ,C ,B 为顶点的四边形是平行四边形,则B 点不可能在( ) A .第一象限B .第二象限C .第三象限D .第四象限5.在某次实验中,测得两个变量m 和v 之间的4组对应数据如下表:m 1 2 3 4 v0.012.98.03 15.1则mA .v =2m 一2B .v =m 2一1C .v =3m 一3D .v =m 十1 6.如果5x y −=,5y z −=,那么z x −的值是( )A .5B .10C .-5D .-10 7.12−的绝对值是( )A .-2B .12−C .2D .12二、填空题8.在对100个数据进行整理分析的频数分布表中,各组的频数之和等于______,各组的频率之和等于_______.9.已知平行四边形的一个锐角是52°,过这个锐角的顶点向对边作两条高,那么这两条高线的夹角是 .10.命题的定义是: .11.当x 满足 时,3x −+有意义.12.已知三角形三边长分别为5,12,13,则此三角形的面积为 .13.若要使图中平面展开图折叠成立方体后相对面上两个数之和为10,则应使x = ,y = .14.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7 cm ,则正方形A 、B 、C 、D 的面积的和为 cm 2.15.有 A ,B,C 三个箱子,A 箱放 2个白球,B 箱和C 箱都各放1个白球和 1个红球,从这三个箱子中任取一球恰是红球的概率是 .16.当 x= -2 时,代数式 x(2-m)+4 的值等于18,那么,当 x=3 时,这个代数式的值为 . 17.如图,已知圆的半径为 R ,正方形的边长为 a . (1)表示出阴影部分的面积S= ;(2)当R=20 cm ,a=8 cm ,阴影部分面积S= cm 2.18.一块苗圃地,种有 n 行树苗,每行的株数比行数的p 倍少kh ,这块地共有树苗 株;当 n= 32,p=3,k=18 时,这块地共有 株树苗.19.等腰梯形ABCD 中,AD ∥BC ,5AD =cm ,9BC =cm ,60C ∠=,则梯形的腰长是 cm .三、解答题20.有两根木棒 AB 、CD 在同一平面上直立着,其中AB 这根木棒在太阳光下的影子 BE 如 图所示,请你在图中画出这时木棒 CD 的影子.21.如图,△ABC 中,∠A =60°, BC=5 , AB+AC=11,△ABC 的内切圆与AB 、BC 、CA 分别切于点D 、E 、F ,求△ABC 内切圆的半径 r.22.小李想用篱笆围成一个周长为60米的矩形场地,矩形面积S (单位:平方米)随矩形一边长x (单位:米)的变化而变化.(1)求S 与x 之间的函数关系式,并写出自变量x 的取值范围; (2)当x 是多少时,矩形场地面积S 最大?最大面积是多少?23.已知直线32xy =+与x 轴、y 轴分别交于A 、B 两点,把二次函数24x y =−的图象先左右,后上下作两次平移后,使它通过点A 、B ,求平移后的图象的顶点坐标.24.已知方程组713x y ax y a+=−−⎧⎨−=+⎩的解x 为非正数,y 为负数,求a 的取值范围.25.某市有人口l00万,在环境保护日,该市第一中学八年级学生调查了10户居民一天产生的生活垃圾,情况如下表:(1) (2)在这一天中,这10户居民平均每人产生多少kg 垃圾?(结果精确到0.1 kg)26.请验证下列等式是否成立:33332333333333333232434352526262;3131414153536464++++++++====++++++++;;; (1)请你写出一个符合上面规律的一个式子(不能与上面的重复);(2)探索其中的规律,再写出一个类似的等式,并用含m ,n 的等式表示这个规律(m ,n 为整数).27.一家公司的市场调查员把本公司即将推出的一种新点心免费送给36人品尝,以调查这种点心的甜度是否适中,调查结果如下: C C C B A D B C C A 太甜 E 太淡 D C C A B D C E C B 稍甜 E C C A B E C B C C 适中 C B C C C B C D C D 稍淡请用表格整理上面的数据,并推断这种点心的甜度是否适中.28.某同学做一道整式运算题,误将求“A-B ”看成求“A+B ”,结果求出的答案是2325x x −+.已知2436A x x =−−,请你帮他求出A-B 的正确答案.2222A ()2(436)(325)5417A B A B x x x x x x −=−+=−−−−+=−−29.(1)已知两个数的和是17−,其中一个加数是37−,求另一个加数.(2)求45−的绝对值的相反数与265的相反数的差.30.一个重为 10 kg 的大西瓜,它重量的90%是水分,将西瓜放在太阳下晒,被蒸发的水分是西瓜水分的 10%,求晒后西瓜的重量.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.D2.B3.D4.C5.B6.D7.D二、填空题8.100,19.128°10.对事情做出判断的句子11.x≥12.33013.9,714.4915.116.3-1717.π−(1)22− (2)40064nR a18.n(np-k);249619.4三、解答题20.如图,连结:AE,分别过C点和D 点作 AE、BE的平行线,相交于 F,则 DF 为木棒 CD 的影子.21.连结 AO、OD、OF.∠A=60°,⊙O△ABC 的内切圆,∴AD=AF, ∠DAO=∠FAO=30°,BE= BD, CE= CF,∵ BC= 5 ,AB+AC=11,∴ AD+AF=6=2ADRt△ADO 中,33==,∴3AD rr22.解:(1)根据题意,得S=x x⋅−2260=-x 2+30x ,自变量x 的取之范围是0<x<30. (2)∵a=-1<0,∴S 有最大值,∴x=)1(2302−⨯−=−a b =15, )1(4304422−⨯−=−=a b ac S 最大=225, ∴当x=15时 S 最大=225.答:当x 为15米时,才能使矩形场地面积最大,最大面积是225平方米.23.令y=0,即302x+=,x=—6. ∴A( -6 ,0) ,令x=0,得y=3,则 B(0,3). 设平移后的函数解析式21()4y x m h =−++. 由 x=0,y=3得2134m h =−+,由 x=-6,y=0得21(6)4o m h =−−++,解得24m h =⎧⎨=⎩,∴21(2)44y x =−++,顶点坐标(—2,4).24.解原方程组,得342x a y a =−+⎧⎨=−−⎩,∵x 为非正数,y 为负数,∴30420a a −+≤⎧⎨−−<⎩,∴23a −<≤.25.(1)4.2 kg ;(2)1:4 kg26.(1)如:333373737474++=++ (2)3333()()m n m n m m n m m n ++=+−+− 27.统计表略.从统计的表格中,不难发现选C 的占大多数,占总数的52.8%,说明该点心的甜度是适中的28.2222A()2(436)(325)5417A B A B x x x x x x−=−+=−−−−+=−−29.(1)27(2)35530.9.1 kg。
