量子力学-曾谨言-第五版-第1章序言-知识点
- 格式:pdf
- 大小:720.66 KB
- 文档页数:22
量⼦⼒学讲义1第⼀章绪论前⾔⼀、量⼦⼒学的研究对象量⼦⼒学是现代物理学的理论基础之⼀,是研究微观粒⼦运动规律的科学。
量⼦⼒学的建⽴使⼈们对物质世界的认识从宏观层次跨进了微观层次。
综观量⼦⼒学发展史可谓是群星璀璨、光彩纷呈。
它不仅极⼤地推动了原⼦物理、原⼦核物理、光学、固体材料、化学等科学理论的发展,还引发了⼈们在哲学意义上的思考。
⼆、量⼦⼒学在物理学中的地位按照研究对象的尺⼨,物理学可分为宏观物理、微观物理和介观物理三⼤领域。
量⼦理论不仅可以正确解释微观、介观领域的物理现象,⽽且也可以正确解释宏观领域的物理现象,因为经典物理是量⼦理论在宏观下的近似。
因此,量⼦理论揭⽰了各种尺度下物理世界的运动规律。
三、量⼦⼒学产⽣的基础旧量⼦论诞⽣于1900年,量⼦⼒学诞⽣于1925年。
1.经典理论⼗九世纪末、⼆⼗世纪初,经典物理学已经发展到了相当完善的阶段,但在⼀些问题上经典物理学遇到了许多克服不了的困难,如⿊体辐射等。
2.旧量⼦论旧量⼦论= 经典理论+ 特殊假设(与经典理论⽭盾)旧量⼦论没有摆脱经典的束缚,⽆法从本质上揭露微观世界的规律,有很⼤局限性。
但旧量⼦论为量⼦⼒学理论的建⽴提供了线索,促进了量⼦⼒学的快速诞⽣。
四、量⼦⼒学的研究内容1.三个重要概念:波函数,算符,薛定格⽅程。
2.五个基本假设:波函数假设,算符假设,展开假定,薛定格⽅程,全同性原理。
五、量⼦⼒学的特征1.抛弃了经典的决定论思想,引⼊了概率波。
⼒学量可以不连续地取值,且不确定。
2.只有改变观念,才能真正认识到量⼦⼒学的本质。
它是⼈们的认识从决定论到概率论的⼀次巨⼤的飞跃。
六、量⼦⼒学的应⽤前景1.深⼊到诸多领域:本世纪的三⼤热门科学(⽣命科学、信息科学和材料科学)的深⼊发展都离不开它。
2.派⽣出了许多新的学科:量⼦场论、量⼦电动⼒学、量⼦电⼦学、量⼦光学、量⼦通信、量⼦化学等。
3.前沿应⽤:研制量⼦计算机已成为科学⼯作者的⽬标之⼀,⼈们期望它可以实现⼤规模的并⾏计算,并具有经典计算机⽆法⽐拟的处理信息的功能。
第一章 波函数与Schr ödinger 方程§1、波函数及其统计解释(Wave-function and its statistical interpretation)一、德布罗意的“物质波”假说1、德布罗意的“物质波”假说(De Broglie matter-waves in 1923) 先回忆普朗克的“光量子”假说:E h p h νλ=⎧⎨=⎩, 重新换写一下:E ω= 2ωπν=是圆频率p k = k 是波矢量,2k πλ=是由波动性决定粒子性。
德布罗意假说:微观粒子也有波动性,满足关系式:称之为德布罗意关系,是由粒子性决定波动性。
对于具有确定的能量E 和动量p 的自由粒子,其对应的物质波是一个单色的平面波: 平面波是()(),exp r t A i k r t ψω⎡⎤=⋅-⎣⎦,将德布罗意关系E p kω=⎧⎪⎨=⎪⎩)。
因此,由德布罗意假设知,微观粒子的运动状态可用波函数表示。
物质波(matter wave):与粒子运动相联系的平面波称为物质波或德布罗意波。
而一般可计算得到: 物质微粒的波长1010-<Å,氧原子0.4≈Å、DNA 分子410-≈Å、电子波长1≈Å。
只有当物质波的波长大于或等于光学仪器的特征尺度时,才会观察到干涉或衍射现象。
通常物质微粒的质量和动量较大,因而德布罗意波长非常短超出了可测的范围而不显示波动性,仅在原子尺度下才能显示出波动性。
