数值分析习题第四章
- 格式:doc
- 大小:220.00 KB
- 文档页数:7
数值分析第四章习题第四章习题1. 采用数值计算方法,画出dt t t x y x ?=0sin )(在]10 ,0[区间曲线,并计算)5.4(y 。
〖答案〗1.65412. 求函数x e x f 3sin )(=的数值积分?=π 0 )(dx x f s ,并请采用符号计算尝试复算。
〖答案〗s = 5.1354Warning: Explicit integral could not be found. > In sym.int at 58s =int(exp(sin(x)^3),x = 0 .. pi)3. 用quad 求取dx x e x sin 7.15?--ππ的数值积分,并保证积分的绝对精度为910-。
〖答案〗1.087849437547794. 求函数5.08.12cos 5.1)5(sin )(206.02++-=t t t et t f t 在区间]5,5[-中的最小值点。
〖答案〗最小值点是-1.28498111480531 相应目标值是-0.186048010065455. 设0)0(,1)0(,1)(2)(3)(22===+-dt dy y t y dt t dy dt t y d ,用数值法和符号法求5.0)(=t t y 。
〖答案〗数值解y_05 = 0.78958020790127符号解ys =1/2-1/2*exp(2*t)+exp(t)ys_05 =.789580356470605529168507052137806. 求矩阵b Ax =的解,A 为3阶魔方阵,b 是)13(?的全1列向量。
〖答案〗x =0.06670.06670.06677. 求矩阵b Ax =的解,A 为4阶魔方阵,b 是)14(?的全1列向量。
〖答案〗解不唯一x =-0.0074 -0.0809 0.1397 0.0662 0.0588 0.1176 -0.0588。
习题41. 给定x x f =)(在144,121,100=x 3点处的值,试以这3点建立)(x f 的2次(抛物)插值公式,利用插值公式115求的近似值并估计误差。
再给13169=建立3次插值公式,给出相应的结果。
解:x x f =)( 2121)(-='x x f ,2341)(--=''x x f ,2583)(-='''x x f ,27)4(1615)(--=x x f,72380529.10)115(=f1000=x , 1211=x , 1442=x , 1693=x 100=y , 111=y , 122=y , 133=y))(())(())(())(())(())(()(1202102210120*********x x x x x x x x y x x x x x x x x y x x x x x x x x y x L ----+----+----= )121144)(100144()121115)(100115(12)144121)(100121()144115)(100115(11)144100)(121100()144115)(121115(10)115(2----⨯+----⨯+----⨯=L=2344)6(1512)23(21)29(1511)44)(21()29)(6(10⨯-⨯⨯+-⨯-⨯⨯+----⨯72276.1006719.190683.988312.1=-+=))()((!3)()()(2102x x x x x x f x L x f ---'''=-ξ ,144100<<ξ )44115()121115()100115()(max 61)115()115(1441002-⨯-⨯-⋅'''≤-≤≤x f L f x 296151083615⨯⨯⨯⨯⨯≤-001631.0101631.02=⨯=- 实际误差 22101045.0)115()115(-⨯=-L f))()(())()(())()(())()(()(312101320130201032103x x x x x x x x x x x x y x x x x x x x x x x x x y x L ------+------= ))()(())()(())()(())()((23130321033212023102x x x x x x x x x x x x y x x x x x x x x x x x x y ------+------+ )169100()144100()121100()169115()144115()121115(10)115(3-⨯-⨯--⨯-⨯-⨯=L )169121()144121()100121()169115()144115()100115(11-⨯-⨯--⨯-⨯-⨯+)169144()121144()100144()169115()121115()100115(12-⨯-⨯--⨯-⨯-⨯+)144169()121169()100169()144115()121115()100115(13-⨯-⨯--⨯-⨯-⨯+)48()23(21)54()29(1511)69()44()21()54()29()6(10-⨯-⨯-⨯-⨯⨯+-⨯-⨯--⨯-⨯-⨯= 