x射线小角散射和衍射区别
- 格式:docx
- 大小:12.97 KB
- 文档页数:1
一、什么是X射线小角散射一种区别于X射线大角(2θ从5 ~165 )衍射的结构分析方法。
利用X射线照射样品,相应的散射角2θ小(5 ~7 ),即为X射线小角散射。
二、X射线小角散射的用途用于分析特大晶胞物质的结构分析以及测定粒度在几十个纳米以下超细粉末粒子(或固体物质中的超细空穴)的大小、形状及分布。
对于高分子材料,可测量高分子粒子或空隙大小和形状、共混的高聚物相结构分析、长周期、支链度、分子链长度的分析及玻璃化转变温度的测量。
三、X射线小角散射的原理小角散射效益来自物质内部1~l00nm量级范围内电子密度的起伏,当一束极细的x射线穿过一超细粉末层时,经粉末颗粒内电子的散射,X射线在原光束附近的极小角域内分散开来,其散射强度分布与粉末粒度及分布密切相关。
20世纪初,伦琴发现了比可见光波长小的辐射。
由于对该射线性质一无所知,伦琴将其命名为X射线(X-ray)。
到20世纪30年代,人们以固态纤维和胶态粉末为研究物质发现了小角度X射线散射现象。
当X射线照射到试样上时,如果试样内部存在纳米尺度的电子密度不均匀区,则会在入射光束周围的小角度范围内(一般2=<6º)出现散射X射线,这种现象称为X射线小角散射或小角X 射线散射(Small Angle X-ray Scattering),简写为SAXS 。
其物理实质在于散射体和周围介质的电子云密度的差异。
SAXS已成为研究亚微米级固态或液态结构的有力工具。
横坐标是散射峰的位置,纵坐标是散射峰的强度,这一点与XRD是类似的。
纵坐标的绝对数值没有意义,只是表示相对的强度。
而对于横坐标,XRD的位置通常用角度ө或2ө标示,而SAXS的位置是用q 标示的,q一般叫做散射矢量或者散射因子,q与ө有简单的换算关系q = 4πsinө/λ。
在SAXS中由于ө的数值变化范围很小,所以用q标示更方便。
在XRD中,衍射峰对应的ө可以换算出对应的晶面间距,实际上就是样品中一定范围内的周期性长度。
X射线普通衍射和小角度衍射有何区别概述小角度X射线衍射和普通X射线衍射,这是X射线衍射的两个应用方向。
它们的英文名称分别是Small Angle X-ray Scattering (SAXS,X射线小角度衍射)和Wide Angle X-ray Scattering (WAXS,X射线广角衍射)。
无论中子衍射、电子衍射还是X 射线衍射,其原理都能用布拉格定律来解释,具体的应用场合则因为入射射线的本质和被检测样品的本质不同而有所区别。
从布拉格方程:2dsinq=nl我们可以看到这里有三个变量:入射线经过样品时的光程差D(对于一般晶体材料,主要由面间距d决定;对于胶体颗粒,主要由颗粒电子密度起伏决定);入射角度q和入射射线的波长l。
电子衍射和普通X射线衍射的区别在于入射线本质不同;普通X射线衍射和小角度X射线衍射在于样品对光程差的贡献不同。
2. X射线衍射与电子衍射要区分小角度X射线衍射和普通X射线衍射,我们可以先考察X射线衍射和电子衍射的区别。
用厄瓦尔德倒易球描述的二者的衍射机理如图1所示。
图1a表明电子波长特别小使得倒易球截得的倒易点阵为二维阵列,而所有参与衍射的晶面与电子束的夹角基本都在2°以内,或者说基本平行。
例如金的晶胞参数为a=0.4078nm,200KV下的电子波长为0.00251nm,计算得金密排面(111)的衍射角q=0.205°。
图1b表明X射线波长与晶体的晶胞尺寸相当,一个衍射角度一般只能激发一个晶面的衍射。
为了让所有晶面参与衍射,就必须让倒易球和倒易点阵相互旋转,从而获得大角度范围的衍射谱图。
3. SAXS与WAXS现在固定X射线波长不变,均为CuKa=0.154nm,设想如果被检测的样品不是粉晶样品,也不是大块单晶(例如单晶衬底和金属),而是晶胞巨大的无机化合物、高分子乃至生物分子这样的具有胶体尺度的样品,常规X射线衍射能获得怎样的谱图和分析出怎样的结论呢?胶体尺度的样品具有如下两个性质:一是统计上各向同性,二是长程无序。