江苏省徐州市2019-2020学年中考数学二模试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知5a b =r r ,下列说法中,不正确的是( )A .50a b -=r rB .a r 与b r方向相同 C .//a b r r D .||5||a b =r r2.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是( ) A . B . C . D . 3.中国在第二十三届冬奥会闭幕式上奉献了《2022相约北京》的文艺表演,会后表演视频在网络上推出,即刻转发量就超过810000这个数用科学记数法表示为( )A .8.1×106B .8.1×105C .81×105D .81×1044.如图,直线m ∥n ,直角三角板ABC 的顶点A 在直线m 上,则∠α的余角等于( )A .19°B .38°C .42°D .52°5.下列计算正确的是( )A .a 2•a 3=a 6B .(a 2)3=a 6C .a 6﹣a 2=a 4D .a 5+a 5=a 106.小明在学习了正方形之后,给同桌小文出了道题,从下列四个条件:①AB=BC ,②∠ABC=90°,③AC=BD ,④AC ⊥BD 中选两个作为补充条件,使▱ABCD 为正方形(如图),现有下列四种选法,你认为其中错误的是( )A .①②B .②③C .①③D .②④7.今年“五一”节,小明外出爬山,他从山脚爬到山顶的过程中,中途休息了一段时间.设他从山脚出发后所用的时间为t (分钟),所走的路程为s (米),s 与t 之间的函数关系如图所示,下列说法错误的是( )A .小明中途休息用了20分钟B .小明休息前爬山的平均速度为每分钟70米C .小明在上述过程中所走的路程为6600米D .小明休息前爬山的平均速度大于休息后爬山的平均速度8.若关于x 的一元二次方程()22110a x x a -++-=的一个根是0,则a 的值是( )A .1B .-1C .1或-1D .12 9.如图,O 是坐标原点,菱形OABC 的顶点A 的坐标为(﹣3,﹣4),顶点C 在x 轴的负半轴上,函数y=k x(x <0)的图象经过菱形OABC 中心E 点,则k 的值为( )A .6B .8C .10D .1210.下列计算中,正确的是( )A .a•3a=4a 2B .2a+3a=5a 2C .(ab )3=a 3b 3D .7a 3÷14a 2=2a11.要组织一次排球邀请赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划7天,每天安排4场比赛.设比赛组织者应邀请x 个队参赛,则x 满足的关系式为()A .1(1)282x x -=B .1(1)282x x +=C .(1)28x x -=D .(1)28x x +=12.如图:已知AB ⊥BC ,垂足为B ,AB=3.5,点P 是射线BC 上的动点,则线段AP 的长不可能是( )A .3B .3.5C .4D .5二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,平面直角坐标系中,矩形OABC 的顶点A (﹣6,0),C (0,3.将矩形OABC 绕点O顺时针方向旋转,使点A 恰好落在OB 上的点A 1处,则点B 的对应点B 1的坐标为_____.14.A 、B 两地相距20km ,甲乙两人沿同一条路线从A 地到B 地.甲先出发,匀速行驶,甲出发1小时后乙再出发,乙以2km/h 的速度度匀速行驶1小时后提高速度并继续匀速行驶,结果比甲提前到达.甲、乙两人离开A 地的距离y(km)与时间t(h)的关系如图所示,则甲出发_____小时后和乙相遇.15.已知点11(,)A x y ,22(,)B x y 在二次函数2(1)1y x =-+的图象上,若121x x >>,则1y __________2y .(填“>”“<”“=”)16.如图,这是一幅长为3m ,宽为1m 的长方形世界杯宣传画,为测量宣传画上世界杯图案的面积,现将宣传画平铺在地上,向长方形宣传画内随机投掷骰子(假设骰子落在长方形内的每一点都是等可能的),经过大量重复投掷试验,发现骰子落在世界杯图案中的频率稳定在常数0.4附近,由此可估计宣传画上世界杯图案的面积约为___________________m 1.17.如图,身高1.6米的小丽在阳光下的影长为2米,在同一时刻,一棵大树的影长为8米,则这棵树的高度为_____米.18.若关于x 的一元二次方程()2k 1x 4x 10-++=有两个不相等的实数根,则k 的取值范围是______. 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)解方程:3122x x =-+ 20.(6分)如图是东方货站传送货物的平面示意图,为了提高安全性,工人师傅打算减小传送带与地面的夹角,由原来的45°改为36°,已知原传送带BC 长为4米,求新传送带AC 的长及新、原传送带触地点之间AB 的长.(结果精确到0.1米)参考数据:sin36°≈0.59,cos36°≈0.1,tan36°≈0.73,2取1.41421.(6分)如图,要修一个育苗棚,棚的横截面是Rt ABC V ,棚高 1.5m AB =,长10m d =,棚顶与地面的夹角为27ACB ∠=︒.求覆盖在顶上的塑料薄膜需多少平方米(结果保留小数点后一位).(参考数据:sin 270.45︒=,cos270.89︒=,tan 270.51︒=)22.(8分)某汽车制造公司计划生产A 、B 两种新型汽车共40辆投放到市场销售.已知A 型汽车每辆成本34万元,售价39万元;B 型汽车每辆成本42万元,售价50万元.若该公司对此项计划的投资不低于1536万元,不高于1552万元.请解答下列问题:(1)该公司有哪几种生产方案?(2)该公司按照哪种方案生产汽车,才能在这批汽车全部售出后,所获利润最大,最大利润是多少? (3)在(2)的情况下,公司决定拿出利润的2.5%全部用于生产甲乙两种钢板(两种都生产),甲钢板每吨5000元,乙钢板每吨6000元,共有多少种生产方案?(直接写出答案)23.(8分)如图,抛物线y=x 2﹣2mx (m >0)与x 轴的另一个交点为A ,过P (1,﹣m )作PM ⊥x 轴于点M ,交抛物线于点B ,点B 关于抛物线对称轴的对称点为C(1)若m=2,求点A 和点C 的坐标;(2)令m >1,连接CA ,若△ACP 为直角三角形,求m 的值;(3)在坐标轴上是否存在点E ,使得△PEC 是以P 为直角顶点的等腰直角三角形?若存在,求出点E 的坐标;若不存在,请说明理由.24.(10分)如图,学校的实验楼对面是一幢教学楼,小敏在实验楼的窗口C 测得教学楼顶部D 的仰角为18°,教学楼底部B 的俯角为20°,量得实验楼与教学楼之间的距离AB=30m .(1)求∠BCD 的度数.(2)求教学楼的高BD .(结果精确到0.1m ,参考数据:tan20°≈0.36,tan18°≈0.32)25.(10分)已知y 关于x 的二次函数22(0).y ax bx a =--≠(1)当2,4a b ==时,求该函数图像的顶点坐标.(2)在(1)条件下,(,)P m t 为该函数图像上的一点,若p 关于原点的对称点p '也落在该函数图像上,求m 的值(3)当函数的图像经过点(1,0)时,若12113(,),(,)22A y B y a -是该函数图像上的两点,试比较1y 与2y 的大小.26.(12分)如图1,一枚质地均匀的正六面体骰子的六个面分别标有数字,,,,,,如图2,正方形的顶点处各有一个圈,跳圈游戏的规则为:游戏者每掷一次骰子,骰子朝上的那面上的数字是几,就沿正方形的边按顺时针方向连续跳几个边长。
2019 届江苏省徐州市铜山区中考数学二模试卷
一、选择题(本大题共8 小题,每题 3 分,共 24 分)
1.﹣的倒数是()
A. 3B.﹣ 3 C.D.﹣
2.在以下绿色食品、回收、节能、节水四个标记中,是轴对称图形的是()
A.B.C.D.