254869)29()6(1513)25(2344)54()6(1512⨯⨯-⨯-⨯⨯+-⨯⨯-⨯-⨯⨯+ 723571.10409783.0305138.2145186.11473744.1=+-+= ))()()((!4)()()(3210)4(3x x x x x x x x f x L x f ----=-ξ,169100<<ξ)169115)(144115)(121115)(10115(101615241)115()115(73----⨯⨯⨯≤--L f )54()29()6(151016152417-⨯-⨯-⨯⨯⨯⨯=- 0005505.0105505.03=⨯=-实际误差 321023429.0)115()115(-⨯=-L f 2. 设j x 为互异节点),,1,0(n j =求证: (1)k nj j k j x x l x =∑=)(0),,1,0(n k =;(2)0)()(0=-∑=x l x x j knj j ),,1(n k =。
第一章 绪论(12) 第二章 插值法(40-42)2、当2,1,1-=x 时,4,3,0)(-=x f ,求)(x f 的二次插值多项式。
[解]372365)1(34)23(21)12)(12()1)(1(4)21)(11()2)(1()3()21)(11()2)(1(0))(())(())(())(())(())(()(2221202102210120120102102-+=-++--=+-+-⨯+------⨯-+-+-+⨯=----+----+----=x x x x x x x x x x x x x x x x x x x y x x x x x x x x y x x x x x x x x y x L 。
3、给出x x f ln )(=的数值表用线性插值及二次插值计算54.0ln 的近似值。
X 0.4 0.5 0.6 0.7 0.8 x ln -0.916291 -0.693147 -0.510826 -0.357765 -0.223144[解]若取5.00=x ,6.01=x ,则693147.0)5.0()(00-===f x f y ,510826.0)6.0()(11-===f x f y ,则604752.182321.1)5.0(10826.5)6.0(93147.65.06.05.0510826.06.05.06.0693147.0)(010110101-=---=--⨯---⨯-=--+--=x x x x x x x x x y x x x x y x L ,从而6202186.0604752.19845334.0604752.154.082321.1)54.0(1-=-=-⨯=L 。
若取4.00=x ,5.01=x ,6.02=x ,则916291.0)4.0()(00-===f x f y ,693147.0)5.0()(11-===f x f y ,510826.0)6.0()(22-===f x f y ,则 217097.2068475.404115.2)2.09.0(5413.25)24.0(3147.69)3.01.1(81455.45)5.06.0)(4.06.0()5.0)(4.0()510826.0()6.05.0)(4.05.0()6.0)(4.0()693147.0()6.04.0)(5.04.0()6.0)(5.0(916291.0))(())(())(())(())(())(()(22221202102210120120102102-+-=+--+-⨯++-⨯-=----⨯-+----⨯-+----⨯-=----+----+----=x x x x x x x x x x x x x x x x x x x x x x y x x x x x x x x y x x x x x x x x y x L ,从而61531984.0217097.21969765.259519934.0217097.254.0068475.454.004115.2)54.0(22-=-+-=-⨯+⨯-=L补充题:1、令00=x ,11=x ,写出x e x y -=)(的一次插值多项式)(1x L ,并估计插值余项。
数值分析课程第五版课后习题答案(李庆扬等)数值分析课程第五版课后习题答案(李庆扬等)第一章:数值分析导论1. 解答:数值分析是一门研究如何使用计算机来解决数学问题的学科。
它包括了从数学理论到计算实现的一系列技术。
数值分析的目标是通过近似的方式求解数学问题,其结果可能不是完全精确的,但是能够满足工程或科学应用的要求。
2. 解答:数值分析在实际应用中起着重要的作用。
它可以用于求解复杂的数学方程、计算机模拟及建模、数据的统计分析等等。
数值分析是科学计算和工程计算的基础,对许多领域都有着广泛的应用,如物理学、经济学、生物学等。