第十四章 聚合物材料掠入射 x 射线衍射§14.1 引言1923 年 Compton 首先报道了当 X 射线以很小角度入射到具有理想光滑平整表面的样品上时, 可以出现全反射(亦称镜面反射)现象. 入射 X 射线在样品上产生全反射的条件是掠入射角 (Grazing incidence angle) c i αα≤ (c α临界角). 由于照射到样品上的入射角 i α 很小, 几乎与样品表面平行, 因此人们也将 X 射线全反射实验称为掠入射衍射(GID)实验. 当 X 射线以临界角 c α 入射到样品上时, 射线穿透样品深度仅为纳米级, 可以测定样品表面的结构信息; 由于常规的 X 射线衍射入射到样品表面的角度较大, 大部分射线透射到样品中的深度也较大, 是 Bragg 反射, 而表面或近表面的 X 射线衍射强度则很弱, 不能给出样品表面或近表面结构信息.随着科学技术的飞跃发展,对构成器件厚度为纳米级的聚合物薄膜已得到广泛的应用.例如, 在微电子器件中经常可见到多层聚合物薄膜的应用, 为了使用性能的要求, 这种多层薄膜不管它们的每层特性是否相同,彼此都必须有很好的粘合性;在医学上将聚合物材料植入人体中,有一点必须保证,那就是被植入人体中的聚合物材料表面一定要与人体中的血液相匹配;聚合物作为抗氧化,抗腐,抗磨的涂膜,在半导体装置的器件中已被广泛采用;有机多层复合膜用于生物传感器以及制作巨磁阻的磁性薄膜等等. 总之,在当今的生活中软物质薄膜已起到越耒越重要的作用. 因此,在原子, 分子水平上对这类薄膜的表面行为和界面行为的表征是极其重要的. 在此基础上, 对其结构和成型条件进行调控,以提高它们的性能和使用范围已日益显得重要.在过去30 多年中,由于表面散射理论的发展,先进实验及检测装置的开发和大功率辐射源的启用,使得应用 X 射线散射方法研究薄膜及界面的特性有了长足的进步. X 射线方法由于制样简单,测试后样品一般不被破坏且所得信息可靠,精确;同时被测样品从晶体到非晶体,可以是固体也可以是液体. 故 X 射线方法在单层和多层薄膜结构分析中是最被广泛应用的工具. 目前,对各种液体,聚合物,玻璃和固体表面,甚至是复合薄膜材料的表面和界面结构都可以从原子尺度到几十纳米尺度上获得可靠而精确的表征.将 X 射线全反射与高分辨电子显微镜(HREM),原子力显微镜(AFM),扫描隧道显微镜 (STM),变角光谱椭圆仪(VASE)等相结合,用于探求表面和界面在实空间和倒易空间的结构信息,大大推动了材料表面科学的发展.§ 14.2 掠入射衍射几何分类及其特点§ 14.2.1 掠入射衍射几何分类掠射衍射几何分类主要有下述三种(图14.1):1. 共面极端非对称衍射(EAD)(图14.1(a))这种掠射衍射的几何特点是衍射面与样品表面之间构成近Bragg 角,入射 X 射线与出射 X 射线同样品表面之间都形成掠射角,衍射线与入射线及样品表面法线共面.2. 共面掠入射衍射(GID) (图14.1(b))此时掠入射衍射面与样品表面垂直, 且也是入射 X 射线与出射 X 射线同样品表面之间都形成掠射角,衍射线与入射线及样品表面法线共面.3. 非共面掠射 Bragg-Laue 衍射(GBL)(图14.1(c))这种条件下的掠射衍射几何,实际上是上述两种掠射几何的联合.它含有与样品表面法线倾斜成很小角度的原子平面的衍射,因此倒易矢量 s 与样品表面形成很小角度; 也可以是通过掠入射角度或掠出射角度微小改变形成的掠射 X 射线非对称衍射. 入射线,反射线和衍射线不共面,但均与样品表面间有很小夹角且反射面与样品表面几近垂直.图 14.1 掠入射和出射 X 射线衍射几何(a) EAD X 射线衍射几何(b) GID X 射线衍射几何(c) GBL X 射线衍射几何图中, s f i k k k ,,分别为入射波矢,镜面反射波矢,衍射波矢;s是相对于 Bragg 平面的倒易矢量.ϕααα,,,s f i 分别是 s f i k k k ,,s 与表面间夹角;B θ 为 Bragg 角.§ 14.2.2 掠入射衍射特点1. 