3.正常人红细胞直径均匀为0.000 0072 米,数字 0.000 0072 米用科学记数法表示为()A. 7.2 × 107 B. 0.72 × 10﹣6 C.7.2 × 10﹣6 D. 72×10﹣7
4.以下运算正确的选项是()
A.(﹣ 2a3)2=﹣ 4a6B.﹣ 2a3÷ a2=﹣2a3C. a2a3=a6D.a3+2a3=3a3
5.以下事件中,属于不行能事件的是()
A.投出的篮球会着落
B.从装有黑球、白球的袋里摸出红球
C. 367 人中起码有 2 人是同月同日出生
D.买 1 张彩票,中500 万大奖
6.如图是一个正方体睁开图,把睁开图折叠成正方体后,“美”字一面相对面上的字是()
A.云B.龙C.湖D.丽
7.如图,已知AB、 AD是⊙ O的弦,∠ B=20°,∠ D=15°,则∠BAD的度数是()
A.30° B .45° C .20° D .35°
8.如图,已知正△ABC的边长为 2,E、F、 G分别是 AB、BC、 CA上的点,且
AE=BF=CG,设△ EFG的面积为y,
AE的长为 x,则 y 对于 x 的函数图象大概是()。
2019年江苏省徐州市云龙区中考数学二模试卷一.选择题(共8小题,满分24分,每小题3分)1.下列各组数中,互为相反数的是()A.|﹣|与﹣B.|﹣|与﹣C.|﹣|与D.|﹣|与2.下列运算正确的是()A.x2+x2=x4B.a2•a3=a5C.(3x)2 =6x2D.(mn)5÷(mn)=mn43.如图所示的圆柱体从正面看得到的图形可能是()A.B.C.D.4.若二次根式有意义,则x的取值范围是()A.x>B.x≥C.x≤D.x≤55.下列图形中,不是中心对称图形的是()A.B.C.D.6.世界上最小的鸟是生活在古巴的吸蜜蜂鸟,它的质量约为0.056盎司.将0.056用科学记数法表示为()A.5.6×10﹣1B.5.6×10﹣2C.5.6×10﹣3D.0.56×10﹣17.如图,点A,B,P是⊙O上的三点,若∠AOB=40°,则∠APB的度数为()A.80°B.140°C.20°D.50°8.如图,△ABC为直角三角形,∠C=90°,BC=2cm,∠A=30°,四边形DEFG为矩形,,EF=6cm,且点C、B、E、F在同一条直线上,点B与点E重合.Rt△ABC以每秒1cm的速度沿矩形DEFG 的边EF向右平移,当点C与点F重合时停止.设Rt△ABC与矩形DEFG的重叠部分的面积为ycm2,运动时间xs.能反映ycm2与xs之间函数关系的大致图象是()A .B .C .D .二.填空题(共10小题,满分30分,每小题3分)9.如图将两块三角板的直角顶点重叠在一起,∠DOB 与∠DOA 的比是2:11,则∠BOC = .10.初三(1)班统一购买夏季校服,统计出各种尺码的校服的数量如下表所示:校服的尺码 (单位:厘米) 160165170175180185195数量(单位:件)2410221461由表可以看出,在校服的尺码组成的一组数据中,众数是 . 11.如果点(m ,﹣2m )在双曲线上,那么双曲线在 象限.12.一个多边形的每一个外角为30°,那么这个多边形的边数为 . 13.已知关于x 的一元二次方程x 2﹣2x +k =0有两个不相等的实数根,则k 的取值范围是 .14.命题“同旁内角互补”是一个 命题(填“真”或“假”) 15.如图所示,⊙O 是△ABC 的外接圆,AD ⊥BC 于D ,且AB =5,AC =4,AD =4,则⊙O 的直径的长度是 .16.如图,在△ABC 中,∠ACB =90°,∠A =30°,BC =4,以点C 为圆心,CB 长为半径作弧,交AB 于点D ;再分别以点B 和点D 为圆心,大于BD 的长为半径作弧,两弧相交于点E ,作射线CE 交AB 于点F,则AF的长为.17.如图,第一个图形有1个正方形;第二个图形有5个正方形;第三个图形有14个正方形……;则按此规律,第五个图形有个正方形.18.我们发现:若AD是△ABC的中线,则有AB2+AC2=2(AD2+BD2),请利用结论解决问题:如图,在矩形ABCD中,已知AB=20,AD=12,E是DC中点,点P在以AB为直径的半圆上运动,则CP2+EP2的最小值是.三.解答题(共10小题,满分86分)19.(1)计算:π0+2cos30°﹣|2﹣|﹣()﹣2;(2)化简:(2﹣)÷.20.(1)解方程x2﹣6x﹣4=0.(2)解不等式组(3)解方程:﹣=0.21.某校为了解学生体质情况,从各年级随机抽取部分学生进行体能测试,每个学生的测试成绩按标准对应为优秀、良好、及格、不及格四个等级,统计员在将测试数据绘制成图表时发现,优秀漏统计4人,良好漏统计6人,于是及时更正,从而形成如图图表,请按正确数据解答下列各题:学生体能测试成绩各等次人数统计表体能等级调整前人数调整后人数优秀8良好16及格12不及格4合计40(1)填写统计表;(2)根据调整后数据,补全条形统计图;(3)若该校共有学生1500人,请你估算出该校体能测试等级为“优秀”的人数.22.在一个不透明的盒子里,装有三个分别写有数字1,2,3的小球,它们的形状、大小、质地等完全相同,先从盒子里随机取出一个小球,记下数字后放回盒子,摇匀后再随机取出一个小球,记下数字.请你用画树形图或列表的方法,求下列事件的概率:(1)两次取出小球上的数字相同的概率;(2)两次取出小球上的数字之和大于3的概率.23.已知E、F分别是平行四边形ABCD的边AB、CD的中点,BD是对角线,AG∥BD交CB的延长线于G.(1)试说明△ADE≌△CBF;(2)当四边形AGBD是矩形时,请你确定四边形BEDF的形状并说明;(3)当四边形AGBD是矩形时,四边形AGCD是等腰梯形吗?直接说出结论.24.某书店老板去图书批发市场购买某种图书,第一次用1200元购书若干本,并按该书定价7元出售,很快售完.由于该书畅销,第二次购书时,每本书的批发价已比第一次提高了20%,他用1500元所购该书的数量比第一次多10本,当按定价售出200本时,出现滞销,便以定价的4折售完剩余的书.(1)第一次购书的进价是多少元?(2)试问该老板这两次售书总体上是赔钱了,还是赚钱了(不考虑其他因素)?若赔钱,赔多少;若赚钱,赚多少?25.一艘轮船由南向北航行,如图,在A处测得小岛P在北偏西15°方向上,两个小时后,轮船在B处测得小岛P在北偏西30°方向上,在小岛周围18海里内有暗礁,问若轮船按20海里/时的速度继续向北航行,有无触礁的危险?26.