物理气相沉积
- 格式:pdf
- 大小:1.68 MB
- 文档页数:48
物理沉积法物理气相沉积法用物理的方法使镀膜材料气化,在基体表面沉积成膜的方法物理气相沉积(Physical Vapor Deposition简称PVD) 是用物理的方法(如蒸发、溅射等)使镀膜材料气化,在基体表面沉积成膜的方法。
除传统的真空蒸发和溅射沉积技术外,还包括近30 多年来蓬勃发展起来的各种离子束沉积,离子镀和离子束辅助沉积技术。
其沉积类型包括: 真空蒸镀、溅射镀、离子镀等。
物理气相沉积技术虽然五花八门,但都必须实现气相沉积三个环节,即镀料(靶材) 气化一气相输运一沉积成膜。
中文名物理气相沉积法沉积类型真空蒸镀、溅射镀、离子镀等各种沉积技术的不同点主要表现为在上述三个环节中能源供给方式不同,同一气相转变的机制不同,气粒子形态不同,气相粒子荷能大小不同,气相粒子在输运过程中能量补给的方式及粒子形态转变不同,镀料粒子与反应气体的反应活性不同,以及沉积成膜的基体表面条件不同而已。
与化学气相沉积相比,主要优点和特点如下:I)镀膜材料广泛,容易获得:包括纯金属、合金、化合物,导电或不导电,低熔点或高熔点,液相或固相,块状或粉末,都可以使用或经加工后使用。
2)镀料汽化方式:可用高温蒸发,也可用低温溅射。
3)沉积粒子能量可调节,反应活性高。
通过等离子体或离子束介人,可以获得所需的沉积粒子能量进行镀膜,提高膜层质量。
通过等离子体的非平衡过程提高反应活性。
4)低温型沉积:沉积粒子的高能量高活性,不需遵循传统的热力学规律的高温过程,就可实现低温反应合成和在低温基体上沉积,扩大沉积基体适用范围。
可沉积各类型薄膜:如金属膜、合金膜、化合物膜等。
5)无污染,利于环境保护。
物理气相沉积技术已广泛用于各行各业,许多技术已实现工业化生产。
其镀膜产品涉及到许多实用领域。
物理气相沉积法名词解释
物理气相沉积法(Physical相沉积法)是一种化学沉积技术,通过物理过程
将化学物质沉积到基材表面,从而制备出具有特殊结构或功能的膜、涂层或颗粒。
物理气相沉积法通常涉及三个基本步骤:气相沉积反应、沉积时间和冷却。
其中,气相沉积反应是指将化学物质溶解在气相中,并通过气相流在基材表面形成沉积物的过程。
沉积时间是指沉积物从气相中形成到脱落的时间。
冷却则是指使用气流或喷淋等方式将沉积物表面降温,从而使其更加稳定。
物理气相沉积法的应用非常广泛,包括制备膜材料、涂层材料、纳米材料、生物材料、催化剂等。
其中,膜材料是物理气相沉积法最为著名的应用之一。
膜材料可以用于水处理、废气处理、药物分离等领域,具有高效过滤、分离、浓缩等功能。
此外,物理气相沉积法还可以用于制备纳米材料、生物材料等,具有治疗疾病、提高材料性能等潜在应用价值。
除了应用价值外,物理气相沉积法还存在一些挑战和限制。
例如,沉积物质量的影响因素很多,包括气相组成、反应条件、温度、压力等。
因此,在实际应用中需要不断调整反应条件,以达到最优的沉积效果。
此外,由于沉积物表面通常需要经过清洗和表征等步骤,因此需要对沉积物表面进行处理,以获得所需的表征结果。
总之,物理气相沉积法是一种制备高性能材料的有效方法,具有广泛的应用前景和研究价值。
随着技术的不断发展和完善,相信它将在未来发挥更加重要的作用。
物理气相沉积技术1简介物理气相沉积(Physical Vapor Deposition,PVD)是一种表面处理技术,它基于原子、分子或离子在真空条件下从固体源“蒸发”或“剥离”,并在另外一个表面生成薄膜或涂层的过程。
PVD技术广泛应用于半导体、电子、机械、医疗等领域,可以改善材料表面的性能、延长使用寿命,也可以改变物体的颜色和外观。