在掠射衍射几何中,Bragg 衍射与全反射同时发生,它可以探测沿样品表面或界面内原子尺度的结构变化. 在 GBL 几何条件下,动量的传输是沿样品表面或界面进行;在 EAD 几何条件下,沿样品表面的动量传输也比较大.2. 全反射现象造成 Bragg 衍射偏离倒易点阵,产生临界掠射角 c α,反射强度的极大值位于临界掠射角 c α 附近.3. 当掠入射角 i α 稍大于 c α 时, 改变入射角可以探测样品表面内部由几纳米到几十纳米不同深度的结构,适宜研究表面,界面和外延生长膜的结构.4. 可以探测多层膜的层数、厚度和表面粗糙度等.§ 14.3 掠入射 X 射线衍射仪及实验方法简介§ 14.3.1 掠入射 X 射线衍射仪掠入射 X 射线衍射实验装置与通常 X 射线衍射实验设备的不同之处在于,它采用掠入射角进行样品表面的 X 射线衍射测量. 掠入射 X 射线衍射实验装置必需具有高的分辨率 (±0.0010) 和良好的准直系统. Philips 公司和 Bruker 公司等都有已商品化的掠入射 X 射线衍射实验装置. 图 14.2 是日本 Rigaku 公司生产的 ATX-G 型掠入射 X 射线衍射仪. ATX-G 带有全反射面内 (XZ 平面)三轴,18 KW 旋转阳极靶,多层镜与 4 晶单色器的高分辨及高准直系统. 在保证掠射条件下,探测器可在 1/4 球面范围内扫描. 该仪器上可采用其它测量方式进行薄膜的数据采集..图 14.2 ATX-G 掠入射 X 射线衍射仪图 14.3 是掠入射 X 射线衍射仪光学系统. 它是一种典型的全反射测量 X 射线仪.由高功率旋转阳极靶产生的辐射首先经过第一狭缝准直;根据对单色化和入射 X 射线强度的不同要求,单色器可采用石墨晶体,Si 单晶,Ge 单晶或切割晶体. 一般采用切割 Ge 晶体,并选用多层镜使射线经过多次反射以提高分辩能力;单色化后的射线再通过第二狭缝进一步准直,整个准直过程可通过计算机自动完成. 样品则被置于可控制入射角(i α)和出射角 (f α) 的 X 射线测角仪上. 为降低背底散射和出射 X 射线束的发散度,在探测器前放有狭缝 3 和狭缝 4.图 14.3 掠入射 X 射线衍射仪光学系统§ 14.3.2 掠入射 X 射线衍射实验方法简介在做掠入射 X 射线衍射实验时,为了提高测量厚度 d ,粗糙度 σ 的精确性,将样品置于带有高分辩测角仪的竖直样品架上(图14.4); 样品表面的倾斜可通过转动 R X 和R Y , 以达到样品表面法线与 Z 轴平行且使样品中心正好处于 χ 旋转轴与 ω 旋转轴交点上. 之后再调节样品位置使其与入射 X 射线对准,这一过程是通过反覆调节 Z 方向和转动 ω (或 θ)角位置,直到样品位置处于入射 X 射线束中心. 样品在这个位置时,仅有一半的入射 X 射线强度被检测到. 然后将探测器的 2θ 角设置在合宜的位置,再进一步调节 Z 方向和 ω,χ 角位置,直到探测器能测得其最大强度时,实验前样品位置的调节方为完成. 然后可按设定的采样条件进行测试记录.薄膜样品的制备方法有多种,如 LB 膜、电沉积和溶胶 - 凝胶法等;一般常用的方法是: 将已被事先溶好的待测试样的溶液,滴在 Si 或SiO 2 单晶衬底上,采用高速旋转涂膜法,制得不同厚度的样品.图 14.4 测角仪示意图图14.5是不同厚度的乙丙共聚物(PEP)薄膜 X 射线镜面反射强度与 Z 方向波矢关系曲线. 图中,)sin (sin ,,f i z f z k k k q z i αα+=-=图 14.5 不同厚度 PEP 反射强度与 q z 关系曲线§ 14.4 掠入射 X 射线衍射基本原理§ 14.4.1 掠入射 X 射线衍射全反射设具有平面波特征的电磁场,在点 r 处的电场强度为 )exp()(0r k i E r E i ⋅=. 该电场强度在介质中的传播特性可按 Helmholtz 方程表示:022=+)()()(r E r n k r E ∆ (14.1)这里,λπ2==k k ,k 是波矢;λ 是辐射线波长;n(r) 是位于 r 处的折射率, 对于均匀介质 n(r) 是与位置无关的常数.