某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间的关系如表:x/元…152025…y/件…252015…已知日销售量y是销售价x的一次函数.(1)求日销售量y(件)与每件产品的销售价x(元)之间的函数表达式;(2)当每件产品的销售价定为35元时,此时每日的销售利润是多少元?27.小儒在学习了定理“直角三角形斜边上的中线等于斜边的一半”之后做了如下思考:(1)他认为该定理有逆定理,即“如果一个三角形某条边上的中线等于该边长的一半,那么这个三角形是直角三角形”应该成立,你能帮小儒证明一下吗?如图①,在△ABC中,AD是BC边上的中线,若AD =BD=CD,求证:∠BAC=90°.(2)接下来,小儒又遇到一个问题:如图②,已知矩形ABCD,如果在矩形外存在一点E,使得AE⊥CE,求证:BE⊥DE,请你作出证明,可以直接用到第(1)问的结论.(3)在第(2)问的条件下,如果△AED恰好是等边三角形,直接用等式表示出此时矩形的两条邻边AB 与BC的数量关系.28.如图,抛物线y=与x轴交于A,B(点A在点B的左侧)与y轴交于点C,连接AC、BC.过点A作AD∥BC交抛物线于点D(8,10),点P为线段BC下方抛物线上的任意一点,过点P 作PE∥y轴交线段AD于点E.(1)如图1.当PE+AE最大时,分别取线段AE,AC上动点G,H,使GH=5,若点M为GH的中点,点N为线段CB上一动点,连接EN、MN,求EN+MN的最小值;(2)如图2,点F在线段AD上,且AF:DF=7:3,连接CF,点Q,R分别是PE与线段CF,BC的交点,以RQ为边,在RQ的右侧作矩形RQTS,其中RS=2,作∠ACB的角平分线CK交AD于点K,将△ACK绕点C顺时针旋转75°得到△A′CK′,当矩形RQTS与△A′CK′重叠部分(面积不为0)为轴对称图形时,请直接写出点P横坐标的取值范围.2019年江苏省徐州市云龙区中考数学二模试卷参考答案与试题解析一.选择题(共8小题,满分24分,每小题3分)1.【分析】只有符号不同的两个数叫做互为相反数,从而分别分析A,B,C,D四项中符合相反数定义的选项.【解答】解:A项中,|﹣|=,与﹣互为相反数.B项中,|﹣|=,﹣<﹣,所以|﹣|与﹣不互为相反数.C项中,|﹣|=,=,|﹣|与相等,不互为相反数.D项中,|﹣|=,<,|﹣|与不互为相反数.故选:A.【点评】本题考查了绝对值的性质和相反数的定义,属于比较基本的问题.2.【分析】根据合并同类项、同底数幂的乘法、除法和幂的乘方计算判断即可.【解答】解:A、x2+x2=2x2,错误;B、a2•a3=a5 ,正确;C、(3x)2 =9x2,错误;D、(mn)5÷(mn)=(mn)4,错误;故选:B.【点评】此题考查同底数幂的乘法、除法,关键是根据合并同类项、同底数幂的乘法、除法和幂的乘方法则解答.3.【分析】根据圆柱从正面看的平面图形是矩形进行解答即可.【解答】解:一个直立在水平面上的圆柱体,从正面看是一个矩形,故选:B.【点评】本题考查了简单几何体的三视图,关键是掌握所看的位置,以及注意所有的看到的棱都应表现在三视图中.4.【分析】根据二次根式有意义的条件列出不等式,解不等式即可.【解答】解:由题意得,5x﹣1≥0,解得,x≥,故选:B.【点评】本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数是非负数是解题的关键.5.【分析】根据中心对称图形的概念求解.【解答】解:A、是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项正确;C、是中心对称图形,故本选项错误;D、是中心对称图形,故本选项错误;故选:B.【点评】本题考查了中心对称的知识,中心对称图形是要寻找对称中心,旋转180度后与原图重合.6.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:将0.056用科学记数法表示为5.6×10﹣2,故选:B.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.7.【分析】直接利用圆周角定理求解.【解答】解:∠APB=∠AOB=×40°=20°.故选:C.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.8.【分析】由勾股定理求出AB、AC的长,进一步求出△ABC的面积,根据移动特点有三种情况(1)(2)(3),分别求出每种情况y与x的关系式,利用关系式的特点(是一次函数还是二次函数)就能选出答案.【解答】解:已知∠C=90°,BC=2cm,∠A=30°,∴AB=4,由勾股定理得:AC=2,∵四边形DEFG为矩形,∠C=90,∴DE=GF=2,∠C=∠DEF=90°,∴AC∥DE,此题有三种情况:(1)当0<x<2时,AB交DE于H,如图∵DE∥AC,∴=,即=,解得:EH=x,所以y=•x•x=x2,∵xy之间是二次函数,所以所选答案C错误,答案D错误,∵a=>0,开口向上;(2)当2≤x≤6时,如图,此时y=×2×2=2,(3)当6<x≤8时,如图,设△ABC的面积是s1,△FNB的面积是s2,BF=x﹣6,与(1)类同,同法可求FN=X﹣6,∴y=s1﹣s2,=×2×2﹣×(x﹣6)×(X﹣6),=﹣x2+6x﹣16,∵﹣<0,∴开口向下,所以答案A正确,答案B错误,故选:A.【点评】本题主要考查了一次函数,二次函数的性质三角形的面积公式等知识点,解此题的关键是能根据移动规律把问题分成三种情况,并能求出每种情况的y与x的关系式.二.填空题(共10小题,满分30分,每小题3分)9.【分析】设出适当未知数∠DOB为2x,∠DOA为11x,得出∠AOB=9x,由∠AOB=90°,求出x=10°,得出∠DOB=20°,即可求出∠BOC=∠COD﹣∠DOB=70°.【解答】解:设∠DOB为2x,∠DOA为11x;∴∠AOB=∠DOA﹣∠DOB=9x,∵∠AOB=90°,∴9x=90°,∴x=10°,∴∠DOB=20°,∴∠BOC=∠COD﹣∠DOB=90°﹣20°=70°;故答案为:70°【点评】本题考查看余角的定义;设出适当未知数,弄清各个角之间的关系得出方程,解方程即可得出结果.10.【分析】众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【解答】解:数据175出现22次最多为众数.故答案为:175.【点评】考查了众数的定义,牢记出现次数最多的数是众数是解答本题的关键.11.