16.2-二次根式的乘除
- 格式:ppt
- 大小:868.00 KB
- 文档页数:20
16.2 二次根式的乘除第一课时教学内容二次根式的乘法法则以及二次根式的乘法法则的逆用教学目标理解·=(a≥0,b≥0),=·(a≥0,b≥0),并利用它们进行计算和化简由具体数据,发现规律,导出·=(a≥0,b≥0)并运用它进行计算;•利用逆向思维,得出=·(a≥0,b≥0)并运用它进行解题和化简.教学重难点关键重点:·=(a≥0,b≥0),=·(a≥0,b≥0)及它们的运用.难点:发现规律,导出·=(a≥0,b≥0).关键:要讲清(a<0,b<0)=,如=或==×.教学过程一、复习引入(学生活动)请同学们完成下列各题.1.填空(1)×=_______,=______;(2)×=_______,=________.(3)×=________,=_______.参考上面的结果,用“>、<或=”填空.×_____,×_____,×________2.观察计算结果,你能发现什么规律?老师点评(纠正学生练习中的错误)二、探索新知(学生活动)选三个小组里面的一名同学上台总结规律.老师点评:(1)被开方数都是正数;(2)两个二次根式的乘除等于一个二次根式,•并且把这两个二次根式中的数相乘,作为等号另一边二次根式中的被开方数. 一般地,对二次根式的乘法规定为·=.(a ≥0,b ≥0)反过来: =·(a ≥0,b ≥0)例1.计算(1)× (2)× (3)× (4)×分析:直接利用·=(a ≥0,b ≥0)计算即可.解:(1)×=(2)×==(3)×==9(4)×==例2 化简(1) (2) (3)(4) (5) (6)32b a 4 分析:利用=·(a ≥0,b ≥0)直接化简即可.各小组四号完成上面的题目,然后教师进行点评三、展示交流(1)完成例3计算(学生练习,老师点评)利用乘法的交换律和结合律,将两个系数和两个二次根式分别相乘,同时注意符号四、堂清巩固判断下列各式是否正确,不正确的请予以改正: (1)(2)×=4××=4×=4=8完成书上的练习题1和2五、课堂小结本节课应掌握:(1)·==(a≥0,b≥0),=·(a≥0,b≥0)及其运用.六、布置作业1.课本P7练习题3习题16.2第1题6题2.课后作业:《练习册》中的相关内容七、板书设计16.2 二次根式的乘除(1)(1)·==(a≥0,b≥0)(2)=·(a≥0,b≥0).八、课后回顾16.2 二次根式的乘除第二课时教学内容二次根式除法法则和除法法则的逆用教学目标理解=(a≥0,b>0)和=(a≥0,b>0)及利用它们进行运算.利用具体数据,通过学生练习活动,发现规律,归纳出除法规定,并用逆向思维写出逆向等式及利用它们进行计算和化简.教学重难点关键1.重点:理解=(a≥0,b>0),=(a≥0,b>0)及利用它们进行计算和化简.2.难点关键:发现规律,归纳出二次根式的除法规定.教学过程一、复习引入(学生活动)请同学们完成下列各题:1.写出二次根式的乘法规定及逆向等式.2.填空(1)=________,=_________;(2)=________,=________;(3)=________,=_________;(4)=________,=________.规律:______;______;_______;_______.3.观察计算结果,你能发现什么规律?每组推荐一名学生上台阐述运算结果.(老师点评)二、探索新知刚才同学们都练习都很好,上台的同学也回答得十分准确,根据大家的练习和回答,我们可以得到:一般地,对二次根式的除法规定:=(a≥0,b>0),反过来,=(a≥0,b>0)下面我们利用这个规定来计算和化简一些题目.完成例4并计算:(1)(2)(3)(4)完成例5.并化简:(1)(2)(3)(4)分析:直接利用=(a ≥0,b>0)就可以达到化简之目的.三、展示交流 例6 计算: (1)53(注意本题可以有不同的解法,解法2采用分母有理化的方法) (2)2723 (3)a28四、堂清巩固例7 设长方形的面积为S ,相邻两边长分别为a ,b ,已知S=32,b=10,求a 完成习题16.2的第10题11题五、课堂小结本节课要掌握=(a ≥0,b>0)和=(a ≥0,b>0)及其运用.