如果具有谐波振动的介质在单位体积内含有 N 个原子,谐振频率为 i ω,则 n(r) 为: ∑=--+=N i i i i i f m e N r n 12202221)(ωηωωε (14.2)式中,ω 是入射电磁波频率;e 和 m 分别为电子的电荷和质量;i η 为阻尼因子;i f 为每个原子的电子强迫振动强度, 通常为复数. 对 X 射线, ω>i ω,则式 (14.2) 可简化为:)()()(r i r r n βδ--=1 (14.3) 式中,∑='+=N i i i i A e E f Z A r N r r 12))(()(2)(ρπλδ (14.4) ∑=''=N i i i A e E f A r N r r 12)()(2)(ρπλβ (14.5))(r δ与色散有关;)(r β与吸收有关. 必须指出,除了少数材料(例如PE)在 X 射线吸收边缘外,一般材料的色散项 )(r δ 大于零;N A 为 Avogadro 常数;λ 为 X 射线波长; )(r i ρ 是位于 r 处, 原子量为 A i ,原子序数为 Z i 的第 i 个组分的电子密度;经典电子半径 r e (或称 Thomson 电子散射长) 的数值为: r e =2024mc e πε=2.814⨯10-5(Å);f ' 和 f '' 是实的(色散项)和虚的(吸收项)反常因子.理论计算表明,吸收项 β 值一般要比色散项 δ 值小 2 ~ 3 个数量级;故在计算 折射率 n(r) 时,常把 β(r) 值略去,即式 (14.3) 成为:n(r)=1-δ(r) (14.6)但应当注意,对那些原子序数大的原子,β 的作用不可忽略;同时,随着 X 射线辐射波长的增加,X 射线与样品间的作用也增加,β 的作用亦不可忽略. 在这两种情况下,不论样品的化学结构如何,折射率 n(r) 成为复数.在掠入射条件下, X 射线由光密介质 (n 1) 入射到光疏介质 (n 2) 时,由于入射角 i α和出射角 f α 都很小,故波矢差i f K K q -=也非常小(图14.6). 当介质为均匀且介质波长远离 X 射线吸收边时,折射率可化为:图14.6 位于 XZ 平面内的电磁波在掠入射角为 i α 条件下,入射波矢 K i ,反射波矢 K f 和折射波矢 K t (图中 t α 为折射角) πλμπρλ4212i r n e --= (14.7)根据光学中的 Snell 定律,由图14.6可知:n 1cos i α=n 2cos t α (14.8)式中,n 1,n 2 是介质 1,2 的折射率. 由于真空或空气的 n 1=1,所以式 (14.8) 化为:cos t α=cos i α/n 2 (14.9) 式(14.9)表明,由光密介质进入到光疏介质中,若 n 2>1,由式(14.6)知,δ<0,则t α>i α, 此时对任何入射角 i α 的值,都有 t α 与之对应. 反之,如果 n 2<1,即 δ>0,则 t α<i α,由此可以看出,当 i α 小到某一值时,t α0→,则 cos t α=1. 把 t α=0 时对应的 i α 角度称为临界角并以 c α 表示. 上述结果说明,只有在 i α>c α 时,t α>0,有折射发生;当i α≤c α 时没有折射出现,称为全反射(或称镜面反射). 当然,由于吸收作用将有很小的反射损失. 在全反射下,X 射线不能深入到介质中. 全反射是研究薄膜表面结构的重要方法,它在研究表面和界面结构,吸附,相变,粗糙度中都得到了广泛地应用. 当入射 X 射线同样品表面夹角在 c α 附近时,伴随的 Bragg 衍射,其散射线的穿透深度仅为几纳米,可以测定样品表面原子排列,称为二维 X 射线散射.由式(14.9)可知,如果t α=0,此时的i α即为t α,则 cos c α=cos i α= n 2=1-δ,所以:c α=πρλδe r =2 (14.10)式(14.10)表明,临界角 c α 与 X 射线波长和介质的电子密度有关. 当介质一定时,c α∝λ.λ 越大,c α 也越大. 表14.1列出了部分材料的某些相关参数值.