二次根式的乘除1
- 格式:docx
- 大小:42.48 KB
- 文档页数:6
二次根式的除法运算法则
二次根式的乘除法法则运算:
1、乘法规定:(a≥0,b≥0)。
二次根式相乘,把被开方数相乘,根指数不变。
(1)(a≥0,b≥0,c≥0)。
(2)(b≥0,d≥0)。
2、乘法逆用:(a≥0,b≥0)。
积的算术平方根等于积中各因式的算术平方根的积。
注意:公式中的a、b可以是数,也可以是代数式,但必须满足a≥0,b≥0;
3、除法规定:(a≥0,b>0)。
二次根式相处,把被开方数相除,根指数不变。
推,其中a≥0,b>0,。
方法归纳:两个二次根式相除,可采用根号前的系数与系数对应相除,根号内的被开方数与被开方数对应相除,再把除得得结果相乘。
4、除法逆用:(a≥0,b>0)。
商的算术平方根等于被除式的算术平方根除以除式的算术平方根。
课题:二次根式的乘除(1)教者: 一、教学目标:(1)使学生能掌握积的算术平方根的性质:b a ab ∙=(0,0)a b ≥≥;.(2)使学生能运用积的算术平方根的性质熟练解题。
(3)使学生能掌握并能运用二次根式的乘法法则b a ab ∙==b a ab ∙=(0,0)a b ≥≥并进行相关计算。
教学重点: 积的算术平方根的性质及二次根式的乘法法则教学难点:积的算术平方根的性质及二次根式的乘法法则的理解与运用 教学过程:一、探索活动: 1.计算:(1)425⨯=_______________ 425⨯=_______________ (2)169⨯=_______________ 169⨯=_______________(3)2)32(×2)53(=_______________22)53()32(⨯=_________ 2.请同学们观察以上式子及其运算结果,看看其中有什么规律?学生分小组讨论。
你还能举一些类似的式子吗?(至少举出三例)____________________ _________________ __________________由上述各式,我们可以推测出:b a ab ∙=________b a ab ∙=(0,0)a b ≥≥ 4.概括:一般地,两个二次根式相乘,实际上就是把被开方数相乘,而根号不变. 5.由以上公式逆向运用可得: b a ab ∙=(0,0)a b ≥≥文字语言叙述:积的算术平方根,等于积中各因式的算术平方根的积.三、例题教学例1、计算: (1)322⋅ (2)4831⋅ (3)814⨯练习(注意书写步骤)(1)9416⨯(2) 29223⋅ 例2、化简:(1)24, (2)3a )0(82≥⋅a a a (3)324y x (x ≥0,y ≥0)小结:如何化简二次根式?(关键:将被开方数因式分解或因数分解,使出现“完全平方数”或“偶次方因式”)四、当堂练习:1.化简72的结果是 ( ) A. 36 B. 26 C. 62 D. 562.下列等式中,正确的是 ( )A 、x x =931B 、x x 552=C 、15)35(2=D 、m m 55= 3.计算:(注意书写各式) (1)515⨯ (2)6622⨯(3) )18(243x x ⨯ (x ≥0) (4)3858327⨯⨯4.化简:(注意书写各式)(1)2000 (2)5438c b a (a ≥0 0b ≥ 0c ≥) (3) 224y x x + (0x ≥)五、课堂小结从本节课的学习中,你有什么收获六、布置作业习题3.2 第一、二题。
21.2.1二次根式的乘除(一)学案稿学习目标:1.经历二次根式乘法法则的探究过程,进一步理解乘法法则.2.能运用二次根式的乘法法则:)0,0(≥≥=⋅b a ab b a 进行乘法运算.3.理解积的算术平方根的意义,会用公式)0,0(≥≥⋅=b a b a ab 化简二次根式. 重点:二次根式的乘法法则与积的算术平方根的性质.难点:二次根式的乘法法则与积的算术平方根的理解与运用.学习过程:一.复习回顾:填空:(1)4×9=____, 49⨯=____; 4×9__49⨯(2)16×25=____,1625⨯=___; 16×25__1625⨯(3)100×36=___,10036⨯=___. 