【分析】根据反比例函数图象上的点的坐标特征:图象上的点(x,y)的横纵坐标的积是定值k,即xy =k可得k=﹣2m2<0,根据反比例函数的性质可得答案.【解答】解:∵点(m,﹣2m)在双曲线(k≠0)上,∴m•(﹣2m)=k,解得:k=﹣2m2,∵﹣2m2<0,∴双曲线在第二、四象限.故答案为:第二、四.【点评】此题主要考查了反比例函数图象上的点的坐标特征,以及反比例函数的性质,关键是掌握图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.12.【分析】一个正多边形的每个内角都相等,根据内角与外角互为邻补角,因而就可以求出外角的度数.根据任何多边形的外角和都是360°,利用360°除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.【解答】解:多边形的边数:360°÷30°=12,则这个多边形的边数为12.故答案为:12.【点评】根据外角和的大小与多边形的边数无关,由外角和求正多边形的边数,是常见的题目,需要熟练掌握.13.【分析】根据一元二次方程的根的判别式,建立关于k的不等式,求出k的取值范围.【解答】解:∴a=1,b=﹣2,c=k,方程有两个不相等的实数根,∴△=b2﹣4ac=12﹣4k>0,∴k<3.故填:k<3.【点评】本题考查了根的判别式.总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.14.【分析】根据平行线的性质判断命题的真假.【解答】解:两直线平行,同旁内角互补,所以命题“同旁内角互补”是一个假命题;故答案为:假.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.15.【分析】由勾股定理可求AD=CD,即可得∠ACB=45°,由圆的有关性质可得∠AOB=90°,由勾股定理可求AO的长,即可得⊙O的直径的长度.【解答】解:如图,连接AO,BO,∵AD⊥BC,且AC=4,AD=4,∴CD==4∴CD=AD,∴∠ACB=45°,∵∠AOB=2∠ACB∴∠AOB=90°∴AO2+BO2=AB2,∴AO=BO=∴⊙O的直径的长度是5故答案为:5【点评】本题考查了三角形的外接圆和外心,圆周角定理,勾股定理等知识,求∠AOB=90°是本题的关键.16.【分析】连接CD,根据在△ABC中,∠ACB=90°,∠A=30°,BC=4可知AB=2BC=8,再由作法可知BC=CD=4,CE是线段BD的垂直平分线,据此可得出BD的长,进而可得出结论.【解答】解:如图,连接CD,∵在△ABC中,∠ACB=90°,∠A=30°,BC=4,∴AB=2BC=8.由题可知BC=CD=4,CE是线段BD的垂直平分线,∴∠CDB=∠CBD=60°,DF=BD,∴AD=CD=BC=4,∴BD=AD=4,∴BF=DF=2,∴AF=AD+DF=4+2=6.故答案为:6.【点评】本题考查的是作图﹣基本作图,熟知线段垂直平分线的作法和直角三角形的性质是解答此题的关键.解题时注意:在直角三角形中,30°角所对的直角边等于斜边的一半.17.【分析】由已知图形得出第n个图形中小正方形的个数为12+22+…+(n﹣1)2+n2,据此可得.【解答】解:由题意知,第五个图形中正方形有12+22+32+42+52=55(个),故答案为:55.【点评】本题主要考查图形的变化规律,解题的关键是掌握第n个图形中小正方形的个数为12+22+…+(n ﹣1)2+n2.18.【分析】设点O为AB的中点,H为CE的中点,连接HO交半圆于点P,此时PH取最小值,根据矩形的性质得到CD=AB,EO=AD,求得OP=CE=AB=10过H作HG⊥AB于g,根据矩形的性质得到HG=12,OG=5,于是得到结论.【解答】解:设点O为AB的中点,H为CE的中点,连接HO交半圆于点P,此时PH取最小值,∵AB=20,四边形ABCD为矩形,∴CD=AB,EO=AD,∴OP=CE=AB=10,∴CP2+EP2=2(PH2+CH2).过H作HG⊥AB于g,∴HG=12,OG=5,∴PH=13,∴PH=3,∴CP2+EP2的最小值=2(9+25)=68,故答案为:68.【点评】本题考查了点与圆的位置关系、矩形的性质以及三角形三边关系,利用三角形三边关系找出PE 的最小值是解题的关键.三.解答题(共10小题,满分86分)19.【分析】(1)先计算零指数幂、代入三角函数值,去绝对值符号、计算负整数指数幂,再计算乘法和加减可得;(2)根据分式的混合运算顺序和运算法则计算可得.【解答】解:(1)原式=1+2×﹣(2﹣)﹣4=1+﹣2+﹣4=2﹣5;(2)原式=(﹣)÷=•=.【点评】本题主要考查分式和实数的混合运算,解题的关键是掌握零指数幂、三角函数值、绝对值性质、负整数指数幂及分式的混合运算顺序和运算法则.20.【分析】(1)根据一元二次方程的解法即可求出答案.(2)根据不等式组的解法即可求出答案.(3)根据分式方程的解法即可求出答案.【解答】解:(1)x2﹣6x﹣4=0,x2﹣6x=4,x2﹣6x+9=13,(x﹣3)2=13,x=3±;(2)由①得:x≤4,由②得:x>﹣,∴不等式组的解集为:<x≤4;(3),2(1+x)﹣x=0,2+2x﹣x=0x=﹣2,经检验:x=﹣2是分式方程的解.【点评】本题考查学生的运算,解题的关键是熟练运用运算法则,本题属于基础题型.21.【分析】(1)求出各自的人数,补全表格即可;(2)根据调整后的数据,补全条形统计图即可;(3)根据“优秀”人数占的百分比,乘以1500即可得到结果.【解答】解:(1)填表如下:体能等级调整前人数调整后人数优秀812良好1622及格1212不及格44合计4050故答案为:12;22;12;4;50;(2)补全条形统计图,如图所示:(3)抽取的学生中体能测试的优秀率为24%,则该校体能测试为“优秀”的人数为1500×24%=360(人).【点评】此题考查了条形统计图,用样本估计总体,以及统计表,弄清题中的数据是解本题的关键.22.【分析】(1)画树状图展示所有9种等可能的结果数,再找出两次取出小球上的数字相同的结果数,然后根据概率公式求解;(2)找出两次取出小球上的数字之和大于3的结果数,然后利用概率公式求解.【解答】解:(1)画树状图为:共有9种等可能的结果数,其中两次取出小球上的数字相同的结果数为3,所以两次取出小球上的数字相同的概率==;(2)两次取出小球上的数字之和大于3的结果数为6,所以两次取出小球上的数字之和大于3的概率==.