表 14.1 部分材料的 c ,,αμδρ和e r 值材料 )10(210-cm r e ρ )10(6-δ )(1-cm μ )/( c α真空 0 0 0 0PS(C 8H 8)n 9.5 3.5 4 0.153PMMA(C 5H 8Cl)n 10.6 4.0 7 0.162PVC(C 2H 3Cl)n 12.1 4.6 86 0.174PBrS(C 8H 7Br)n 13.2 5.0 97 0.181Quartz(SiO 2) 18.0-19.7 6.8-7.4 85 0.21-0.22Silicon(Si) 20.0 7.6 141 0.223Nickel(Ni) 72.6 27.4 407 0.424 Gold(Au) 131.5 49.6 4170 0.570表 14.1表明,c α 值很小,通常为一度的十分之几. 对 X 射线而言,δ的量级为 ~ 10-6,可见折射率 n 稍小于 1.当将通用的 PE 样品置于空气中时,由于它的 δ<0,所以它没有 c α 值,不存在全反射现象.上述讨论中,应用 X 射线研究聚合物薄膜时,入射线的偏振不是主要的,因此偏振效应不予考虑. 对一些小分子材料,由于这些材料具有较高的取向或具有一定的磁矩,在这种情况下,X 射线入射线的偏振不能忽略.§ 14.4.2 反射系数和透射系数设仅考虑具有平整光滑的真空/介质单层界面(图14.6).介质 1 (真空)中平面电磁波强度为 )exp()0,,0()(r k i A r E i i ⋅=,以波矢 )sin ,0,(cos i i i k k αα-= ,临界角为 c α 入射到具有折射率为 βδi n --=1 的介质 2 的表面上,在这一条件下产生的反射波强度为 )ex p()0,,0()(r k i B r E f f ⋅=,其中波矢 )sin ,0,(cos i i f k k αα= ;透射波强度为)exp()0,,0()(r k i C r E t t ⋅=,其中波矢 ),,(,,z t x t t k k k 0= . x t k ,,z t k , 可以根据折射定律确定.假定垂直于 XZ 平面在 Y 方向的电磁波呈线性偏振 (S-偏振),在 Z=0 平面上电磁场的切向分量是连续的, 则反射系数和透射系数分别为: r s =B/A ,t s =C/A. 由 Fresnel 公式有: z t z i zt z i s k k k k r ,,,,+-= (14.11)z t z i zi s k k k t ,,,2+= (14.12)由图14.6可知,i z i k k αsin ,=,t z t nk k αsin ,=,再由式 (14.9),经过简单运算可得, 2122,)cos (i z t n k k α-=,把上述 z i k ,,z t k , 代入式 (14.11) 和式 (14.12),略去高阶小量,则有:21221222)(sin sin )(sin sin δααδαα-+--=i i i i s r (14.13) 212)2(sin sin sin 2δααα-+=i i is t (14.14)同理,位于 XZ 平面内,垂直于 Y 方向的电磁波偏振是线性的 (P-偏振),则其反射系数和透射系数分别为:zt z i zt z i p k k n k k n r ,,2,,2+-= (14.15) z t z i zi p k k n k t ,,2,2+=(14.16)亦即,212212)2(sin sin )21()2(sin sin )21(δααδδααδ-+----=i i i i p r (14.17)2122212)(sin sin )(sin δααδα-+-=i i ip t (14.18)将式 (14.11) 和式 (14.12) 同式 (14.15) 和式 (14.16) 比较可知,X 射线在掠射情况下,n →1,所以 r p =r s , t p =t s . 本文仅考虑 S-偏振现象.反射波的强度,即 Fresnel 反射率定义为: R f =2r .