德布罗意波长(De Broglie wave-length)的计算: [例1] 求做热运动的气体分子的德布罗意波长。
[解] 温度为T 的气体分子热运动动能为32B E k T =,当o 300K T =(室温)时,分子的动能约为0.039eV,相应的物质波波长为h p λ==对于氧分子(2O ),282o p 32329.3810eV m m ≈=⨯⨯,波长0.026nm λ≈,远小于分子的平均自由程,所以分子的热运动可作经典力学处理。
第一章 量子力学的历史渊源§1.1 Planck 的能量子假说 经典物理学的成就到19世纪末,已经建立了完整的经典物理学理论:(1)、以牛顿三大定律和万有引力定律为基础的经典力学(从天空到地上的各种尺度力学物体的机械运动),(2)、以麦克斯韦方程组和洛仑兹力公式表述的电磁场理论(光的波动理论、电磁现象的规律);(3)、热学以热力学三大定律为基础的宏观理论和统计物理所描述的微观理论(大量微观粒子的热现象等)。
这些理论能令人满意地解释当时所常见的物理现象,让当时绝大多数的物理学家相信物理学基本理论已经完成,剩下的工作在需要在细节上作一些补充和修正。
经典物理学所遇到的问题(1)、黑体辐射现象,(2)、光电效应;(3)、原子的光谱线系;(4)、原子的稳定性;(5)、固体的低温比热。
一、黑体辐射的微粒性 1、黑体辐射的几个物理量黑体:所有落到(或照射到)某物体上的辐射完全被吸收,则称该物体为黑体。
辐射本领:单位时间内从辐射体表面的单位面积上发射出的辐射能量的频率分布,用(,)E T ν表示。
所以在t ∆时间,从面积S ∆上发射出频率在ννν-+∆范围内的能量表示为: (,)E T t S νν∆∆∆因此,(,)E T ν的量纲为:22=1×⨯能量焦耳米秒米秒。
可以证明:((,)v T ρ的单位为3⋅焦耳秒米)。
吸收率:照到物体上的辐射能量分布被吸收的份额, 用(,)A T ν表示。
G. Kirchhoff (基尔霍夫)证明:对任何一个物体,辐射本领(,)E v T 与吸收率(,)A T ν之比是一个普适的函数,即(f 与组成物体的物质无关)。
对于黑体的吸收率(,)1A v T =, 故其辐射本领(,)(,)E T f T νν=(等于普适函数与物质无关)。
所以只要黑体辐射本领研究清楚了,就把普适函数(对物质而言)弄清楚了。
辐射本领也可以用(,)E T λ描述, 由于单位时间内从辐射体表面的单位面积上发射出的辐射能量可写为:(,)(,)E v T dv E T d λλ∞∞=⎰⎰由于c νλ=知2cd d νλλ=-代入上式得:02(,)(,)cE v T d E T d λλλλ∞∞-=⎰⎰322(,)(,) (,)(,) ( )E v T E T E T E v T ccλνλλ⋅⇒==焦耳米秒或2、黑体的辐射本领黑体辐射的空间能量密度按波长(或频率)的分布只与温度有关。
第一章量子力学的诞生1.1设质量为m 的粒子在一维无限深势阱中运动,⎩⎨⎧<<><∞=a x ax x x V 0,0,0,)(试用de Broglie 的驻波条件,求粒子能量的可能取值。
解:据驻波条件,有 ),3,2,1(2=⋅=n n a λn a /2=∴λ (1)又据de Broglie 关系λ/h p = (2)而能量(),3,2,12422/2/2222222222==⋅===n ma n a m n h m m p E πλ (3)1.2设粒子限制在长、宽、高分别为c b a ,,的箱内运动,试用量子化条件求粒子能量的可能取值。