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.23.【分析】(1)根据平行四边形的性质推出BC=AD,∠C=∠BAD,CD=AB,求出AE=CF,根据三角形的判定求出即可;(2)根据平行四边形的判定推出平行四边形BEDF,再根据直角三角形斜边上中线性质求出DE=BE即可;(3)根据在Rt△DBC中,CD不可能等于BD,推出即可.【解答】(1)证明:在平行四边形ABCD中,BC=AD,∠C=∠BAD,CD=AB,∵E、F是AB、CD的中点,∴AE=CF,在△BCF和△DAE中,,∴△ADE≌△CBF.(2)四边形BEDF的形状是菱形,理由是:∵BE=DF,BE∥DF,∴四边形BEDF为平行四边形,当四边形AGBD为矩形时,∠ADB=90°,∴DE=AB=BE,∴BEDF为菱形.(3)答:四边形AGCD不可能是等腰梯形.【点评】本题综合考查了平行四边形的性质和判定,菱形的判定,矩形的性质,等腰梯形的判定,直角三角形斜边上的中线的性质,全等三角形的判定等知识点的应用,此题综合性比较强,但难度不大,通过做此题培养了学生分析问题和解决问题的能力.24.【分析】(1)设第一次购书的单价为x元,根据第一次用1200元购书若干本,第二次购书时,每本书的批发价已比第一次提高了20%,他用1500元所购该书的数量比第一次多10本,列出方程,求出x的值即可得出答案;(2)根据(1)先求出第一次和第二次购书数目,再根据卖书数目×(实际售价﹣当次进价)求出二次赚的钱数,再分别相加即可得出答案.【解答】解:(1)设第一次购书的单价为x元,根据题意得:+10=.解得:x=5.经检验,x=5是原方程的解,答:第一次购书的进价是5元;(2)第一次购书为1200÷5=240(本),第二次购书为240+10=250(本),第一次赚钱为240×(7﹣5)=480(元),第二次赚钱为200×(7﹣5×1.2)+50×(7×0.4﹣5×1.2)=40(元),所以两次共赚钱480+40=520(元),答:该老板两次售书总体上是赚钱了,共赚了520元.【点评】此题考查了分式方程的应用,掌握这次活动的流程,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.25.【分析】作PD⊥AB交AB延长线于D点,依据直角三角形的性质求得PD的长,即可得出结论.【解答】解:如图,作PD⊥AB交AB延长线于D点,∵∠PBC=30°,∴∠PAB=15°,∴∠APB=∠PBC﹣∠PAB=15°,∴PB=AB=20×2=40 (海里),在Rt△BPD中,∴PD=PB=20(海里),∵20>18,∴不会触礁.【点评】此题考查了等腰三角形的判定与性质,三角形的外角性质,以及含30°直角三角形的性质,其中轮船有没有危险由PD的长与18比较大小决定.26.【分析】(1)根据题意可以设出y与x的函数关系式,然后根据表格中的数据,即可求出日销售量y(件)与每件产品的销售价x(元)之间的函数表达式;(2)根据题意可以计算出当每件产品的销售价定为35元时,此时每日的销售利润.【解答】解:(1)设日销售量y(件)与每件产品的销售价x(元)之间的函数表达式是y=kx+b,,解得,,即日销售量y(件)与每件产品的销售价x(元)之间的函数表达式是y=﹣x+40;(2)当每件产品的销售价定为35元时,此时每日的销售利润是:(35﹣10)(﹣35+40)=25×5=125(元),即当每件产品的销售价定为35元时,此时每日的销售利润是125元.【点评】本题考查一次函数的应用,解题的关键是明确题意,找出所求问题需要的条件.27.【分析】(1)利用等腰三角形的性质和三角形内角和即可得出结论;(2)先判断出OE=AC,即可得出OE=BD,即可得出结论;(3)先判断出△ABE是底角是30°的等腰三角形,即可构造直角三角形即可得出结论.【解答】解:(1)∵AD=BD,∴∠B=∠BAD,∵AD=CD,∴∠C=∠CAD,在△ABC中,∠B+∠C+∠BAC=180°,∴∠B+∠C+∠BAD+∠CAD=∠B+∠C+∠B+∠C=180°∴∠B+∠C=90°,∴∠BAC=90°,(2)如图②,连接AC,BD,OE,∵四边形ABCD是矩形,∴OA=OB=OC=OD=AC=BD,∵AE⊥CE,∴∠AEC=90°,∴OE=AC,∴OE=BD,∴∠BED=90°,∴BE⊥DE;(3)如图3,∵四边形ABCD是矩形,∴AD=BC,∠BAD=90°,∵△ADE是等边三角形,∴AE=AD=BC,∠DAE=∠AED=60°,由(2)知,∠BED=90°,∴∠BAE=∠BEA=30°,过点B作BF⊥AE于F,∴AE=2AF,在Rt△ABF中,∠BAE=30°,∴AB=2BF,AF=BF,∴AE=2BF,∴AE=AB,∴BC=AB.【点评】此题是四边形综合题,主要考查了矩形是性质,直角三角形的性质和判定,含30°角的直角三角形的性质,三角形的内角和公式,解(1)的关键是判断出∠B=∠BAD,解(2)的关键是判断出OE=AC,解(3)的关键是判断出△ABE是底角为30°的等腰三角形,进而构造直角三角形,是一道中等难度的中考常考题.28.【分析】(1)先通过二次函数解析式求出点A,B的坐标,再求出AC,AB,CB的长度,用勾股定理逆定理证直角三角形,求出直线AD的解析式,用含相同字母的代数式分别表示E,Q,P的坐标,并表示出EP长度,求出AE长度,根据二次函数的性质求出EA+EP最大值时点E的坐标.最后作出点E关于CB 的对称点,利用两点之间线段最短可求出结果;(2)由旋转的性质得到三角形CA′K与三角形CAK全等,且为等腰直角三角形,求出A′,K′的坐标,求出直线A′K′及CB的解析式,求出交点坐标,通过图象观察出P的横坐标的取值范围.