当 i α 较小时,可以得到 R f 为:R f =22212221)()(p p p p i i +++-αα (14.19)其中,P 1 和P 2 分别为折射角 21ip p t +=α 的实部和虚部:[])()(22222221421c i c i p ααβαα-++-= [])(4)(2122222222c i c i p ααβαα--+-=图 14.7 给出了 Fresnel 反射率 R f 与c i αα关系曲线.图14.7 在不同的 δβ 值下反射率 R f 与 c i αα 关系曲线 (图中采用CuK αX 射线,Si/真空界面, δ=7.56610-⨯,c α=0.220) 图14.7表明,对不同的δβ 值,当固定 δ 时,吸收作用仅在临界角 c α 附近(c i αα→1),才有明显的作用;当 i α>c α 时, R f 值迅速下降. 由式 (14.19) 可知,当 i α>3c α 时,R f 可以简化为:R f ≈42)(ic αα (14.20)材料的反射率是重要的物理参数,由式 (14.19) 和式 (14.20) 可知,通过改变入射 X 射线波长或改变入射角 i α,这两种方法均可测得材料的 R f 值. 同时亦可知道,当 i α 很大时,R f ∝4-i α,这表明 R f 4i α→ 常值,与第十二章所述 Porod 定律相比可知,由于i α∝k i ,因此对于明锐的相界面,在较大 k 值下,小角散射强度 I(S)∝k –4.实际上,由于界面存在粗糙度,并非理想光滑,反射率 R f 随 i α 增大,其下降速度比 4-i α 关系更快些.图14.8是 Fresnel 透射率 T f =2t~ ciαα关系曲线. 从图中可以看出, 当i α≈c α时,对不同的δβ值下,T f 达到最大值. 同 β=0 (无吸收)情况相比,随着吸收 (β)增加,T f 值稍偏向小 c α 方法移动. 这是因为反射波和透射波的干涉造成了透射波振幅增加所致. 当 i α 较大时,T f →1, 此时入射波较容易的进入到介质中. 在i α~ c α 处,瞬逝波(波在 Z 方向的传播按指数衰减进行,透射到样品表面下的深度极小,X 射线衍射强度急剧衰减)的最大透射强度可用下述近似式计算:T f =cαβ214+(14.21)图 14.8 不同的 δβ 值下透射率 T f 与 c i αα 关系曲线(图中采用CuK α X 射线,Si/真空界面,δ=7.56610-⨯,c α=0.220,小图为 ciαα~ 1 情况)§ 14.4.3 X 射线穿透深度通常,由于吸收效应,入射 X 射线波在进入到样品中后,会不断衰减,将入射 X 射线强度衰减为原来强度的 1/e 时,X 射线达到的深度,定义为穿透深度. 由式(14.19)知,具有复数形式的折射角为: 21ip p t +=α,在介质表面下 (Z ≤0),电场强度 t E的数值为:[])exp()(exp 21,kzp kzp x k i C E E x i t t -==(14.22)当i α≤c α时,p 2 很大,由式 (14.22) 可知,电场强度 E t 急速下降,波的传播按指数衰减进行 (又称瞬逝波),此波波矢与介质表面几乎平行,其穿透深度 Λ 为:[]2122222242---+-=)()(c i c i ααβααπλΛ (14.23)式 (14.23) 说明,穿透深度 Λ 随掠入射角 i α 改变,因此测定不同深度的结构,可以通过调整 i α 来达到. 当 i α→0 时,ρππαλΛe c r 4120==(14.24) 可见此时穿透深度 0Λ 与 λ 无关. 对大多数材料 0Λ ~ 5nm. 从 0Λ 值也进一步说明,当入射 X 射线角度很小时,散射主要发自于靠近样品表面. 利用这一性质可以探测材料的表面结构. 图14.9表明,当c iαα>1 时,此时 X 射线仅受材料的吸收影响,穿透深度迅速增加. 理论上当 β=0,即无吸收作用时,具有无限大的穿透深度 Λ.