100×36__10036⨯二.合作探究:请观察以上式子及其运算结果,看看其中有什么规律?)0__,0________(b a b a =⋅ 反过来: )0__,0___________(b a ab = 文字描述: 例1、计算 (1)75⨯ (2)931⨯ (3)10263⨯ (4))0(515≥⋅a ay a 解:(1)75⨯=__5⨯=35例2、化简(1)169⨯(2)8116⨯(3)10081⨯(4))0,0(922≥≥y x y x (5)54解:(1)169⨯=__9⨯=__3⨯=__三.巩固练习1.计算:① 16×8 ②55×215 ③312a ·)0,0(312≥≥y a ay2.化简:①20; ②18; ③24; ④54; ⑤2212a b )0,0(≥≥b a3.判断下列各式是否正确,不正确的请予以改正:(1)(4)(9)49-⨯-=-⨯-(2)12425×25=4×1225×25=41225×25=412=83。
《16.2 二次根式的乘除(第1课时)》教学设计《16.2 二次根式的乘除(第1课时)》教学设计一、内容和内容解析1.内容二次根式的乘法法则和积的算术平方根的性质,化简二次根式.2.内容解析二次根式是初中阶段“数与式”内容的最后一章,因此承担着整理“数与式”的内容、方法和基本思想的任务.本节研究二次根式的乘法运算.运算法则是运算的依据,因此教材通过“探究”栏目,引导学生利用二次根式的性质,从具体数字运算中发现规律,进而归纳得出二次根式的乘法法则.基于以上分析,确定本节课的教学重点:探究二次根式的乘法法则和积的算术平方根的性质.二、目标和目标解析1.教学目标(1)经历二次根式的乘法法则和积的算术平方根的性质的形成过程;会进行简单的二次根式的乘法运算;(2)会用公式化简二次根式.2.目标解析(1)学生能通过计算发现规律并对其进行一般化的推广,得出乘法法则的内容;我们要学习二次根式的乘除.本节课先学习二次根式的乘法.问题1 什么叫二次根式?二次根式有哪些性质?师生活动学生回答。
【设计意图】乘法运算和二次根式的化简需要用到二次根式的性质.问题2 教材第6页“探究”栏目,计算结果如何?有何规律?师生活动学生计算、思考并尝试归纳,引导学生用自己的语言描述乘法法则的内容.【设计意图】学生在自主探究的过程中发现规律,运用类比思想,由特殊到一般地,采用不完全归纳的方法得出二次根式的乘法法则.要求学生用数学语言和文字分别描述法则,以培养学生的符号意识.2.观察比较,理解法则问题3 简单的根式运算.师生活动学生动手操作,教师检验.问题4成立的条件是什么?等式反过来有什么价值?师生活动学生回答,给出正确答案后,教师给出积的算术平方根的性质.【设计意图】让学生运用法则进行简单的二次根式的乘法运算,以检验法则的掌握情况.乘法法则反过来就是积的算术平方根的性质,性质是为运算服务的,积的算术平方根的性质将积的算术平方根分解成几个因数或因式的算术平方根的积,利用整式的运算法则、乘法公式等可以简化二次根式,培养学生的运算能力.3.例题示范,学会应用例1 化简:(1); (2).师生活动提问:你是怎么理解例(1)的?如果学生回答不完善,再追问:这个问题中,就直接将结果算成可以吗?你认为本题怎样才达到了化简的效果?师生合作回答上述问题.对于根式运算的最后结果,一般被开方数中有开得尽方的因数或因式,应依据二次根式的性质将其移出根号外.再提问:你能仿照第(1)题的解答,能自己解决(2)吗?【设计意图】通过运算,培养学生的运算能力,明确二次根式化简的方向.积的算术平方根的性质可以进行二次根式的化简.例2 计算:(1); (2); (3)师生活动学生计算,教师检验.(1)在被开方数相乘的时候,就可以考虑因数或因式分解,由直接可得而不必先写成再分解;(2)二次根式的乘法运算类似于整式的乘法运算,交换律、结合律都是适用的.对于根号外有系数的根式在相乘时,可以将系数先相乘作为积的系数,再对根式进行运算;(3)例(3)的运算是选学内容.让学有余力的学生学到“根号下为字母的二次根式”的运算.本题先利用积的算术平方根的性质,得到,然后利用二次根式的乘法法则,变成,由于可以判断,因此直接将x移出根号外.