3. 解答:数值方法指的是使用数值计算的方式来求解数学问题。
与解析方法相比,数值方法一般更加灵活和高效,可以处理一些复杂的数学问题。
数值方法主要包括了数值逼近、插值、数值积分、数值微分、线性方程组的求解、非线性方程的求根等。
4. 解答:计算误差是指数值计算结果与精确解之间的差异。
在数值计算中,由于计算机的有限精度以及数值计算方法本身的近似性等因素,都会导致计算误差的产生。
计算误差可以分为截断误差和舍入误差两种。
第二章:数值误差分析1. 解答:绝对误差是指实际值与精确值之间的差异。
例如,对于一个计算出的数值近似解x和精确解x_0,其绝对误差为| x - x_0 |。
绝对误差可以衡量数值近似解的精确程度,通常被用作评估数值计算方法的好坏。
2. 解答:相对误差是指绝对误差与精确解之间的比值。
对于一个计算出的数值近似解x和精确解x_0,其相对误差为| (x - x_0) / x_0 |。
相对误差可以衡量数值近似解相对于精确解的精确度,常用于评估数值计算方法的收敛速度。
3. 解答:舍入误差是由于计算机的有限精度而引起的误差。
计算机中使用的浮点数系统只能表示有限的小数位数,因此在进行数值计算过程中,舍入误差不可避免地会产生。
舍入误差会导致计算结果与精确结果之间存在差异。
4. 解答:误差限度是指对于给定的数值计算问题,所能容忍的误差范围。
应用数值分析【研究生课程】课后习题答案04章第四章习题解答1、 求下列矩阵的满秩分解。
121002123011,04111002514211A A ⎡⎤-⎡⎤⎢⎥-⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦-⎣⎦解:因为1A 的秩为2,可求出满秩分解为11110011001001121A B C ⎡⎤⎢⎥⎡⎤⎢⎥==⎢⎥⎢⎥-⎣⎦⎢⎥⎣⎦又因为2A 的秩为2,可求出满秩分解为22210212301041111A B C ⎡⎤-⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦2、 根据定义求下列矩阵的广义逆A +。
1210012011,24100211A A ⎡⎤⎢⎥-⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦⎢⎥-⎣⎦解:(1)先求出1A 的一个满秩分解。
因为1A 的秩为1,可求出满秩分解为[]1111122A B C ⎡⎤==⎢⎥⎣⎦于是有[]11111111111()12511()52T T T T B B B B C C C C +-+-==⎡⎤==⎢⎥⎣⎦最后得1111212524A C B +++⎡⎤==⎢⎥⎣⎦(2)先求出2A 的一个满秩分解。
因为2A 的秩为2,可求出满秩分解为22210011001001121A B C ⎡⎤⎢⎥⎡⎤⎢⎥==⎢⎥⎢⎥-⎣⎦⎢⎥⎣⎦于是有1222212222111114444()5131144441011()052102T TT T B B B B C C C C +-+-⎡⎤-⎢⎥==⎢⎥⎢⎥--⎢⎥⎣⎦⎡⎤⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦最后得222111144441311888813118888A C B +++⎡⎤-⎢⎥⎢⎥⎢⎥==--⎢⎥⎢⎥⎢⎥--⎢⎥⎣⎦3、 证明下述广义逆矩阵的性质,设,m nn m A R A R ⨯+⨯∈∈。
(1)()AA ++=;(2)2()AA AA ++=;(3)2()AA A A ++=。
证明:(1)因为由定义可得,,(),()T T A AA A AA A A A A A A AA AA ++++++++====故由广义逆的定义可知()A A ++=。
第一章 绪 论1. 设x >0,x 的相对误差为δ,求ln x 的误差.2. 设x 的相对误差为2%,求nx 的相对误差.3. 下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指出它们是几位有效数字:*****123451.1021,0.031,385.6,56.430,7 1.0.x x x x x =====⨯4. 利用公式(3.3)求下列各近似值的误差限:********12412324(),(),()/,i x x x ii x x x iii x x ++其中****1234,,,x x x x 均为第3题所给的数.5. 计算球体积要使相对误差限为1%,问度量半径R 时允许的相对误差限是多少?6. 设028,Y =按递推公式11783100n n Y Y -=-( n=1,2,…)计算到100Y .若取783≈27.982(五位有效数字),试问计算100Y 将有多大误差?7. 求方程25610x x -+=的两个根,使它至少具有四位有效数字(783≈27.982).8. 当N 充分大时,怎样求211Ndx x +∞+⎰?9. 