图 14.9 在不同的 δβ 值下穿透深度 Λ 与 ciαα 关系曲线(图中采用CuK αX 射线,Si/真空界面,δ=7.56610-⨯,c α=0.220)从式 (14.23) 可以导出,最大穿透深度 Λmax :Λmax =βλ4=μπ(14.25) 对大多数材料,在 i α=2π时,Λmax ~ 104-105Å.§ 14.5 多层膜系统§ 14.5.1 双层膜系统实用器件中常采用多层膜结构以达到特殊使用要求,因此对多层膜表面结构的研究比单一表面层结构研究更为重要. 对于多层膜结构所有各个界面的散射都必须计及. 图 14.10 是双界面结构衍射几何图.图 14.10 双层界面结构衍射几何图将处于真空(或空气)的薄膜样品(介质1)置于衬底(介质2)之上.由图14.10可知,如果以 r 0,1 表示真空与样品间的反射系数;以 r 1,2 表示样品与衬底间的反射系数;d 为样品厚度.在此条件下的反射系数为: )2exp(1)2exp(,12,11,0,12,11,0d ik r r d ik r r r z z s ++==)exp()exp()(,,,,,,,d ik r r d ik r r r z z 12110121021102121+-+(14.26)由此可进一步得到反射率 R 0,z 为:R(k 0,z )=[][])2exp(Re 21)2exp(Re 2,12,11,022,11,0,12,11,022,121,02d ik r rr r d ik r r r r r zz s ++++=(14.27)取其实部:R(k 0,z )=)cos()cos(,,,,,,,,,,d k r r r r d k r r r r z z 121102212101211022121022122++++ (14.28)作为例子,图 14.11(a) 是厚度为 50nm ,置于光滑平整 Si 单晶片上的氘化聚苯乙烯(d-PS) 理想薄膜,它的反射率 R 与波矢 k z 关系曲线. 由图中可以看出,在 k 0,z >k c (临界波矢)后,由于薄膜厚度引起的一系列很明显的振动波. 根据波的宽度 z k ,0∆ 可以求得样品的厚度,即 zk d ,0∆=π(cm). 图中 z k ,0∆=6.28310-⨯,所以,≈d 50nm.图 14.11(b) 则给出了 40z z k k R ,)( 与 z k ,0 的关系曲线. 由图中可以看出,全部振动波的 4,0)(z z k k R 的平均值对 z k ,0 是一常数(图中虚线所示). 进一步验证了 4,0)(z z k k R → 常数这一结论.图 14.11(a) 置于 Si 单晶衬底上 d-PS 的 R(k 0,z ) ~ k z 关系曲线图 14.11(b) 4,0)(zz k k R ~ z k 的关系曲线 § 14.5.2 多层膜系统对于具有 n 层薄膜样品,令第 n+1 层是半无限长衬底,最上层为真空(或空气),设第 j 层的折射率为 j j j i n βδ--=1,厚度为 d j (j=1,2,…n),掠入射角 i α,反射角为 f α (图 14.12). 在这种多层膜结构中,每个界面用一个变换矩阵表征,将代表 n 个界面的变换矩阵相乘,则可求出反射率. Parratt 给出了具有 n 个界面的 X 射线反射率递推公式:()112112121221++⎥⎦⎤⎢⎣⎡--=+++++++j j j j j j j j j i j j j r R r R d n i R ,,,,,cos exp αλπ (14.29)式中,1+j j r , 是 Fresnel 反射系数;2,1++j j R 是 1,+j j R 的下一层的反射率. 整个递推计算过程由衬底和第 n 层薄膜开始,逐渐一层一层往上推算,直到得到真空(或空气)/样品界面,图 14.12 多层膜掠入射几何获得 R 1,2 值为止. 应注意, 因为衬底为无限厚,故 R n ,n+1=0. 由 R R =22,1 给出样品表面总的反射强度.图 14.13 是置于 Si 单晶片上的厚度 d=80nm 的 PS 的计算结果. 