【设计意图】引导学生及时总结,强调利用运算律进行运算,利用乘法公式简化运算.让学生认识到,二次根式是一类特殊的实数,因此满足实数的运算律,关于整式运算的公式和方法也适用.教材中虽然指明,如未特别说明,本章中所有的字母都表示正数,但仍应强调,看到根号就要注意被开方数的符号.可以根据二次根式的概念对字母的符号进行判断,在移出根号时正确处理符号问题.4.巩固概念,学以致用练习:教科书第7页练习第1题. 第10页习题16.2第1题.【设计意图】巩固性练习,同时检验乘法法则的掌握情况.5.归纳小结,反思提高师生共同回顾本节课所学内容,并请学生回答以下问题:(1)你能说明二次根式的乘法法则是如何得出的吗?(2)你能说明乘法法则逆用的意义吗?(3)化简二次根式的基本步骤是怎样?一般对最后结果有何要求?6.布置作业:教科书第7页第2、3题.习题16.2第1,6题.五、目标检测设计1.下列各式中,一定能成立的是( )A.B.C.D.【设计意图】考查二次根式的概念和性质,这是进行二次根式的乘法运算的基础.2.化简______________________________。
3.2 二次根式的乘除(1)学习案1姓名 班级 学习目标:1、经历二次根式乘法法则的探究过程,进一步理解乘法法则2、能运用二次根式的乘法法则:a ·b =ab (a ≥0,b ≥0)进行乘法运算3、理解积的算术平方根的意义,会用公式ab =a ·b (a ≥0,b ≥0)化简二次根式学习重、难点重点:二次根式的乘法法则与积的算术平方根的性质难点:二次根式的乘法法则与积的算术平方根的理解与运用学习过程:一、课前准备:1、什么是二次根式? 已学过二次根式的哪些性质?2、计算:(1(2(3)2)32(×2)53(与22)53()32(⨯二、探索活动1、学生计算。
2、请同学们观察以上式子及其运算结果,看看其中有什么规律?学生分小组交流。
3、概括:二次根式相乘,实际上就是把被开方数相乘,而根号不变。
a ·b =ab (a ≥0,b ≥0)4、由以上公式逆向运用可得: ab =a ·b (a ≥0,b ≥0)文字语言叙述:积的算术平方根,等于积中各因式的算术平方根的积。
三、例题教学例1、计算: ⑴2·32 ⑵21·8 ⑶a 2·a 8(a ≥0)例2、化简: ⑴2257 ⑵8116 ⑶12⑷3a (a ≥0) ⑸a (a ≥0,b ≥0)四、课堂练习P 62 练习1、2五、小结1、二次根式的乘法法则是什么?用语言叙述。
2、如何进行二次根式的化简?六、作业P 67 习题3.2 1、2七、家作:1、化简:(1(2(3(4(5) (6(7(8)(9(10(0a≥0b≥)2、计算:⑴xy·yx3·2xy⑵18·24·27(33=,求x的取值范围。
4、已知等腰三角形的腰为,底边为,求这个等腰三角形的面积b=ab(a≥0,b≥0)思考:a×b×c= ?。
二次根式的乘除是二次根式的基本运算之一,其规则如下:
1. 二次根式的乘法:将两个二次根式的被开方数相乘,得到的结果再开方即可。
例如,√2 ×√3 = √(2 × 3) = √6。
2. 二次根式的除法:将第一个二次根式的被开方数乘以第二个二次根式的倒数的被开方数,得到的结果再开方即可。
例如,√8 ÷√2 = (√8 ×√2) / √2 = √(8 × 2) / √2 = √4 = 2。
需要注意的是,在进行二次根式的乘除运算时,要保证两个二次根式的被开方数都是非负实数,否则会出现无意义的情况。
此外,在进行二次根式的除法运算时,如果第二个二次根式的值为0,则无法进行计算。