正方形的边长大约为100㎝,应怎样测量才能使其面积误差不超过1㎝2?10. 设212S gt =假定g 是准确的,而对t 的测量有±0.1秒的误差,证明当t 增加时S 的绝对误差增加,而相对误差却减小. 11. 序列{}n y 满足递推关系1101n n y y -=-(n=1,2,…),若02 1.41y =≈(三位有效数字),计算到10y 时误差有多大?这个计算过程稳定吗?12. 计算6(21)f =-,取2 1.4≈,利用下列等式计算,哪一个得到的结果最好?36311,(322),,9970 2.(21)(322)--++13. 2()ln(1)f x x x =--,求f (30)的值.若开平方用六位函数表,问求对数时误差有多大?若改用另一等价公式22ln(1)ln(1)x x x x --=-++计算,求对数时误差有多大?14. 试用消元法解方程组{101012121010;2.x x x x +=+=假定只用三位数计算,问结果是否可靠?15. 已知三角形面积1sin ,2s ab c =其中c 为弧度,02c π<<,且测量a ,b ,c 的误差分别为,,.a b c ∆∆∆证明面积的误差s ∆满足.s a b cs a b c ∆∆∆∆≤++第二章 插值法1. 根据(2.2)定义的范德蒙行列式,令200011211121()(,,,,)11n n n n n n n n n x x x V x V x x x x x x x xx x ----==证明()n V x 是n 次多项式,它的根是01,,n x x - ,且101101()(,,,)()()n n n n V x V x x x x x x x ---=-- .2. 当x = 1 , -1 , 2 时, f (x)= 0 , -3 , 4 ,求f (x )的二次插值多项式.3. 给出f (x )=ln x 的数值表用线性插值及二次插值计算ln 0.54 的近似值.x 0.4 0.5 0.6 0.7 0.8 ln x -0.916291-0.693147-0.510826-0.357765-0.2231444. 给出cos x ,0°≤x ≤90°的函数表,步长h =1′=(1/60)°,若函数表具有5位有效数字,研究用线性插值求cos x 近似值时的总误差界.5. 设0k x x kh =+,k =0,1,2,3,求032max ()x x x l x ≤≤.6. 设jx 为互异节点(j =0,1,…,n ),求证:i) 0()(0,1,,);nk kj j j x l x x k n =≡=∑ii)()()1,2,,).nk jj j xx l x k n =-≡0(=∑7. 设[]2(),f x C a b ∈且()()0f a f b ==,求证21()()().8max max a x ba xb f x b a f x ≤≤≤≤≤-"8. 在44x -≤≤上给出()xf x e =的等距节点函数表,若用二次插值求xe 的近似值,要使截断误差不超过610-,问使用函数表的步长h 应取多少?9. 若2n n y =,求4n y ∆及4n y δ.10. 如果()f x 是m 次多项式,记()()()f x f x h f x ∆=+-,证明()f x 的k 阶差分()(0)kf x k m ∆≤≤是m k -次多项式,并且()0(m lf x l +∆=为正整数).11. 证明1()k k k k k k f g f g g f +∆=∆+∆.12. 证明110010.n n kkn n k k k k f gf g f g g f --+==∆=--∆∑∑13. 证明1200.n j n j y y y -=∆=∆-∆∑14. 若1011()n nn n f x a a x a x a x --=++++ 有n 个不同实根12,,,n x x x ,证明{10,02;, 1.1()n k njk n a k n j jx f x -≤≤-=-=='∑15. 证明n 阶均差有下列性质: i)若()()F x cf x =,则[][]0101,,,,,,n n F x x x cf x x x = ;ii) 若()()()F x f x g x =+,则[][][]010101,,,,,,,,,n n n F x x x f x x x g x x x =+ .16. 74()31f x x x x =+++,求0172,2,,2f ⎡⎤⎣⎦ 及0182,2,,2f ⎡⎤⎣⎦ . 17. 证明两点三次埃尔米特插值余项是(4)22311()()()()/4!,(,)k k k k R x f x x x x x x ++=ξ--ξ∈并由此求出分段三次埃尔米特插值的误差限.18. 求一个次数不高于4次的多项式()P x ,使它满足(0)(1)P P k =-+并由此求出分段三次埃尔米特插值的误差限.19. 试求出一个最高次数不高于4次的函数多项式()P x ,以便使它能够满足以下边界条件(0)(0)0P P ='=,(1)(1)1P P ='=,(2)1P =.20. 