2工艺流程PVD技术是在真空下完成的,因此主要工具是真空室,其次是沉积源,对于不同的应用场景,沉积源也会有所不同。
例如,如果是进行金属沉积,则沉积源可以是纯净金属,或者是通过将金属块或箔片加热,使其蒸发或溅射而得到的。
如果需要沉积金属氧化物,则需要放置源材料和氧气在沉积室中进行反应。
在PVD过程中,首先需要将材料放入真空室中,制备必要的工艺条件,使得沉积源的物质能够蒸发、溅射并扩散到目标基板上。
其中一个关键参数是真空度,PVD通常在10^-4~10^-8torr的高真空条件下进行。
另一个参数是沉积源与基板的距离,过近会导致过度热量和膜的不均匀厚度,过远影响膜的成形。
3分类根据真空沉积源材料的不同,PVD可分为四种类型:蒸发、离子镀、磁控溅射和分子束外延。
其中,蒸发和离子镀常常被用于制备功能性和装饰性薄膜涂层,磁控溅射则常被用于制备金属、半导体和陶瓷等薄膜,而分子束外延则适用于高质量、高洁净度的材料制备。
4应用PVD技术的应用涵盖了许多领域。
其中,电子和半导体产业是其中的重要应用领域之一。
在芯片制造过程中,PVD技术用于制备镀膜、金属连线等的处理;在随着显示技术的发展,PVD技术也被广泛应用于液晶显示器、有机EL显示器、柔性显示器等各种显示器领域。
此外,在航空航天、汽车、医疗、光学等领域都有PVD技术的应用。
5结论总的来说,PVD技术是一种成熟、广泛应用的表面处理技术。
它可以对各种材料表面进行处理,使其具有功能性和装饰性,可以改善产品的表面性能。
然而,由于技术的复杂性和设备的昂贵性,PVD技术在应用过程中也存在一定的限制性。
PVD(物理气相沉积)简介1. PVD简介PVD是英文Physical Vapor Deposition(物理气相沉积)的缩写,是指在真空条件下,采用低电压、大电流的电弧放电技术,利用气体放电使靶材蒸发并使被蒸发物质与气体都发生电离,利用电场的加速作用,使被蒸发物质及其反应产物沉积在工件上。
2. PVD技术的发展PVD技术出现于二十世纪七十年代末,制备的薄膜具有高硬度、低摩擦系数、很好的耐磨性和化学稳定性等优点。
最初在高速钢刀具领域的成功应用引起了世界各国制造业的高度重视,人们在开发高性能、高可靠性涂层设备的同时,也在硬质合金、陶瓷类刀具中进行了更加深入的涂层应用研究。
与CVD工艺相比,PVD工艺处理温度低,在600℃以下时对刀具材料的抗弯强度无影响;薄膜内部应力状态为压应力,更适于对硬质合金精密复杂刀具的涂层;PVD工艺对环境无不利影响,符合现代绿色制造的发展方向。
目前PVD涂层技术已普遍应用于硬质合金立铣刀、钻头、阶梯钻、油孔钻、铰刀、丝锥、可转位铣刀片、异形刀具、焊接刀具等的涂层处理。
PVD技术不仅提高了薄膜与刀具基体材料的结合强度,涂层成分也由第一代的TiN发展为TiC、TiCN、ZrN、CrN、MoS2、TiAlN、TiAlCN、TiN-AlN、CNx、DLC和ta-C等多元复合涂层。
3. 星弧涂层的PVD技术增强型磁控阴极弧:阴极弧技术是在真空条件下,通过低电压和高电流将靶材离化成离子状态,从而完成薄膜材料的沉积。
增强型磁控阴极弧利用电磁场的共同作用,将靶材表面的电弧加以有效地控制,使材料的离化率更高,薄膜性能更加优异。
过滤阴极弧:过滤阴极电弧(FCA)配有高效的电磁过滤系统,可将离子源产生的等离子体中的宏观粒子、离子团过滤干净,经过磁过滤后沉积粒子的离化率为100%,并且可以过滤掉大颗粒,因此制备的薄膜非常致密和平整光滑,具有抗腐蚀性能好,与机体的结合力很强。
磁控溅射:在真空环境下,通过电压和磁场的共同作用,以被离化的惰性气体离子对靶材进行轰击,致使靶材以离子、原子或分子的形式被弹出并沉积在基件上形成薄膜。