解:除了与箱壁碰撞外,粒子在箱内作自由运动。
假设粒子与箱壁碰撞不引起内部激发,则碰撞为弹性碰撞。
动量大小不改变,仅方向反向。
选箱的长、宽、高三个方向为z y x ,,轴方向,把粒子沿z y x ,,轴三个方向的运动分开处理。
利用量子化条件,对于x 方向,有()⎰==⋅ ,3,2,1,x x xn hn dx p即 h n a p x x =⋅2 (a 2:一来一回为一个周期)a h n p x x 2/=∴,同理可得, b h n p y y 2/=, c h n p z z 2/=,,3,2,1,,=z y x n n n粒子能量⎪⎪⎭⎫ ⎝⎛++=++=222222222222)(21c n b n a n m p p p m E z y x z y x n n n zy x π ,3,2,1,,=z y x n n n1.3设质量为m 的粒子在谐振子势2221)(x m x V ω=中运动,用量子化条件求粒子能量E 的可能取值。
提示:利用 )]([2,,2,1,x V E m p n nh x d p -===⋅⎰)(x V解:能量为E 的粒子在谐振子势中的活动范围为 a x ≤ (1) 其中a 由下式决定:2221)(x m x V E a x ω===。
《量子力学》考试知识点第一章:绪论―经典物理学的困难考核知识点:(一)、经典物理学困难的实例(二)、微观粒子波-粒二象性考核要求:(一)、经典物理困难的实例1.识记:紫外灾难、能量子、光电效应、康普顿效应。
2.领会:微观粒子的波-粒二象性、德布罗意波。
第二章:波函数和薛定谔方程考核知识点:(一)、波函数及波函数的统计解释(二)、含时薛定谔方程(三)、不含时薛定谔方程考核要求:(一)、波函数及波函数的统计解释1.识记:波函数、波函数的自然条件、自由粒子平面波2.领会:微观粒子状态的描述、Born几率解释、几率波、态叠加原理(二)、含时薛定谔方程1.领会:薛定谔方程的建立、几率流密度,粒子数守恒定理2.简明应用:量子力学的初值问题(三)、不含时薛定谔方程1. 领会:定态、定态性质2.简明应用:定态薛定谔方程3.fdfgfdgdfg第三章:一维定态问题一、考核知识点:(一)、一维定态的一般性质(二)、实例二、考核要求:1.领会:一维定态问题的一般性质、束缚态、波函数的连续性条件、反射系数、透射系数、完全透射、势垒贯穿、共振2.简明应用:定态薛定谔方程的求解、无限深方势阱、线性谐振子第四章量子力学中的力学量一、考核知识点:(一)、表示力学量算符的性质(二)、厄密算符的本征值和本征函数(三)、连续谱本征函数“归一化”(四)、算符的共同本征函数(五)、力学量的平均值随时间的变化二、考核要求:(一)、表示力学量算符的性质1.识记:算符、力学量算符、对易关系2.领会:算符的运算规则、算符的厄密共厄、厄密算符、厄密算符的性质、基本力学量算符的对易关系(二)、厄密算符的本征值和本征函数1.识记:本征方程、本征值、本征函数、正交归一完备性2.领会:厄密算符的本征值和本征函数性质、坐标算符和动量算符的本征值问题、力学量可取值及测量几率、几率振幅。
