09工程力学答案第11章压杆稳定
- 格式:doc
- 大小:672.00 KB
- 文档页数:8
第十一章压杆的稳定承受轴向压力的杆,称为压杆。
如前所述,直杆在轴向压力的作用下,发生的是沿轴向的缩短,杆的轴线仍然保持为直线,直至压力增大到由于强度不足而发生屈服或破坏。
直杆在轴向压力的作用下,是否发生屈服或破坏,由强度条件确定,这是我们已熟知的。
然而,对于一些受轴向压力作用的细长杆,在满足强度条件的情况下,却会出现弯曲变形。
杆在轴向载荷作用下发生的弯曲,称为屈曲,构件由屈曲引起的失效,称为失稳(丧失稳定性)。
本章研究细长压杆的稳定。
§11.1 稳定的概念物体的平衡存在有稳定与不稳定的问题。
物体的平衡受到外界干扰后,将会偏离平衡状态。
若在外界的微小干扰消除后,物体能恢复原来的平衡状态,则称该平衡是稳定的;若在外界的微小干扰消除后物体仍不能恢复原来的平衡状态,则称该平衡是不稳定。
如图11.1所示,小球在凹弧面中的平衡是稳定的,因为虚箭头所示的干扰(如微小的力或位移)消除后,小球会回到其原来的平衡位置;反之,小球在凸弧面上的平衡,受到干扰后将不能回复,故其平衡是不稳定的。
(a) 稳定平衡图11.1 稳定平衡与不稳定平衡上述小球是作为未完全约束的刚体讨论的。
对于受到完全约束的变形体,平衡状态也有稳定与不稳定的问题。
如二端铰支的受压直杆,如图11.2(a)所示。
当杆受到水平方向的微小扰动(力或位移)时,杆的轴线将偏离铅垂位置而发生微小的弯曲,如图11.2(b)所示。
若轴向压力F较小,横向的微小扰动消除后,杆的轴线可恢复原来的铅垂平衡位置,即图11.2(a),平衡是稳定的;若轴向压力F足够大,即使微小扰动已消除,在力F 作用下,杆轴线的弯曲挠度也仍将越来越大,如图11.2(c)所示,直至完全丧失承载能力。
在F =F cr 的临界状态下,压杆不能恢复原来的铅垂平衡位置,扰动引起的微小弯曲也不继续增大,保持微弯状态的平衡,如图11.2(b)所示,这是不稳定的平衡。
如前所述,直杆在轴向载荷作用下发生的弯曲称为屈曲,发生了屈曲就意味着构件失去稳定(失稳)。
第 九 章 压 杆 稳 定一、选择题1、一理想均匀直杆受轴向压力P=P Q 时处于直线平衡状态。
在其受到一微小横向干扰力后发生微小弯曲变形,若此时解除干扰力,则压杆〈A )。
A 、弯曲变形消失,恢复直线形状; B 、弯曲变形减少,不能恢复直线形状; C 、微弯状态不变;D 、弯曲变形继续增大。
2、一细长压杆当轴向力P=P Q 时发生失稳而处于微弯平衡状态,此时若解除压力P ,则压杆的微弯变形<C)A 、完全消失 B 、有所缓和 C 、保持不变 D 、继续增大3、压杆属于细长杆,中长杆还是短粗杆,是根据压杆的〈D )来判断的。
A 、长度B 、横截面尺寸C 、临界应力D 、柔度 4、压杆的柔度集中地反映了压杆的〈 A )对临界应力的影响。
A 、长度,约束条件,截面尺寸和形状;B 、材料,长度和约束条件;C 、材料,约束条件,截面尺寸和形状;D 、材料,长度,截面尺寸和形状; 5、图示四根压杆的材料与横截面均相同, 试判断哪一根最容易失稳。
答案:〈 a )6、两端铰支的圆截面压杆,长1m ,直径50mm .其柔度为 ( C 〉A 。
60;B 。
66。
7;C .80;D 。
507、在横截面积等其它条件均相同的条件下,压杆采用图<D )所示截面形状,其稳定性最好.8、细长压杆的<A ),则其临界应力σ越大。