六、布置作业1.教材P 10 练习题 习题16.2 4、5、7、11. 拓展题12题2.课后作业:《练习册》中的相关内容 七、板书设计16.2 二次根式的乘除(2)(1)=(a ≥0,b>0)(2)=(a ≥0,b>0)八、课后回顾第二课时作业设计一、选择题1.计算的结果是( ).A .B .C .D .2.阅读下列运算过程:,数学上将这种把分母的根号去掉的过程称作“分母有理化”,那么,化简的结果是().A.2 B.6 C. D.二、填空题1.分母有理化:(1)=_________;(2)=________;(3)=______.2.已知x=3,y=4,z=5,那么的最后结果是_______.三、综合提高题1.有一种房梁的截面积是一个矩形,且矩形的长与宽之比为:1,•现用直径为3cm的一种圆木做原料加工这种房梁,那么加工后的房染的最大截面积是多少?2.计算(1)·(-)÷(m>0,n>0)(2)-3÷()×(a>0)答案:一、1.A 2.C二、1.(1) ;(2);(3)2.三、1.设:矩形房梁的宽为x(cm),则长为xcm,依题意,得:(x)2+x2=(3)2,4x2=9×15,x=(cm),x·x=x2=(cm2).2.(1)原式=-÷=-=-=-(2)原式=-2=-2=-a16.2 二次根式的乘除(3)第三课时教学内容最简二次根式的概念及利用最简二次根式的概念进行二次根式的化简运算.教学目标理解最简二次根式的概念,并运用它把不是最简二次根式的化成最简二次根式.通过计算或化简的结果来提炼出最简二次根式的概念,并根据它的特点来检验最后结果是否满足最简二次根式的要求.重难点关键1.重点:最简二次根式的运用.2.难点关键:会判断这个二次根式是否是最简二次根式.教学过程一、复习引入(学生活动)请同学们完成下列各题(请三位同学上台板书)1.计算(1),(2),(3)老师点评:=,=,=2.现在我们来看本章引言中的问题:如果两个电视塔的高分别是h1km,h2km,•那么它们的传播半径的比是_________.它们的比是.二、探索新知再观察例4例5和例6中各小题的最终结果,可以发现哪些特点?观察上面计算题1的最后结果,可以发现这些式子中的二次根式有如下两个特点:1.被开方数不含分母;2.被开方数中不含能开得尽方的因数或因式.我们把满足上述两个条件的二次根式,叫做最简二次根式.那么上题中的比是否是最简二次根式呢?如果不是,把它们化成最简二次根式.学生分组讨论,推荐3~4个人到黑板上板书.老师点评:不是.=.例1.(1); (2); (3)三、展示交流教材P14练习2、3四、堂清巩固例3.观察下列各式,通过分母有理数,把不是最简二次根式的化成最简二次根式:==-1,==-,同理可得:=-,……从计算结果中找出规律,并利用这一规律计算(+++……)(+1)的值.分析:由题意可知,本题所给的是一组分母有理化的式子,因此,分母有理化后就可以达到化简的目的.解:原式=(-1+-+-+……+-)×(+1)=(-1)(+1)=2002-1=2001五、课堂小结本节课应掌握:最简二次根式的概念及其运用.六、布置作业1.教材P15习题16.2 相关习题.2.课后作业:《练习册》中的相关内容七、板书设计16.2 二次根式的乘除(3)最简二次根式八、课后回顾第三课时作业设计一、选择题1.如果(y>0)是二次根式,那么,化为最简二次根式是().A.(y>0) B.(y>0) C.(y>0) D.以上都不对 2.把(a-1)中根号外的(a-1)移入根号内得().A. B. C.- D.-3.在下列各式中,化简正确的是()A.=3 B.=±C.=a2 D.=x4.化简的结果是()A.- B.- C.- D.-二、填空题1.化简=_________.(x≥0)2.a化简二次根式号后的结果是_________.三、综合提高题1.已知a为实数,化简:-a,阅读下面的解答过程,请判断是否正确?若不正确,•请写出正确的解答过程:解:-a=a-a·=(a-1)2.若x、y为实数,且y=,求的值.答案:一、1.C 2.D 2.C 4.C二、1.x 2.-三、1.不正确,正确解答:因为,所以a<0,原式=-a·=·-a·=-a+=(1-a)2.∵∴x-4=0,∴x=±2,但∵x+2≠0,∴x=2,y=∴.。