(三)、连续谱本征函数“归一化”1.领会:连续谱的归一化、箱归一化、本征函数的封闭性关系(四)、力学量的平均值随时间的变化1.识记:好量子数、能量-时间测不准关系2.简明应用:力学量平均值随时间变化第五章态和力学量的表象一、考核知识点:(一)、表象变换,幺正变换(二)、平均值,本征方程和Schrodinger equation的矩阵形式(三)、量子态的不同描述二、考核要求:(一)、表象变换,幺正变换1.领会:幺正变换及其性质2.简明应用:表象变换(二)、平均值,本征方程和Schrodinger equation的矩阵形式1.简明应用:平均值、本征方程和Schrodinger equation的矩阵形式2.综合应用:利用算符矩阵表示求本征值和本征函数(三)、量子态的不同描述第六章:微扰理论一、考核知识点:(一)、定态微扰论(二)、变分法(三)、量子跃迁二、考核要求:(一)、定态微扰论1.识记:微扰2.领会:微扰论的思想3.简明应用:简并态能级的一级,二级修正及零级近似波函数4.综合应用:非简并定态能级的一级,二级修正、波函数的一级修正。
教材P25 ~27:1、2、3、4(1)、7 1.解:(a)证明能量平均值公式()[]()⎰⎰⎰⎰⎰⎰∞∞∞∞∞⋅ψ∇ψ-⎪⎪⎭⎫ ⎝⎛ψψ+ψ∇⋅ψ∇=⎭⎬⎫⎩⎨⎧ψψ+ψ∇⋅ψ∇-ψ∇ψ⋅∇-=⎭⎬⎫⎩⎨⎧ψψ+ψ∇ψ-=ψ⎪⎪⎭⎫ ⎝⎛+∇-ψ=sd r r m r r V r r r m r d r r V r r r r r m r d r r V r r r m r d r r V m r r d E)()(2)()()()()(2)()()()()()()(2)()()()()(2)()(2)(*2**23***23*2*2322*3粒子在势场中运动的波函数平方可积()0)()(2*2=⋅ψ∇ψ⎰⎰∞s d r r m因此)()()()()()(23**23r w r d r r V r r r m r d E⎰⎰∞∞=⎪⎪⎭⎫ ⎝⎛ψψ+ψ∇⋅ψ∇= 其中能量密度为)()()()()(2)(**2r r V r r r mr wψψ+ψ∇⋅ψ∇=(b)证明能量守恒公式S tr i t r t r i t r S r H t r r H t r S tr r V r r r V t r r t r r t r r t r r t r m tr r V r V t r t r r r t r m t w⋅-∇=∂ψ∂∂ψ∂-∂ψ∂∂ψ∂+⋅-∇=ψ∂ψ∂+ψ∂ψ∂+⋅-∇=∂ψ∂ψ+ψ∂ψ∂+⎭⎬⎫⎩⎨⎧⎪⎪⎭⎫ ⎝⎛ψ∇∂ψ∂+ψ∇∂ψ∂-⎪⎪⎭⎫ ⎝⎛ψ∇∂ψ∂+ψ∇∂ψ∂⋅∇=∂ψ∂ψ+ψ∂ψ∂+⎭⎬⎫⎩⎨⎧∂ψ∂∇⋅ψ∇+ψ∇⋅∂ψ∂∇=∂∂)()()()()(ˆ)()(ˆ)()()()()()()()()()()()()()()(2)()()()()()()()(2*******22***2****2即0=⋅∇+∂∂S tw这表明能量守恒,其中能流密度为⎪⎪⎭⎫ ⎝⎛ψ∇∂ψ∂+ψ∇∂ψ∂-=)()()()(2**2r t r r t r mS2.解:(a)证明概率不守恒{}{}()()⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+⋅∇-∇-=+∇-∇⋅∇-=+∇-∇-=-=⎭⎬⎫⎩⎨⎧∂∂+∂∂==τττττττττψψψψψψψψψψψψψψψψψψψψψψψψψψψψρ2*3**2*3**32*3*22*3***3**3*33222222)ˆ(ˆ1)(V r dS d imV r dr d im V r dr d im H H r d i t t r d r d dtdr r d dt dS⎰⎰⎰⎰⎰ψψ+⋅∇-=ψψ+⋅-=τττ2*332*322V r dj r d V r d S d j S⎰=τρ)(3r r d dtd⎰⎰+⋅∇-ττψψ2*332V r dj r d即022*≠ψψ=⋅∇+∂∂V j tρ这表明概率不守恒。