第一讲二次根式及其运算知识点一:二次根式的乘法二次根式的乘法法则:abba=⋅(0≥a,0≥b),即两个二次根式相乘,根指数不变,只把被开方数相乘.要点诠释:(1)在运用二次根式的乘法法则进行运算时,一定要注意:公式中a、b都必须是非负数;(2)该法则可以推广到多个二次根式相乘的运算:(3)若二次根式相乘的结果能化简必须化简,如416=.例1 计算:(1)×;(2)×;(3)×;(4)×.知识点二:积的算术平方根的性质积的算术平方根的性质:baab⋅=(0≥a,0≥b),即积的算术平方根等于积中各因式的算术平方根的积.要点诠释:(1)在这个性质中,a、b可以是数,也可以是代数式,无论是数,还是代数式,都必须满足0≥a,0≥b才能用此式进行计算或化简,如果不满足这个条件,等式右边就没有意义,等式也就不能成立了;(2)二次根式的化简关键是将被开方数分解因数,把含有2a形式的a移到根号外面.(3)作用:积的算术平方根的性质对二次根式化简(4)步骤:①对被开方数分解因数或分解因式,结果写成平方因式乘以非平方因式即:()()⨯2②利用积的算术平方根的性质baab⋅=(0≥a,0≥b);③利用⎩⎨⎧<-≥==)0()0(2aaaaaa(一个数的平方的算术平方根等于这个数的绝对值)即被开方数中的一些因式移到根号外;(5)被开方数是整数或整式可用积的算术平方根的性质对二次根式化简例2.化简知识点详解(1); (2); (3); (4); (5).二次根式的除法法则:ba b a=(0≥a ,0>b ),即两个二次根式相除,根指数不变,把被开方数相除.要点诠释:(1)在进行二次根式的除法运算时,对于公式中被开方数a 、b 的取值范围应特别注意,其中0≥a ,0>b ,因为b 在分母上,故b 不能为0.(2)运用二次根式的除法法则,可将分母中的根号去掉,二次根式的运算结果要尽量化简,最后结果中分母不能带根号.例3.化简(1); (2); (3); (4).商的算术平方根的性质:b a b a =(0≥a ,0>b ) ,即商的算术平方根等于被除式的算术平方根除以除式的算术平方根.要点诠释:(1)利用:运用次性质也可以进行二次根式的化简,运用时仍要注意符号问题. 对于公式中被开方数a 、b 的取值范围应特别注意,其中0≥a ,0>b ,因为b 在分母上,故b 不能为0.(2)步骤:①利用商的算术平方根的性质:b a b a =(0≥a ,0>b )② 分别对a ,b 利用积的算术平方根的性质化简③分母不能有根号,如果分母有根号要分母有理化,即a a =2)((0≥a ) (3) 被开方数是分数或分式可用商的算术平方根的性质对二次根式化简例4.化简(1);(2);(3);(4).1.定义:当二次根式满足以下两条:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.把符合这两个条件的二次根式,叫做最简二次根式.在二次根式的运算中,最后的结果必须化为最简二次根式或有理式.要点诠释:(1)最简二次根式中被开方数不含分母;(2)最简二次根式被开方数中每一个因数或因式的次数都小于根指数2,即每个因数或因式从次数只能为1次.2.把二次根式化成最简二次根式的一般步骤:(1)把根号下的带分数或绝对值大于1的数化成假分数,把绝对值小于1的小数化成分数;(2)被开方数是多项式的要进行因式分解;(3)使被开方数不含分母;(4)将被开方数中能开得尽方的因数或因式,用它们的算术平方根代替后移到根号外;(5)化去分母中的根号;(6)约分.3.把一个二次根式化简,应根据被开方数的不同形式,采取不同的变形方法.实际上只是做两件事:一是化去被开方数中的分母或小数;二是使被开方数中不含能开得尽方的因数或因式.例5:下列各式中,哪些是最简二次根式?哪些不是?请说明理由.(1);(2);(3);(4);(5);(6);(7).例6把下列各式化成最简二次根式.(1);(2);(3);(4);(5)1.定义:几个二次根式化成最简二次根式后,如果被开方数相同,那么这几个二次根式就叫做同类二次根式.要点诠释:(1)判断几个二次根式是否是同类二次根式,必须先将二次根式化成最简二次根式,再看被开方数是否相同;(2)几个二次根式是否是同类二次根式,只与被开方数及根指数有关,而与根号外的因式无关.2.合并同类二次根式合并同类二次根式,只把系数相加减,根指数和被开方数不变.(合并同类二次根式的方法与整式加减运算中的合并同类项类似)要点诠释:(1)根号外面的因式就是这个根式的系数;(2)二次根式的系数是带分数的要变成假分数的形式;(3)不是同类二次根式,不能合并例7.如果两个最简二次根式和是同类二次根式,那么a 、b 的值是( )A.a=2,b=1B.a=1,b=2C.a=1,b=-1D.a=1,b=1一 、二次根式:1. 使式子4x -有意义的条件是 。