A 、弹性模量E 越大或柔度λ越小;B 、弹性模量E 越大或柔度λ越大;C 、弹性模量E 越小或柔度λ越大;D 、弹性模量E 越小或柔度λ越小; 9、欧拉公式适用的条件是,压杆的柔度〈C )A 、λ≤P E πσB 、λ≤s E πσC 、λ≥PEπσ D 、λ≥sEπσ10、在材料相同的条件下,随着柔度的增大<C )A 、细长杆的临界应力是减小的,中长杆不是;B 、中长杆的临界应力是减小的,细长杆不是;C 、细长杆和中长杆的临界应力均是减小的;D 、细长杆和中长杆的临界应力均不是减小的; 11、两根材料和柔度都相同的压杆〈A )A 。
第十一章 压杆的稳定承受轴向压力的杆,称为压杆。
如前所述,直杆在轴向压力的作用下,发生的是沿轴向的缩短,杆的轴线仍然保持为直线,直至压力增大到由于强度不足而发生屈服或破坏。
直杆在轴向压力的作用下,是否发生屈服或破坏,由强度条件确定,这是我们已熟知的。
然而,对于一些受轴向压力作用的细长杆,在满足强度条件的情况下,却会出现弯曲变形。
杆在轴向载荷作用下发生的弯曲,称为屈曲,构件由屈曲引起的失效,称为失稳(丧失稳定性)。
本章研究细长压杆的稳定。
§11.1 稳定的概念物体的平衡存在有稳定与不稳定的问题。
物体的平衡受到外界干扰后,将会偏离平衡状态。
若在外界的微小干扰消除后,物体能恢复原来的平衡状态,则称该平衡是稳定的;若在外界的微小干扰消除后物体仍不能恢复原来的平衡状态,则称该平衡是不稳定。
如图11.1所示,小球在凹弧面中的平衡是稳定的,因为虚箭头所示的干扰(如微小的力或位移)消除后,小球会回到其原来的平衡位置;反之,小球在凸弧面上的平衡,受到干扰后将不能回复,故其平衡是不稳定的。
上述小球是作为未完全约束的刚体讨论的。
对于受到完全约束的变形体,平衡状态也有稳定与不稳定的问题。
如二端铰支的受压直杆,如图11.2(a )所示。
当杆受到水平方向的微小扰动(力或位移)时,杆的轴线将偏离铅垂位置而发生微小的弯曲,如图11.2(b)所示。
若轴向压力F 较小,横向的微小扰动消除后,杆的轴线可恢复原来的铅垂平衡位置,即图11.2(a ),平衡是稳定的;若轴向压力F 足够大,即使(a ) 稳定平衡 图11.1 稳定平衡与不稳定平衡微小扰动已消除,在力F 作用下,杆轴线的弯曲挠度也仍将越来越大,如图11.2(c)所示,直至完全丧失承载能力。
在F =F cr 的临界状态下,压杆不能恢复原来的铅垂平衡位置,扰动引起的微小弯曲也不继续增大,保持微弯状态的平衡,如图11.2(b)所示,这是不稳定的平衡。
如前所述,直杆在轴向载荷作用下发生的弯曲称为屈曲,发生了屈曲就意味着构件失去稳定(失稳)。
一、单选题1、压杆一般分为三种类型,它们是按压杆的()。
A.惯性半径分B.杆长分C.柔度分D.杆端约束情况分正确答案:C2、细长压杆,若其长度系数增加一倍,则()。
A.Pcr增加一倍B.Pcr增加到原来的4倍C.Pcr为原来的二分之一倍D.Pcr为原来的四分之一倍正确答案:D3、下列结论中正确的是()。
①若压杆中的实际应力不大于该压杆的临界应力,则杆件不会失稳;②受压杆件的破坏均由失稳引起;③压杆临界应力的大小可以反映压杆稳定性的好坏;④若压杆中的实际应力大于scr=πE2/λ2,则压杆必定破坏。
A.①+②B.②+④C.①+③D.②+③正确答案:C4、压杆临界力的大小()。
A.与压杆所承受的轴向压力大小有关B.与压杆的柔度大小有关C.与压杆材料无关D.与压杆的柔度大小无关正确答案:B5、两端铰支的圆截面压杆,若λp=100,则压杆的长度与横截面直径之比l/d在时,才能应用欧拉公式()。
A.25B.50C.400D.200正确答案:A6、若两根细长压杆的惯性半径i相等,当()相同时,它们的柔度相等。