【解答】解:(1)在抛物线y=x2﹣x﹣6中,当y=0时,x1=﹣2,x2=6,当x=0时,y=﹣6,∵抛物线y=x2﹣x﹣6与x轴交于A,B(点A在点B左侧),与y轴交于点C,∴A(﹣2,0),B(6,0),C(0,﹣6),∴AB=8,AC=,BC=,在△ABC中,AC2+BC2=192,AB2=192,∴AC2+BC2=AB2,∴△ABC是直角三角形,且∠ACB=90°,∵AD∥BC,∴∠CAD=90°,过点D作DL⊥x轴于点L,在Rt△ADL中,DL=10,AL=10,tan∠DAL==,∴∠DAB=30°,把点A(﹣2,0),D(8,10)代入直线解析式,得,解得k=,b=2,∴y AD=x+2,设点E的横坐标为a,EP⊥y轴于点Q,则E(a,a+2),Q(a,0),P(a,a2﹣a﹣6),∴EQ=a+2,EP=a+2﹣(a2﹣a﹣6)=a2+a+8,∴在Rt△AEB中,AE=2EQ=a+4,∴PE+AE=a+4+(a2+a+8)=a2a+12=(a ﹣5)2+∴根据函数的性质可知,当a =5时,PE +AE 有最大值,∴此时E (5,7),过点E 作EF ⊥CB 交CB 的延长线于点F , 则∠EAC =∠ACB =∠ACF =90°, ∴四边形ACFE 是矩形, 作点E 关于CB 的对称点E ',在矩形ACFE 中,由矩形的性质及平移规律知, x F ﹣x E =x C ﹣x A ,y E ﹣y F =y A ﹣y C , ∵A (﹣2,0),C (0,﹣6),E (5,7),∴x F ﹣5=0﹣(﹣2),7﹣y F =0﹣(﹣6),∴x F =7,y F =1, ∴F (7,1),∵F 是EE ′的中点, ∴,,∴x E ′=9,y E ′=﹣5, ∴E '(9,﹣5),连接AE ',交BC 于点N ,则当GH 的中点M 在E ′A 上时,EN +MN 有最小值, ∴AE ′==2,∵M 是Rt △AGH 斜边中点, ∴AM =GH =, ∴EN +MN =E ′M =2﹣, ∴EN +MN 的最小值是2﹣.(2)在Rt △AOC 中,∵tan ∠ACO ==,∴∠AOC =30°,∵KE 平分∠ACB ,∴∠ACK =∠BCK =45°,由旋转知,△CA ′K ′≌△CAK ,∠AC ′A ′=75°,∴∠OCA ′=75°﹣∠ACO =45°,∠AC ′K ′=45°,∴OCK ′=90°,∴K ′C ⊥y 轴,△CAK ′是等腰直角三角形,∴A ′C =AC =4, ∴x A ′==2,y A ′=2﹣6, ∴A ′(2,2﹣6), ∴K ′(4,﹣6), 将A ′(2,2﹣6),K ′(4,﹣6),代入一次函数解析式, 得, 解得k =﹣1,b =4﹣6, ∴y A ′K ′=﹣x +4﹣6, ∵CB ∥AD ,∴将点C (0,﹣6),B (6,0)代入一次函数解析式, 得, 解得k =,b =﹣6,∴y CB=x﹣6,=﹣x+4﹣6和y CB=x﹣6,联立y A′K′得﹣x+4﹣6=x﹣6,∴x=6﹣6,∴直线CB与A′K′的交点横坐标是6﹣6,∵当EP经过A′时,点P的横坐标是2,∴如图2,当2<x P<6﹣6时,重叠部分是轴对称图形;如图3,由于RS的长度为2,由图可看出当x P=2﹣1时,重叠部分同样为轴对称图形;综上,当x P=2﹣1或2<x P<6﹣6时,矩形RQRS和△A′CK′重叠部分为轴对称图形.【点评】本题考查了勾股定理的逆定理,三角函数,二次函数的性质,旋转的性质,两点之间线段最短等众多知识点,综合性非常强,解此题的关键是对初中阶段各知识点都要掌握熟练.。
2019年江苏省徐州市中考数学二模试题学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.关于视线的范围,下列叙述正确的是()A.在轿车内比轿车外看到的范围大B.在船头比在船尾看到的范围大C.走上坡路比走平路的视线范围大D.走上坡路比走平路的视线范围小2.在直角三角形ABC中,∠C=90°,AC=3,BC=4,给出以下三个结论:①以C为圆心,2.3为半径的圆与AB相离;②以C为圆心,2.4为半径的圆与AB相切;③以C为圆心,2.5为半径的圆与AB相交.则上述结论中正确的个数是()A.0个B.1个C.2个D.3个3.如图,某厂有许多形状为直角梯形的铁皮边角料,为节约资源,现要按图中所示的方法从这些边角料上截取矩形(阴影部分)铁片备用,当截取的矩形面积最大时,矩形两边长x、y 应分别为()A.x=10,y=14 B.x=14,y=10 C.x=12,y=15 D.x=15,y=124.如图,正方形ABCD的边长为a,那么阴影部分的面积为()A.14πa2B.12πa2C.2211.816a D aππ5.如图,AB 是⊙O的直径,点 C.D在半圆,且∠BAC=20°,则∠ADC 的度数是()A.110°B.l00°C.120°D.90°6.下列各组点中,关于坐标原点对称的是()A.(-3,-4)和(-3,4)B.(-3,-4)和(3,-4)C .(-3,-4)和(3,4)D .(-3,-4)和(4,3) 7.如果一个四边形的四个内角的比为2:2:3:5,那么这四个内角中( ) A .只有一个直角B .只有一个锐角C .有两个直角D .有两个钝角 8. 在同一平面内垂直于同一条直线的两条直线必然( )A .互相平行B .互相垂直C .互相重合D .关系不能确定 9.用 9根火柴棒(等长)拼成一个三角形,火柴棒不允许剩余、重叠和折断,则能摆出不同的三角形的个数是( )A . 1个B . 2个C .3个D .4个10. 若a 的值使得224(2)1x x a x ++=+−成立,则a 值为( ) A . 5 B .4 C . 3 D . 211.m =8,a n =2,则a m+n 等于( ) A . 10B .16C .28D .不能确定 12.方程213148x x −−=−去分母后正确的结果是( ) A .2(21)83x x −=−−B .2(21)1(3)x x −=−−C .211(3)x x −=−−D .2(21)8(3)x x −=−− 13.下列叙述正确的是( )A .5 不是代数式B .一个字母不是代数式C .x 的 5 倍与 y 的14的差可表示为 5x-14y D .2s R π=是代数式 二、填空题14.如图中的=x _________.15. 如图,DE ∥BC ,CD 与 BE 交于点0,DOE COB S :S 4:9∆∆=,则:AE EC = .16.已知直线32x y =+与两个坐标轴交于A 、B 两点,把二次函数24x y =−的图象先左右、后上下作两次平移后,使它通过A 、B ,那么平移后的图象的顶点坐标是 .解答题17.将方程2(1)(2)3x x x +−=+化为一般形式是 ,其中二次项系数是 ,一次项是 ,常数项是 .18.如图,OP 平分BOA ∠,PD OB ⊥于D ,PC OA ⊥于C ,写出你可以得到的结论 (至少写出3个). 19.小明、小伟、小红三位同班同学住在A 、B 、C 三个住宅区,如图所示,A 、B 、C 三点共线,且AB=60 m ,BC=100m ,他们打算合租一辆接送车去上学,由于车位紧张,准备在此之间只设一个停靠点.为使三位同学步行到停靠点的路程之和最小,你认为停靠点应该设在 .20.