二次根式的乘除(第1课)【预习引领】计算下列各式,观察计算结果,你能发现什么规律?(1=,;(2=,;(3,;【要点梳理】)0,0a b=≥≥即:两个二次根式相乘,把被开方数相乘,根指数不变.例1计算下列各题:(1(2;(3(4(5);(6).【课堂操练】1.计算下列各题:(1)(2(3;(4;(5;(62.等式=成立的条件是.【要点梳理】2.积的算术平方根的性质:)0,0a b=≥≥即:两个非负数的积的算术平方根,等于这两个因数的算术平方根的乘积.例2化简:(1);(2;(3;(4【课堂操练】1. 化简:(1(2;(3(4【要点梳理】例3化简:(1;(2(3;(4(5)(--.【课堂操练】1.化简:(1;(2(3;(4(5例4比较大小①例5.已知梯形的上底a=,下底b=高h=求面积S.【课后盘点】1.等式=成立的条件是.2==3.=4.比较大小:-5.把根号-外的因式移到根号内得62=,那么必须满足的条件是()A.a取全体实数B.0a≥C.a>0D.a<07.计算10253⋅的结果应该是()A.300B.C.D8.下列计算准确的是( )A==B==C541==-=D==9.在下列运算:=-==()3515==-⨯-=5===中,准确的有()A.0个B.1个C.2个D.3个10.已知为正实数,下列等式中,一定成立的是()A=B22a b=+C.2a b=+D a b=-11.化简:(1;(2(3;(4(5) ;(6) ;(7) .12.填空(1=(2=(3=(4=(5=(6= (7= (8= (9=(10= (11)×= (12= 13.判断下列各式是否准确,不准确的请改正: (1(2=4×=414.若直角三角形两条直角边的边长分别为,•那么此直角三角形斜边长是 ( ) A .cm B .cm C .9cm D .27cm15.化简( ) ABC .D .16.等式1112-=-⋅+x x x 成立的条件是( )A .x ≥1B .x ≥-1C .-1≤x ≤1D .x ≥1或x ≤-117.下列各等式成立的是 ( ) A .8B .C .D .=18. 自由落体的公式为S=12gt 2(g 为重力加速度,它的值为10m/s 2),若物体下落的高度为720m ,则下落的时间是_________. 19.计算下列各式:(2) (--(3)(4) -(5)(6)20.大家都知道当0a ≥时,a =,实质上当0a ≤时,a =-.这是因为a ==-.这个性质反过来同样成立,请使用上述结论,将下列根号外的因式移至根号内.(1) ;(2) -.21.cm,这边上的求此三角形的面积.22.已知矩形的宽为,长为, 求矩形的面积.23.一个底面为30cm ×30cm 长方体玻璃容器中装满水,•现将一部分水倒入一个底面为正方形、高为10cm 铁桶中,当铁桶装满水时,容器中的水面下降了20cm ,铁桶的底面边长是多少厘米?(设计人:周海燕)二次根式的乘除(第2课)【预习引领】计算下列各式,观察计算结果,你发现了什么规律?(1=;(2=,.【要点梳理】1.二次根式的除法法则:=0a≥,b>0)即两个二次根式相除,把被开方数相除,根指数不变.例1 计算下列各题:(1;(2;(3;(4);【课堂操练】1.计算下列各式:(1;(2(3;(4(52.商的算术平方根的性质:=(0a≥,b>0)例2 化简:;练习:化简下列各式:(1)(2)(3)(4)(5) ;(6) .例3 观察下列各式及其验证过程:=:(1)按照上述两个等式及其验证过程的基本思路,猜想;(2)针对上述各式反映的规律,写出用n(n为自然数,且2n≥)表示的等式,并证明它成立.2.最简二次根式满足下列条件:(1) 被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式的二次根式称为最简二次根式.例4下列二次根式中哪些是最简二次根式,哪些不是?,,(8)a>b)【课后盘点】1)A.27B.27CD2.阅读下列运算过程:====数学上将这种把分母的根号去掉的过程称作“分母有理化”,()A.2 B.6 C.13D3.