①杆长;②约束类型;③弹性模量;④外部载荷A.①+②B.①+②+③C.①+②+④D.①+②+③+④正确答案:A7、a、b两根都是大柔度杆,材料、杆长和横截面形状大小都相同,杆端约束不同。
其中a为两端铰支,b为一端固定,一端自由。
那么两杆临界力之比应为()。
A.4B.1/4C.2D.1/2正确答案:A8、提高水稻抗倒伏性能的可能措施包括()。
A.选用茎秆强壮品种B.选用节间较短的矮秆品种C.使用植物生长调节剂,以调控节间长度与株高等D.以上都是正确答案:D9、圆形压杆和矩形压杆在稳定性校核时有何区别()。
A.圆形压杆不需要考虑失稳方向性,而矩形压杆需要考虑B.圆形压杆需要考虑失稳方向性,而矩形压杆不需要考虑C.两者都不需要考虑D.两者都需要考虑正确答案:A10、压杆合理设计措施包括:①合理选用材料;②合理选择截面;③合理安排压杆约束与杆长()。
11-1 两端为铰支座的细长压杆,如图所示,弹性模量E=200GPa,试计算其临界荷载。
(1)圆形截面,25,1d l==mm m;(2)矩形截面2400,1h b l===m m;(3)16号工字钢,2l=ml解:三根压杆均为两端铰支的细长压杆,故采用欧拉公式计算其临界力:(1)圆形截面,25,1d l==mm m:2292220.025200106437.81crEIPlπππ⨯⨯⨯⨯===N kN (2)矩形截面2400,1h b l===m m当压杆在不同平面约束相同即长度系数相同均为1μ=时,矩形截面总是绕垂直短边的轴先失稳20.040.02min(,)12y z yI I I I⨯===,故:2292220.040.02200101252.71crEIPlππ⨯⨯⨯⨯===N kN (3)16号工字钢,2l=m查表知:4493.1,1130y zI I==cm cm,当压杆在不同平面约束相同即长度系数相同均为1μ=时4min(,)93.1y z yI I I I===cm,故:2298222001093.110459.42crEIPlππ-⨯⨯⨯⨯===N kN 11-3 有一根30mm×50mm的矩形截面压杆,一端固定,另一端铰支,试问压杆多长时可以用欧拉公式计算临界荷载已知材料的弹性模量E=200GPa,比例极限σP=200MPa。
解:(1)计算压杆能采用欧拉公式所对应的Pλ2299.35P PPEπσλλ=→===(2)矩形截面压杆总是绕垂直于短边的轴先失稳,当其柔度大于Pλ可采用欧拉公式计算临界力。
故0.780.83 1.2290.0399.35x Pyzl ll liμλλ⋅===>>=→mm,即 1.229l >mm 为细长杆,可采用欧拉公式计算临界力。
11-6 某钢材的比例极限230P σ=MPa ,屈服极限274s σ=MPa ,弹性模量E=200GPa ,331 1.09cr σλ=-。
试求P s λλ和,并绘制临界应力总图(0150λ≤≤)。
解:(1)计算此钢材的判别柔度①将230P σ=MPa 代入欧拉公式22Eπσλ=可以计算此钢材细长压杆的判别柔度P λ:92.64P λ===②由经验公式331 1.09cr σλ=-知:此钢材的331, 1.09a b ==MPa MPa ,将274s σ=MPa 代入中柔度杆的公式可以此钢材中柔度杆的判别柔度s λ:33127452.291.09s s a b σλ--=== (2)绘制临界应力总图如图:52.29σ(MPa)cr11-7 b=40mm,h=60mm 的矩形截面压杆如图所示,在在平面内,两端铰支,出平面内两端固定。
材料为Q 235钢,其弹性模量210E G =Pa ,比例极限σP =200MPa 。