人教版数学八年级下册16.2《二次根式的乘除》教学设计3一. 教材分析《二次根式的乘除》是人教版数学八年级下册第16.2节的内容,这部分内容是在学生已经掌握了二次根式的性质和二次根式的加减法运算的基础上进行学习的。
二次根式的乘除法运算是初中数学中的重要内容,也是后续学习高中数学的基础。
本节内容主要让学生掌握二次根式的乘除法运算规则,理解并掌握二次根式乘除法运算的性质和规律,提高学生的数学运算能力。
二. 学情分析学生在学习本节内容之前,已经掌握了二次根式的性质和加减法运算,但对于二次根式的乘除法运算可能还存在一定的困难。
因此,在教学过程中,需要教师引导学生理解二次根式的乘除法运算规则,通过大量的练习,让学生熟练掌握二次根式的乘除法运算。
三. 教学目标1.让学生掌握二次根式的乘除法运算规则。
2.提高学生的数学运算能力。
3.培养学生的逻辑思维能力。
四. 教学重难点1.二次根式的乘除法运算规则。
2.二次根式的混合运算。
五. 教学方法1.讲解法:教师通过讲解,让学生理解二次根式的乘除法运算规则。
2.练习法:让学生通过大量的练习,熟练掌握二次根式的乘除法运算。
3.小组合作法:让学生通过小组合作,共同探讨二次根式的乘除法运算,培养学生的团队协作能力。
六. 教学准备1.PPT课件:教师需要准备PPT课件,用于展示二次根式的乘除法运算规则。
2.练习题:教师需要准备适量的练习题,用于让学生进行练习。
七. 教学过程1.导入(5分钟)教师通过复习二次根式的性质和加减法运算,引导学生进入二次根式的乘除法运算学习。
2.呈现(10分钟)教师通过PPT课件,呈现二次根式的乘除法运算规则,让学生初步了解二次根式的乘除法运算。
3.操练(10分钟)教师让学生进行二次根式的乘除法运算练习,引导学生掌握二次根式的乘除法运算规则。
4.巩固(10分钟)教师通过讲解和练习,让学生巩固二次根式的乘除法运算规则。
5.拓展(10分钟)教师引导学生进行二次根式的混合运算,提高学生的数学运算能力。
16.2 二次根式的乘除第2课时一、教学目标【知识与技能】1.会进行简单的二次根式的除法运算.2.使学生能利用商的算术平方根的性质进行二次根式的化简与运算.3.理解最简二次根式的概念,并运用它把不是最简二次根式的化成最简二次根式.【过程与方法】1.在学习了二次根式乘法的基础上进行总结对比,得出除法的运算法则.2.引导学生用从特殊到一般的方法及类比的方法,解决数学问题.【情感态度与价值观】在经历探索二次根式除法运算法则的过程中,认识到事物之间的相互联系,获得成就感,建立学习数学的信心和兴趣.二、课型新授课三、课时第2课时共2课时四、教学重难点【教学重点】会进行简单的二次根式的除法运算,会用商的算术平方根的性质进行二次根式的化简与运算.【教学难点】二次根式的除法与商的算术平方根的关系及应用.五、课前准备教师:课件、三角尺、直尺等.学生:三角尺、铅笔.六、教学过程(一)导入新课(出示课件2-3)站在水平高度为h米的地方看到可见的水平距离为d米,它们近似地符合公式为d=8√ℎ5.问题1 某一登山者爬到海拔100米处,即ℎ5=20时,他看到的水平线的距离d1是多少?学生答:d1=8√20=16√5问题2 该登山者接着爬到海拔200米的山顶,即ℎ5=40时,此时他看到的水平线的距离d2是多少?学生答:d1=8√40=16√10问题3 他从海拔100米处登上海拔200米高的山顶,那么他看到的水平线的距离是原来的多少倍?解:d2d1=√1016√5教师提出问题:乘法法则是如何得出的?二次根式的除法该怎样算呢?除法有没有类似的法则?(二)探索新知1.