如果(y>0)是二次根式,那么,化为最简二次根式是()A(y>0)By>0)C(y>0)D.以上都不对4.把(a-1中根号外的(a-1)移入根号内得()A B.D.5.在下列各式中,化简正确的是()A B±12C D.6的结果是()A.-3B.C.-3D.7.分母有理化: (1)66=_________;(2) ;(3) =______.8.已知x=3,y=4,z=5,最后结果是_______.9.(x ≥0)10.化简二次根式号后的结果是___ .11分母有理化为.12=成立的条件是a b=ab的代数式表示为.14.·(-)÷(m>0,n>0)15.-3÷()×(a>0)16.若y且x、y为实数,17.=,且x为偶数,求(1+x)的值.18.先化简,再求值.32322222b b ab ba b a a b ab a b+-÷--+-,其中a=,b=19.先将2x-,然后自选一个x合适的值,代入化简后的式子求值.20.已知x为奇数,且=求.21.已知a阅读下面的解答过程,请判断是否正确?若不正确,•请写出正确的解答过程:解:-aa-a·1a=(a-122. 如图,在Rt△ABC中,∠C=90°,AC=2.5cm,BC=6cm,求AB的长.23.在直角坐标系中,一次函数y kx b=+经过点(和(-,求原点o到该直线的距离.24.观察下列各式,通过分母有理数,把不是最简二次根式的化成最简二次根式:121=--1,32=-=-,同理可得:,……从计算结果中找出规律,并利用这一规律计算(+++……))的值.(设计人:周海燕)BAC。
16. 2.1 二次根式的乘除(1)教学设计
、教学内容
7a
= T ab (a >0, b >0),反之 T Ob =需•晶(a >0, b >0)及
其运用.
二、教学目标 知识与技能目标:理解 苗• T b = T ab (a >0,b >0),/ab
(a
> 0,b > 0),并利用它们进行计算和化简 过程与方法目标:由具体数据,发现规律,导出 T a •品=7ab (a >0,b
>0)并运用它进行计算;?利用逆向思维,得出T ab ^/a • T b (a >0,b >0) 并运用它进行解题和化简.
情感与价值目标:通过本节的学习培养学生:利用规定准确计算和化简的严 谨的科学精神,发展学生观察、分析、发现问题的能力.
三、教学重难点关键
重点: 苗•拆=T ab (a >0,b >0),70^ =百•恵 (a >0,b >0)及它 们的运用. 难点:发现规律,导出 苗•晶=T ab (a >0,b >0).
关键:要讲清 J ab ( a<0,b<0) =
,如 J (-2) x (-3) = J-(-2)x — (-
3)或 J (-2)咒(-3) = = 72 X 巧.
四、 教法分析
1、 引导发现法:通过教师精心设计的问题链,使学生产生认知冲突,感悟新知, 建立分式的模型,引导学生观察、类比、参与问题讨论,使感性认识上升为理性 认识,充分体现了教师主导和学生主体的作用,对实现教学目标起了重要的作用;
2、 讲练结合法:在例题教学中,引导学生阅读,与算术平方根的乘法进行类比, 获得解决问题的方法后配以精讲,并进行分层练习,培养学生的阅读习惯和规范 的解题格式。
五、 学法分析
1、 类比的方法 的学习策略。
2、 阅读的方法
3、 分组讨论法 的交流与合作。
4、 练习法 采用不同的练习法,巩固所学的知识;利用教材进行自检,小组内 进行他检,提高学生的素质。
六、教学过程
(一)、复习引入
(学生活动)请同学们完成下列各题.
通过观察、类比,使学生感悟二次根式的乘法法则,形成有效 让学生阅读教材及材料,体验一定的阅读方法,提高阅读能力。
将自己的意见在小组内交换,达到取长补短,体验学习活动中
1 .填空
J100X36
2 .利用计算器计算填空
T ? X 710
老师点评(纠正学生练习中的错误)
(二)、探索新知 (学生活动)让3、4个同学上台总结规律. 老师点评:(1)被开方数都是正数;
(2)两个二次根式的乘除等于一个二次根式,?并且把这两个二次根式中的 数相乘,作为等号另一边二次根式中的被开方数.