设[](),f x C a b ∈,把[],a b 分为n 等分,试构造一个台阶形的零次分段插值函数()n x ϕ并证明当n →∞时,()n x ϕ在[],a b 上一致收敛到()f x .21. 设2()1/(1)f x x =+,在55x -≤≤上取10n =,按等距节点求分段线性插值函数()h I x ,计算各节点间中点处的()h I x 与()f x 的值,并估计误差.22. 求2()f x x =在[],a b 上的分段线性插值函数()h I x ,并估计误差.23. 求4()f x x =在[],a b 上的分段埃尔米特插值,并估计误差. 24. 给定数据表如下:j x 0.25 0.30 0.39 0.45 0.53 j y0.50000.54770.62450.67080.7280试求三次样条插值()S x 并满足条件i) (0.25) 1.0000,(0.53)0.6868;S S '='= ii)(0.25)(0.53)0.S S "="=25. 若[]2(),f x C a b ∈,()S x 是三次样条函数,证明 i)[][][][]222()()()()2()()()bbbbaaaaf x dx S x dx f x S x dx S x f x S x dx"-"="-"+""-"⎰⎰⎰⎰;ii) 若()()(0,1,,)i i f x S x i n == ,式中i x 为插值节点,且01n a x x x b =<<<= ,则[][][]()()()()()()()()()baS x f x S x dx S b f b S b S a f a S a ""-"="'-'-"'-'⎰.26. 编出计算三次样条函数()S x 系数及其在插值节点中点的值的程序框图(()S x 可用(8.7)式的表达式).第三章 函数逼近与计算1. (a)利用区间变换推出区间为[],a b 的伯恩斯坦多项式.(b)对()sin f x x =在[]0,/2π上求1次和三次伯恩斯坦多项式并画出图形,并与相应的马克劳林级数部分和误差做比较. 2. 求证:(a)当()m f x M ≤≤时,(,)n m B f x M ≤≤. (b)当()f x x =时,(,)n B f x x =.3. 在次数不超过6的多项式中,求()sin 4f x x =在[]0,2π的最佳一致逼近多项式.4. 假设()f x 在[],a b 上连续,求()f x 的零次最佳一致逼近多项式.5. 选取常数a ,使301max x x ax≤≤-达到极小,又问这个解是否唯一?6. 求()sin f x x =在[]0,/2π上的最佳一次逼近多项式,并估计误差.7. 求()xf x e =在[]0,1上的最佳一次逼近多项式.8. 如何选取r ,使2()p x x r =+在[]1,1-上与零偏差最小?r 是否唯一? 9. 设43()31f x x x =+-,在[]0,1上求三次最佳逼近多项式.10. 令[]()(21),0,1n n T x T x x =-∈,求***0123(),(),(),()T x T x T x T x .11. 试证{}*()nTx 是在[]0,1上带权21x x ρ=-的正交多项式.12. 在[]1,1-上利用插值极小化求11()f x tg x -=的三次近似最佳逼近多项式.13. 设()x f x e =在[]1,1-上的插值极小化近似最佳逼近多项式为()n L x ,若nf L ∞-有界,证明对任何1n ≥,存在常数n α、n β,使11()()()()(11).n n n n n T x f x L x T x x ++α≤-≤β-≤≤14. 设在[]1,1-上234511315165()128243843840x x x x x x ϕ=-----,试将()x ϕ降低到3次多项式并估计误差. 15. 在[]1,1-上利用幂级数项数求()sin f x x =的3次逼近多项式,使误差不超过0.005.16. ()f x 是[],a a -上的连续奇(偶)函数,证明不管n 是奇数或偶数,()f x 的最佳逼近多项式*()n nF x H ∈也是奇(偶)函数.17. 求a 、b 使[]220sin ax b x dx π+-⎰为最小.并与1题及6题的一次逼近多项式误差作比较.18. ()f x 、[]1(),g x C a b ∈,定义 ()(,)()();()(,)()()()();b baaa f g f x g x dxb f g f x g x dx f a g a =''=''+⎰⎰问它们是否构成内积?19. 用许瓦兹不等式(4.5)估计6101x dx x +⎰的上界,并用积分中值定理估计同一积分的上下界,并比较其结果.20. 选择a ,使下列积分取得最小值:1122211(),x ax dx x ax dx----⎰⎰.21. 