试求(1)压杆的临界荷载P cr ,(2)若[]3st n =,压杆所承受的最大轴向压力为多大(3)从稳定性考虑b/h 为何值时最佳习题11-7图解:(1)计算柔度:①当压杆在在平面内xoy 内失稳,为z 中性轴。
1 2.4138.560.060xy xy zli μλ⋅⨯=== ②当压杆在出平面内xoz 内失稳,为y 中性轴。
0.5 2.4103.920.04xz xz yli μλ⋅⨯===③λ越大,压杆越容易失稳,故此压杆将在在平面内先失稳。
max(,)138.56xz xy λλλ==④计算压杆能采用欧拉公式所对应的P λ22101.8P P P E πσλλ=→===⑤101.8138.56P λ=<,故采用欧拉公式计算P cr222362(2101010)(0.0600.040)259.10138.56cr cr E P A Aπσλπ=⋅=⋅⨯⨯⨯=⨯⨯=N kN(2) 由压杆稳定条件求压杆所承受的最大轴向压力[P ]若[]3st n =,[][]259.1086.373cr cr w w w P P n n P P n =≥→≤==kN (3)求稳定性最佳的b/h当压杆在不同方向的柔度相等时,才不会在某平面内先失稳。
故b1 2.41 2.40.5 2.40.50.5 2.4xyxyzxzxzylhibh b hlbiμλμλ⋅⎧⨯==⎪⎪⨯⨯⎪→=→=⎨⋅⨯⎪==⎪⎪⎩补充1 图示边长为a的正方形铰接结构,各杆的E、I、A均相同,且为细长杆。
试求达到临界状态时相应的力P等于多少若力改为相反方向,其值又应为多少F BC F N N BCN CD解:(1)各杆的临界力222..222cr BDcrEI EIPPa aππ===外(2)求各杆的轴力与P的关系。
由对称性可知,外围的四个杆轴力相同,NAB NBC NCD NDAF F F F===。
研究C、B结点,设各杆都是受拉的二力杆,则与结点相联系的杆施与背离结点指向杆内的拉力,C、B结点受力如图所示。
第一种情况:C:)02450x NCB NCBF P F cos F=→--=→=∑压杆B:()02450Y NBD NBC NBD NBCF F F cos F P=→--=→==∑拉杆令22,.22==NCB cr CB crEI EIF P P Pa aπ===↔外第二种情况:)NCBF=拉杆()-NBD NBCF P==压杆22.22-==22NBD NBC cr BDEI EIF P P Pa aππ===↔补充2 图示矩形截面松木柱,其两端约束情况为:在纸平面内失稳时,可视为两端固定;在出平面内失稳时,可视为上端自由下端固定。
试求该木柱的临界力.解:(1)计算柔度:①当压杆在在平面内xoz 内失稳,y 为中性轴。
0.57101.04xz xz yli μλ⋅⨯===②当压杆在出平面内xoy 内失稳,z 为中性轴。
27242.490.200xy xy zli μλ⋅⨯===③λ越大,压杆越容易失稳,故此压杆将在在平面内先失稳。
max(.)242.49xz xy λλλ==(2)松木75242.49P λ=<,故采用欧拉公式计算P cr222112(0.110)(0.1200.200)40.28242.49cr cr EP A Aπσλπ=⋅=⋅⨯⨯=⨯⨯=N kN补充3 图示压杆,材料为Q235钢,横截面有四种形式,其面积均为23102.3mm ⨯,试计算其临界力.