探究二次根式的除法(出示课件5) 教师依次出示下列问题: 计算下列各式:(1)√4√9=___÷___=__;√49=_____;(2)√16√25=___÷___=__;√1625=______;(3)√36√49=___÷___=__;√3649=_______;学生依次解答如下:学生1答:(1)√4√9=2÷3=23;√49=23;学生2答:(2)√16√25=4÷5=45;√1625=45;学生3答:(3)√36√49=6÷7=67;√3649=67;教师问: 观察两者有什么关系?出示课件6: 观察三组式子的结果,我们得到下面三个等式: 依次展示学生答案: 学生1答:(1)√4√9=√49;学生2答:(2)√16√25=√1625;学生3答:(3)√36√49=√3649.教师问:通过上述二次根式除法运算结果,联想到二次根式乘法运算法则,你能说出二次根式√a√b的结果吗?(出示课件7)学生回答:√a√b =√ab.教师问:在前面发现的规律√a√b =√ab中,a,b的取值范围有没有限制呢?学生讨论回答:a≥0,b>0师生一起归纳总结:(出示课件8)二次根式的除法法则:√a √b =√ab(a≥0,b>0)教师问:你能利用文字描述二次根式的除法法则吗?学生答:算术平方根的商等于被开方数商的算术平方根.教师追问:当二次根式根号外的因数(式)不为1时,如何处理呢?学生答:类比单项式除以单项式法则进行化简.教师总结如下:文字叙述:算术平方根的商等于被开方数商的算术平方根.当二次根式根号外的因数(式)不为1时,可类比单项式除以单项式法则,易得√an√b =mn√ab(a≥0,b>0,n≠0)考点1:利用二次根式的除法法则计算根号外因数是1的二次根式计算:(出示课件9) (1)√24√3;(2)√32÷√118;师生共同讨论解答如下: 解:(1)√24√3=√243=√8=2√2;(2)√32÷√118=√32÷118=√32×18=√3×9=3√3;教师追问:像(2)除式中有分数或分式时,如何化简呢? 学生答:先要转化为乘法再进行运算.出示课件10,学生自主练习后口答,教师订正.考点2:利用二次根式的除法法则计算根号外因数不是1的二次根式计算: (出示课件11)(1)√425√6;(2)2√112÷12√16;学生独立思考后,师生共同解答. 解:(1)√425√6 =35√426=35√7;(2)2√112÷12√16=(2÷12)√32÷16=(2×2)√32×6=4√9=12;教师问:类似(2)中被开方数中含有带分数的怎样计算呢? 学生答:应先将带分数化成假分数,再运用二次根式除法法则进行运算.出示课件12,学生自主练习后口答,教师订正.2.探究商的算术平方根的性质从前面知识点1的题目我们可以得到下面三个等式:(1)√49=√4√9;(2)√1625=√16√25;(3)√3649=√36√49.教师问:通过上述二次根式除法运算结果,联想到二次根式乘法运算法则,你能说出二次根式√ab的结果吗?学生回答:√ab =√a√b.教师问:在前面发现的规律√ab =√a√b中,a,b的取值范围有没有限制呢?学生回答:a≥0,b>0师生一起归纳总结:(出示课件13)二次根式的商的算术平方根的性质:√a b =√a√b(a≥0,b>0)教师问:你能利用语言描述商的算术平方根的性质吗?学生答:商的算术平方根,等于被除式的算术平方根除以除式的算术平方根.考点1:商的算术平方根的性质的应用 化简:(出示课件14-15) (1)√3100 ;(2)√7527; (3)√279;(4)√8125x2(x>0); (5)√0.09×1690.64×196.学生独立思考后,师生共同解答. 展示学生答案如下: 学生1解:(1)√3100=√3√100 =√310; 学生2解:(2)√7527=√52×3√32×3=√52√32=53;学生3补充解法:√7527=√75√27 =√33√3=53.学生4解:(3)√279=√259=√25√9=53; 学生5解:(4)√8125x2==√92√(5x )=95x;学生6解:(5)√0.09×1690.64×196=√0.32× 132√0.82×142=0.3×130.8×14=39112.教师问:像(5)可以如何计算的呢?学生答:可以先用商的算术平方根的性质,再运用积的算术平方根性质.出示课件16,学生自主练习,教师给出答案。