设空间{}{}10010121,,,span x span x x 1ϕ=ϕ=,分别在1ϕ、2ϕ上求出一个元素,使得其为[]20,1x C ∈的最佳平方逼近,并比较其结果.22. ()f x x =在[]1,1-上,求在{}2411,,span x x ϕ=上的最佳平方逼近.23.[]2sin (1)arccos ()1n n x u x x +=-是第二类切比雪夫多项式,证明它有递推关系()()()112n n n u x xu x u x +-=-.24. 将1()sin2f x x =在[]1,1-上按勒让德多项式及切比雪夫多项式展开,求三次最佳平方逼近多项式并画出误差图形,再计算均方误差.25. 把()arccos f x x =在[]1,1-上展成切比雪夫级数.26. 用最小二乘法求一个形如2y a bx =+的经验公式,使它与下列数据拟合,并求均方误差.i x 19 25 31 38 44 i y19.032.349.073.397.827. 观测物体的直线运动,得出以下数据:时间t (秒) 0 0.9 1.9 3.0 3.9 5.0 距离s (米) 010305080110求运动方程.28. 在某化学反应里,根据实验所得分解物的浓度与时间关系如下:时间 0 5 10 15 20 25 30 35 40 45 50 55 浓度0 1.272.162.863.443.874.154.374.514.584.624.64用最小二乘拟合求()y f t =.29. 编出用正交多项式做最小二乘拟合的程序框图. 30. 编出改进FFT 算法的程序框图. 31. 现给出一张记录{}{}4,3,2,1,0,1,2,3k x =,试用改进FFT 算法求出序列{}k x 的离散频谱{}k C (0,1,,7).k =第四章 数值积分与数值微分1. 确定下列求积公式中的待定参数,使其代数精度尽量高,并指明所构造出的求积公式所具有的代数精度: (1)101()()(0)()hh f x dx A f h A f A f h --≈-++⎰; (2)21012()()(0)()hh f x dx A f h A f A f h --≈-++⎰;(3)[]1121()(1)2()3()/3f x dx f f x f x -≈-++⎰;(4)[][]20()(0)()/1(0)()hf x dx h f f h ah f f h ≈++'-'⎰.2. 分别用梯形公式和辛普森公式计算下列积分:(1)120,84xdx n x =+⎰; (2)1210(1),10x e dx n x --=⎰;(3)91,4xdx n =⎰; (4)260sin ,6dx n π-ϕ=⎰.3. 直接验证柯特斯公式(2.4)具有5次代数精度.4. 用辛普森公式求积分1x e dx-⎰并计算误差.5. 推导下列三种矩形求积公式:(1)2()()()()()2ba f f x dxb a f a b a 'η=-+-⎰; (2)2()()()()()2baf f x dx b a f b b a 'η=---⎰;(3)3()()()()()224baa b f f x dx b a f b a +"η=-+-⎰.6. 证明梯形公式(2.9)和辛普森公式(2.11)当n →∞时收敛到积分()baf x dx⎰.7. 用复化梯形公式求积分()baf x dx⎰,问要将积分区间[],a b 分成多少等分,才能保证误差不超过ε(设不计舍入误差)?8. 用龙贝格方法计算积分12x e dxπ-⎰,要求误差不超过510-.9. 卫星轨道是一个椭圆,椭圆周长的计算公式是22201()sin cS a d a π=-θθ⎰,这里a 是椭圆的半长轴,c是地球中心与轨道中心(椭圆中心)的距离,记h 为近地点距离,H 为远地点距离,6371R =公里为地球半径,则(2)/2,()/2a R H h c H h =++=-.我国第一颗人造卫星近地点距离439h =公里,远地点距离2384H =公里,试求卫星轨道的周长.10. 证明等式3524sin3!5!n nn n ππππ=-+-试依据sin(/)(3,6,12)n n n π=的值,用外推算法求π的近似值.11. 用下列方法计算积分31dyy ⎰并比较结果.(1) 龙贝格方法;(2) 三点及五点高斯公式;(3) 将积分区间分为四等分,用复化两点高斯公式.12. 用三点公式和五点公式分别求21()(1)f x x =+在x =1.0,1.1和1.2处的导数值,并估计误差.()f x 的值由下表给出:x1.0 1.1 1.2 1.3 1.4 ()f x0.25000.22680.20660.18900.1736第五章 常微分方程数值解法1. 就初值问题0)0(,=+='y b ax y 分别导出尤拉方法和改进的尤拉方法的近似解的表达式,并与准确解bx ax y +=221相比较。