整个计算中采用 λ=0.154nm ,i S δ=7.56610-⨯,401=Si Si δβ,PS δ= 3.5610-⨯,2001=PS PS δβ,由于最顶层是真空介质, 当入射角很小时, 其临界角 PS c ,α=PS δ2=0.150,Si c ,α=Si δ2=0.220.由图中可以看出,当掠入射角 Si c i ,αα> 时,反射率 R 按指数4)2(ic αα 迅速降低. 反射率 R 对2i α曲线中存在Bragg 衍射峰, 由 Bragg 衍射峰的位置可以确定多层膜的平均厚度.存在于 Bragg 衍射峰之间,宽度很窄的衰减振动条纹是真空/PS 和 PS/Si 单晶界面相互间干涉形成,称为 Kiessig 干涉条纹.由 Kiessig 干涉条纹的振动周期i α∆可以求得多层膜总的厚度, 即 ()i z 2/q /2d α∆λ≈∆π=,这里i z k q αsin 2=.图 14.13 反射率R ~ i α 振动条纹曲线 (PS/Si 界面)§ 14.6. 粗糙度前面所有对单层或多层膜的反射率,反射系数等的处理都视膜表面,衬底表面以及其间的界面为理想光滑平整,没有厚度起伏存在,界面是理想明锐的,即在数学上将由第 j 层到第 j+1 层的折射率 n j+1 作为常数. 然而,实际上表面和界面均存在厚度起伏,是粗糙的. 由于电子密度的连续改变,导致折射率也是连续的变化. 界面粗糙度分为两种:其一是几何粗糙度,本章仅讨论这种情况下的界面粗糙度;其二是由化学组成造成的界面粗糙度.表面(或界面)厚度起伏有两种情况,一种是表面(或界面)厚度起伏曲率与聚合物的相干长度 c l 相比较小,但从一个厚度的起伏到另一个厚度起伏,其平均长度比 c l 大;另一种情况恰好与上述情况相反,与聚合物相干长度 c l 相比,表面(或界面)存在较大曲率的厚度起伏(图14.14),在 c l 的长度上可出现几个厚度起伏. 很明显,对于上述两种具有不同厚度起伏的表面(或界面),表面(或界面)上密度的变化亦不同. 对第一种情况(a) (b)图 14.14 具有厚度起伏曲率较小的波浪形表面(a)具有厚度起伏曲率较大的粗糙表面(b)下,表面(或界面)各点的入射角 i α 不同,正如图 14.14(a) 所示. 由于表面存在较小的曲率,尽管如此, 1α,2α 也是不同的,但均在其平均i α值附近摆动. 这种条件下(粗糙度变化不明显)的表面对入射线造成的影响,类似于入射线照射到平板上的发散效应 (图14.14(a)下方). 表面法线方向密度改变是急剧的,存在不连续。
小角x射线衍射缩写是SAXD,小角x射线散射的缩写是SAXS,二者的原理还是有很大的区别的。
衍射对应的是周期性结构引起的相干,而散射对应的是电子密度的波动。
小角X射线衍射:
X-射线照射到晶体上发生相干散射(存在位相关系)的物理现象叫衍射,即使发生在低角度也是衍射。
例如,某相的d值为31.5A,相应衍射角为2.80°(Cu-Kα),如果该相有很高的结晶度,31.5A峰还是十分尖锐的。
薄膜也能产生取决于薄膜厚度与薄膜微观结构的、集中在小角范围内的X射线衍射。
在这些情况下,样品的小角X射线散射强度主要来自样品的衍射,称之为小角X射线衍射。
对这类样品,人们关心的是其最大的d值或者是薄膜厚度与结构,必须研究其小角X 射线衍射。
小角衍射,一般应用于测定超大晶面间距或薄膜厚度以及薄膜的微观周期结构、周期排列的孔分布等问题;
小角X射线散射:
X-射线照射到超细粉末颗粒(粒径小于几百埃,不管其是晶体还是非晶体)也会发生相干散射现象,也发生在低角度区。
但是在实验方法、由微细颗粒产生的相干散射图的特征与上述的由超大晶面间距或薄膜产生的小角X射线衍射图的特征完全不同。
这就是小角X射线散射。
小角散射则是应用于测定超细粉体或疏松多孔材料孔分布的有关性质。
小角散射得到的结构信息有两类,一个是微颗粒信息,一个是长周期信息。
与原子尺度和小分子晶体点阵相比较,可以认为这些是结构的“大尺度”信息。
因此小角散射方法主要有这两方面的应用:一个是测量微颗粒形状、大小及其分布,另一个是测量样品长周期,并通过衍射强度分析,进行有关的结构分析。