一般地,对二次根式的乘法规定为
例1 .计算 (1)/5 X 77 ( 2) £ X 79 ( 3)79 X 727 ( 4) £ X 76 分析:直接利用雷•品=V ab (a >0, b >0)计算即可.
解:(1) 45 X 77=J 35
(2) £ X 屁再^朋
(3) 79 X V 27 =(9咒27 =丿92咒3=973
44 X 79=, ,J 4x9 =
(2) 尿 X 725 = 山6咒25 =
%/100 X 736=
(3) 参考上面的结果,用“ 広X 廖
,J 100x36 = >、<或=”填空.
J 16X 25 ,7100 X 736
(1) 72 X 73
恵,(2) 42 X y/5 710, (3) 75 X 76
,730, ( 4)74 X 75
.720 , (5) ^/70. 反过来:
7ab=7a •品(a >0, b >0)
(1)
(3) 78^100
(4) (5)/54 分析:利用j ab = T a •晶(a > 0, b > 0)直接化简即可.
解: (1) J 9X 16=79 X 716 =3X 4=12
■\/l6x 81 =J l6 X J 81 =4X 9=36
(3) J 81 X100 =阿 X 7100 =9X 10=90
(4)
J 9x 2y 2 =^7? X J x 2y 2 =43 X T x 2 X =3xy 754=7^ =捋 X 76=3^6
(5) (三)、巩固练习
(1)计算(学生练习,老师点评)
①尿X 恵②3爲X 2710③辰• J ^ay
⑵化简:何;厢;V 24 ; 754; J 12a 2b 2
教材P 11练习全部
(四)、应用拓展
例3.判断下列各式是否正确,不正确的请予以改正:
(1)妇风石=戸咒岳 (2) 悶2 X 725 =4X
X 725 =4^1| X 725 =4辰=8^3
解:(1)不正确. 改正:J (V)x(-9) =^4x 9 = V 4 X 79=2X 3=6
(2)不正确.
改正:再乂^^二搏乂耘二馬 X25 =7112 =山6咒7 = 4^7
五、归纳小结
本节课应掌握:
£X 怡=£*6=旋
化简
(1) V a •晶=T ab
= (a 》0, b 》0), J ab = \[a • V b (a 》0, b 》0)及
其运用. (2)当二次根式前面有系数时,可类比单项式乘以单项式法则进行计算:
即系数之积作为积的系数,被开方数之积为被开方数。
(3)化简二次根式达到的要求:
被开方数进行因数或因式分解。
分解后把能开尽方的开出来 六、布置作业
.课本 P 11 1,4, 5, 6 . ( 1)( 2).
.选用课时作业设计.
第一课时作业设计
一、选择题
.化简a J2的结果是().
.等式J x + 1Lk/x -1 = J x 2 -1成立的条件是(
.x 》1 B . x 》-1
.下列各等式成立的是( A. 4^5 X 275=8 75
二、填空题
.71014 =
体下落的高度为720m 则下落的时间是 _____________ .
三、综合提高题
1 . 一个底面为30cmX 30cm 长方体玻璃容器中装满水,?现将一部分水例入 一个底面为正方形、高为10cm 铁桶中,当铁桶装满水时,容器中的水面下降了 20cm 铁桶的底面边长是多少厘米?
2 .探究过程:观察下列各式及其验证过程.
(1) 2段再
.4^ B . 4a C . -7^ D
-v a
.573 X 4 近=2O 75 C. 473 X 3恵=7^5
.573 X 4 恵=2076
.-1 < x < 1
.自由落体的公式为S=2 gt 2
(g 为重力加速度,它的值为10m/s 2),若物
验证:3&府X 存护再勢
同理可得: 4岳丘 32-1
通过上述探究你能猜测出:a G£
(a>0
),并验证你的结论. 验证:2£ = Q
』3(32 -1) + 3 7麻
5 5
24
八、教学反思
通过创设情境,给出实例,列出本课时所要学习的内容.通过分层次学习,由特殊例子到一般法则的归纳,发掘了学生学习的自主性,作为学习的主导者,主动去观察、分析、归纳与总结得到更深刻、透彻的知识,并且从中体会成功.。