绝对值小于4的所有负整数的和是 ,积是 .21. 不超过12527−的最大整数是 . 三、解答题22.如图所示是一个四棱柱,小红同学画出了它的三种视图. 请你判断小红画得对吗?如果不对,指出其错误,并画出正确的视图.23. 如图,已知抛物线y =12x 2+mx+n (n ≠0)与直线y =x 交于A 、B 两点,与y 轴交于点C ,OA =OB ,BC ∥x 轴.(1)求抛物线的解析式.(2)设D 、E 是线段AB 上异于A 、B 的两个动点(点E 在点D 的上方),DE = 2 ,过D 、E 两点分别作y 轴的平行线,交抛物线于F 、G ,若设D 点的横坐标为x ,四边形DEGF 的面积为y ,求y 与x 之间的关系式,写出自变量x 的取值范围,并回答x 为何值时,y 有最大值.24.如图,P 为抛物线4123432+−=x x y 上对称轴上右侧的一点,且点P 在x 轴上方,过点P 作PA 垂直x 轴与点A ,PB 垂直y 轴于点B ,得到矩形PAOB .若AP =1,求矩形PAOB 的面积.25.若规定两数a ,b 通过“※”运算,得到4ab ,即a ※b =4ab ,例如 2※6=4×2×6 =48.(1)求3※5 的值;(2)求x ※x +2※x -2※4=0中x 的值.26.举出两个常量和变量的实际例子.27.学校准备暑期组织学生去观看比赛,有A ,B ,C 三种球类门票,E ,F 两种体操类门票.小明任意选一种球类门票和一种体操类门票.恰好选中他所喜欢的 A 类门票和F 类门票的概率是多少(要求用树状图或列表方法求解)?1628.小王是一个很有头脑而又乐于助人的学生,一天,邻居家正在读小学的小明请小王帮助检查作业:7963⨯=;8×8=64;1113143⨯=;1212144⨯=;2426624⨯=;2525625⨯=;小王检查后,直夸小明聪明仔细,“作业全对了.”小王还从这几道题中发现了一个规律,你知道小王发现了什么规律吗?请用含字母 n 的等式表示这一规则 (n 为正整数),并说明它的正确性.29.已知甲数比乙数的 80%多 0.20,设乙数为x ,用关于x 的代数式表示甲数.30.计算:(+1)+(-3)+(+ 5)+ (-7 )+…+(+97)+(-99)【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.D2.D3.D4.C5.A6.C7.A8.A9.C10.C11.B12.D13.C二、填空题14.215.2:116.(—2,4)17.2210x x −+=,2,x −,118.略19.B20.-6,-621.-5三、解答题22.小红画的三视图中,左视图,俯视图都是正确的;主视图是错误的,因为少画了两条看不见的轮廓虚线.如解图所示是正确的主视图.23.(1)∵抛物线y =12x 2+mx +n 与y 轴交于点C ∴C(0,n) ∵BC ∥x 轴 ∴B 点的纵坐标为n∵B 、A 在y =x 上,且OA =OB ∴B(n ,n),A(-n ,-n)∴221212n mn n n n mn n n ⎧++=⎪⎪⎨⎪−+=−⎪⎩ 解得:n =0(舍去),n =-2;m =1 ∴所求解析式为:y =12x 2+x -2 (2)作DH ⊥EG 于H∵D 、E 在直线y =x 上 ∴∠EDH =45° ∴DH =EH∵DE = 2 ∴DH =EH =1 ∵D(x ,x) ∴E(x+1,x+1)∴F 的纵坐标:12 x 2+x -2,G 的纵坐标:12(x +1)2+(x +1)-2 ∴DF =x -(12 x 2+x -2)=2-12x 2 EG =(x +1)- [12 (x +1)2+(x +1)-2]=2-12(x +1)2 ∴y =12 [2-12 x 2+2-12 (x +1)2]×1, y =-12 x 2-12 x +74 , y =-12 (x +12 )2+158∴x 的取值范围是-2<x<1 ,∵a =-12 <0,∴当x =-12 时,y 最大值=15824.∵PA ⊥x 轴,AP =1,∴点P 的纵坐标为1.当y =1时,23311424x x −+=,即2210x x −−=,解得11x =,21x =. ∵抛物线的对称轴为1x =,点P在对称轴的右侧,∴1x =∴矩形PAOB的面积为(1个平方单位. 25.(1) 60 (2)12x =,24x =−26.略27.1628. 2(1)(3)(2)1n n n ++=+−;左边=243n n ++,右边=243n n ++,∴成立29.80%x+0.2030.-50。
2019年徐州市中考第二次模拟考试
数学试题
(时间:120分钟
满分:140分)选择题(本大项共有8个小题,每题_3分,共24分.将芷确答案填涂在答题卡相应位置)1.6的相反数是(�)
1 A.-6
B .-'·
C . 6
D .
✓62.下列图形中,既是轴对称图形,又是中心对称图形的是(�)0·-�:, 宫o e A B 3.下列计算,正确的是(�)
A.a 2-a 3=岱
B.(寸)3 = y 6
C.(m 2n)3 = m 5n 3
D.-+5x 2=3x 2 D 4.将数据11700000用科学记数法表示为(...)I A . 117x105 B. 1.17xl 07 C. 1.17x105 D.0.117x108s ..
下列几何体中,俯视图为矩形的是(...), A .�B .口C .三
D .G:J 6.如图,一副直角三角板按图所示放置AB/I DF, 则LAGD的度数为(.&.).A.45°'· 今 B.60° C.65° D.75°0� 芞. �-·,一?,D -'。
I A 第6题第8题图7.下列调查中,的是(4)
A.为了了解1000个灯泡的使用寿命,选择全面调查
B.为了了解某公园全年的游客流量,选择抽样调查c.
为了了解生产的一批炮弹的杀伤半径,选择全面调查D .为了了解一批袋装食品是否含有防腐剂,选择全面调查I 8.已知:如图,在平面直角坐标系中,有菱形OAB C,k 点A 的坐标为(I�,0), 对角线OB、AC 相交千点D ,双曲线y =一(少0)经过点D,工交B C的延长线千点E,且OB •AC=160, 有下列四个结论:@双曲线的解析式为y=:世X (x>O ); @点E的坐标是(4,8); @sin L COA == i :
·@A C +O B= 12.Js . 其中正确的结论有(�) 5 A.3个 B.2个y -'·• .. A
B . X C.1个一`D.O 个
数学试题共4页第1页。