第四章 习题1.确定下列求积公式中的待定参数,使其代数精度尽量高,并指明所构造出的求积公式所具有的代数精度: (1)()()()()⎰--++-≈hhh f A f A h f A dx x f 110;(2)()()()()⎰--++-≈hh h f A f A h f A dx x f 221010;(3)()()()()[]3/3211121⎰-++-≈x f x f f dx x f ;(4)()()()[]()()[]h f f ah h f f h dx x f h'0'2/020+++≈⎰解:(1)求积公式中含有三个待定参数,即101A A A ,,-,将()21x x x f ,,=分别代入求积公式,并令其左右相等,得()()⎪⎪⎩⎪⎪⎨⎧=+=+-=++---3112111013202h A A h A A h h A A A 解得h A h A A 3431011===-,。
所求公式至少具有2次代数精度。
又由于()()()()4443333333h h h h dx x h h h h dx x h hhh⎰⎰--+-≠+-≈故()()()()⎰--++-≈hhh f A f A h f A dx x f 110具有三次代数精度。
(2)求积公式中含有三个待定系数:101A A A ,,-,故令公式对()21x x x f ,,=准确成立,得()()⎪⎪⎩⎪⎪⎨⎧=+=+-=++---31121110131604h A A h A A h h A A A ,解得h h h A h A h A A 34316424381011-=-=-===-,故()()()[]()0343822hf h f h f h dx x f hh -+-≈⎰- 因()⎰-=hhdx x f 220而()()[]03833=+-h h h 又[]445562243831652h h h h h dx x hh +=≠=⎰-所以求积公式只具有三次代数精度。
(3)求积公式中韩两个待定常数21x x 、,当令公式对()1=x f 准确成立时,得到()32131211++==⎰-dx 此等式不含有待定量21x x 、,无用,故需令公式对()2x x x f ,=准确成立,即()()⎪⎪⎩⎪⎪⎨⎧++==++-==⎰⎰--112221211213213132321310x x dx x x x xdx 得⎩⎨⎧=+=+132132222121x x x x 解上述方程组得⎩⎨⎧=-=68990.012660.012x x 或⎩⎨⎧-==28990.052660.012x x 故有()()()()[]12660.0368990.0213111-++-≈⎰-f f f dx x f 或()()()()[]52660.0328990.0213111f f f dx x f +-+-≈⎰- 将()3x x f =代入上已确定的求积公式中,[]323111332131x x dx x ++-≠⎰- 故求积公式具有2次代数精度。
(4)求积公式中只含有一个待定系数a ,当()x x f ,1=时,有 ()⎰++=401121hdx ()()⎰-++=421102ah h hxdx 故令()2x x f =时,求积公式精确成立,即()()⎰+⨯++=422420202h ah h h dx x 解得121=a故有()()()[]()()[]h f f h h f f h dx x f h'0'12022+++≈⎰将()3x x f =代入上述已确定的求积公式中,有[][]430120244223403h h h h h h dx x h=-++≈=⎰再另()4x x f =代入求积公式时有[][]3244034012024h h h h h dx x h-++≠=⎰故求积公式具有3次代数精度。
2.分别用梯形公式、Simpson 公式、Cotes 公式计算积分dx e x ⎰1,并估计各种方法的误差(要求小数点后至少要保留5位)。
解:运用梯形公式,[]8591409.121101=+≈⎰e e dx e x 其误差()()()⎪⎭⎫⎝⎛=-∈=≤--=⎰1408591.08591409.102265235.012101121103dx e e e f R x 实际误差为,,1ξξ运用Simpson 公式,7188612.1461121010=⎥⎦⎤⎢⎣⎡++≈⎰e e e dx e x其误差为()00094385.02880128801=≤-=e ef R ξ 运用Cotes 公式,718282688.1732123277011432141010=⎥⎦⎤⎢⎣⎡++++≈⎰e e e e e dx e x 其误差为()000001404.049452419451266=⨯≤⎪⎭⎫ ⎝⎛⨯-=ee f R ξ 3.