解:(1)矩形:①计算柔度:23632 3.210103.2100.04b b --=⨯⨯=⨯→=0.530.53129.90.04xz xz ylb i μλ⋅⨯⨯==== 129.9>123=xz P λλ=矩形截面压杆属于细长压杆,采用欧拉公式计算其临界力 ②计算其临界力22113222103,210N 374.34kN 129.9cr E P A ππλ-⨯⨯=⋅=⨯⨯= (2)正方形截面:①计算柔度:23633.210103.2100.057a a --=⨯⨯=⨯→=0.530.5391.860.057xz xz ylb i μλ⋅⨯⨯==== 06091.86<123=xz P λλλ=<=正方形截面压杆属于中柔度杆,采用经验公式计算其临界力 ②采用直线经验公式计算其临界力63()(304 1.1291.86)10 3.210N 643.57kN cr cr P A a b A σλ-=⋅=-⋅=-⨯⨯⨯⨯=(3)圆形截面: ①计算柔度:23633.21010 3.2100.0644d d π--=⨯⨯=⨯→=0.530.5394.000.06444xz xz yld i μλ⋅⨯⨯==== 0=6094<123xz P λλλ<==圆形截面压杆属于中柔度杆,采用经验公式计算其临界力②采用直线经验公式计算其临界力63()(304 1.1294)10 3.210N 635.9kN cr cr P A a b A σλ-=⋅=-⋅=-⨯⨯⨯⨯=(3)圆环形截面: ①计算柔度:2222363(1)(10.7) 3.21010 3.2100.0894m 44D D D ππα---=-=⨯⨯=⨯→=0.530.5354.990.0894xz xz ylD i μλ⋅⨯⨯====054.99<60=xz λλ=圆环形截面压杆属于粗短杆,临界应力为屈服极限 ②计算其临界力()()6323510 3.210N 752kN cr cr s P A A σσ-=⋅=⋅=⨯⨯⨯=补充4 图示结构中,横梁AB 由14号工字钢制成,材料许用应力[]160MPa σ=,CD 杆为Q235轧制钢管,2636d D ==mm,mm 。
其弹性模量210E G =Pa 。
若[] 1.5st n =,试对结构进行强度与稳定校核。
F N 图(kN )M 图(kN m )+2412-解:(1)求反力:取ABC 杆为研究对象,受力如图所示。
()0sin 45122033.941kN ANDCNDC m FF =→-+⨯=→==∑F(2)内力分析:ABC 杆的AC 段发生拉弯组合变形,CB 段发生弯曲;CD 杆为轴向压缩杆件。
内力图如图所示。
(3)对压杆进行稳定性校核。
①求压杆的柔度127.39liμλ===②求压杆临界力对于Q 235钢材料为100P λ=,127.39>100P λλ==,采用欧拉公式计算压杆临界应力2292221010Pa 127.72MPa 127.39cr E ππσλ⨯⨯===③校核压杆的稳定性[][]666322127.7210127.7210 1.83 1.526/69.701033.9410/{0.036[1()]}436cr cr w w w w NDC n n n F A σσπσ⨯⨯=≥→===≥=⨯⨯⨯⨯-故,压杆的稳定性足够。
(4)对梁ABC 进行强度计算梁的C 的左截面为拉弯组合变形的危险面,其上距中性轴最远的上边缘点位危险点。
查表可知14号工字钢的2321.516cm,102cm z A W ==。
则梁的最大拉应力为:33max max4624101210Pa 11.154117.647MPa 128.8MPa 21.5161010210N z F M A W σ--⨯⨯=+=+=+=⨯⨯ 故,ABC 梁的的强度足够。