推到下列三种矩形求积公式;()()()()()()()()()()()()()()22224''22'2'a b f b a f a b dx x f a b f b f a b dx x f a b f a f a b dx x f baba ba -+⎪⎭⎫ ⎝⎛+-≈---≈-+-≈⎰⎰⎰ηηη 解:将()a x x f =在出Taylor 展开,得()()()()[]x a a x f a f x f ,∈-+=ξξ,',两边在[]b a ,上积分,得()()()()()()()()()()()()()()()()[]b a a b f a f a b dxa x f a f ab dxa x f a f ab dxa x f dx a f dx x f bababab aba,,∈-+-=-+-=-+-=-+=⎰⎰⎰⎰⎰ηηηξξ2'21'''将()b x x f =在处Taylor 展开,得()()()()b x f b f x f -+=ξ',两边在[]b a ,上积分,得()()()()()()()()()()()()()()()()[]b a b b f a f a b dxb x f a f a b dxb x f b f a b dxb x f dx a f dx x f bababab aba,,∈-+-=-+-=-+-=-+=⎰⎰⎰⎰⎰ηηηηξ2'21'''将()2ba x f +在处Taylor 展开,得 ()()[]b a b a x f b a x b a f b a f x f ,,∈⎪⎭⎫ ⎝⎛+-+⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+=ξξ2''2122'2两边在[]b a ,上积分,得()()()()()()[]b a a b f b a f a b dxb a x f dx b a x b a f b a f a b dx x f b a b a ba,,∈-+⎪⎭⎫ ⎝⎛+-=⎪⎭⎫ ⎝⎛+-+⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+-=⎰⎰⎰ηηξ32''24122''2122'2 4.用下列方法计算积分⎰31ydy,并比较结果。
(1)Romberg 方法;(2)三点及五点Gauss 公式;(3)将积分区间分为四等分,用复化两点Gauss 公式。
解:(1)用Romberg 算法()()()[]()()()()()()⎪⎪⎪⎩⎪⎪⎪⎨⎧=-=-==⎥⎦⎤⎢⎣⎡--+-+=--=--+-=-∑-l m m l k T T T l a b i a f a b T T b f a f ab T m k m k m m k m i l l l l l ,,,;,,,,,,,, 211044212122212111121100001计算,计算结果如表4.1表4.1故⎰≈31098630.11dy y(2)用三点及五点Gauss-Legendre 求积公式,需先对求积区间[1,3]作如下变换,令()()22121+=-++=t t a b b a y 则当[]31,∈y 时,[]11,-∈t ,且dt dy =, ⎰⎰-+=1131211dt t dy y三点Gauss 公式098039283.100.218888889.07745967.021*******.021*******.02111131=+⨯+⎪⎭⎫⎝⎛-++≈+=⎰⎰-dtt dy y 五点Gauss 公式098609289.1215688889.05384693.021*******.021*******.09061798.021*******.021*******.02111131=⨯+⎪⎭⎫⎝⎛++-⨯+⎪⎭⎫ ⎝⎛++-⨯≈+=⎰⎰-dtt dy y (3)用复化的两点Gauss 求积公式计算,需将[1,3]四等分,则()()()()()()()()098537573.1]35.05.4135.05.4135.05.4135.05.4135.05.3135.05.3135.05.2135.05.21[215.05.5215.05.4215.05.3215.05.221111112/12/12/12/12/12/12/12/11111111135.25.2225.15.1131=⨯++-⨯++⨯++-⨯++⨯++-⨯++⨯++-⨯+≈+++++++=+++=------------⎰⎰⎰⎰⎰⎰⎰⎰⎰t dt t dt t dt t dt dty dt y dt y dt y dy y dy y I ⎰-=111的真值为098612289.1=I5.用三点公式和五点公式求()()211x x f +=在x =1.0,1.1和1.2处的导数值,并估计误差。
()x f 的值由表4.2给出。
解:三点求导公式为()()()()[]()()()()[]()()()()()[]()22210212201022100'''313421''''621''''34321'ξξξf h x f x f x f h x f f h x f x f h x f f h x f x f x f h x f ++-=-+-=+-+-= 上表中取2.11.11210===x x x ,,,分别将有关数值代入上三式,即可得导数的近似值,由于()()()75.02!41!4max'''max '''552.10.12.10.1==+-=≤≤≤≤≤x x f f x x i ξ 故可得误差及导数值如表4.3。