第二章 变形体的变形规律
- 格式:ppt
- 大小:1.81 MB
- 文档页数:71
工程力学中的应变分析与变形工程力学是研究物体在受力作用下的运动和变形规律的一门学科。
在工程力学中,应变分析与变形是一个十分重要的内容,它研究的是物体受力后产生的应变以及由此引起的变形现象。
本文将介绍工程力学中的应变分析方法和变形规律。
一、应变分析应变是描述物体变形程度的物理量,通常采用应变张量进行描述。
应变张量是一个二阶张量,表示物体各点上的应变状态,并由六个独立的应变分量组成。
在工程力学中,常用的应变分析方法包括线性应变分析和非线性应变分析。
1.1 线性应变分析线性应变分析是指在小应变范围内,物体的应变与受力之间存在线性关系的分析方法。
线性应变分析假设物体在受力作用下,材料的应变与受力成正比,比例系数为弹性模量。
通过测量物体在不同受力状态下的应变,可以计算出其弹性模量。
1.2 非线性应变分析非线性应变分析是指在大应变范围内,物体的应变与受力之间存在非线性关系的分析方法。
在非线性应变分析中,考虑了物体材料的非线性本性,可以更准确地描述物体的变形行为。
在实际工程中,非线性应变分析常用于研究高应变下的变形规律。
二、变形规律变形是指物体由原来的形状、尺寸和位置发生改变的现象。
在工程力学中,变形规律可以通过应变分析和应力分析得到。
通过研究物体的受力和应变状态,可以计算出物体的变形量和变形形态。
2.1 变形量变形量是指物体由于受力作用而发生的形态和尺寸的改变。
根据应变分析的结果,可以计算出物体各点上的位移和旋转量,从而得到物体的变形量。
常用的计算方法包括位移法、变形图法等。
2.2 变形形态变形形态是指物体经过受力作用后的形态和尺寸的变化规律。
通过应变分析的结果,可以绘制出物体的变形形态图,以直观地展示物体的变形规律。
变形形态图对于工程设计和结构分析具有重要的参考价值。
三、应变分析与变形规律的应用应变分析与变形规律在工程力学中具有广泛的应用。
在结构设计和工程施工中,应变分析可以用于评估物体受力后的变形情况,从而确定结构的稳定性和安全性。
第一章绪论一、教学目标和教学内容1、教学目标⑴了解材料力学的任务和研究内容;(2) 了解变形固体的基本假设;(3) 构件分类,知道材料力学主要研究等直杆;(4)具有截面法和应力、应变的概念。
2、教学内容(1) 构件的强度、刚度和稳定性概念,安全性和经济性,材料力学的任务;(2)变形固体的连续性、均匀性和各向同性假设,材料的弹性假设,小变形假设;(3)构件的形式,杆的概念,杆件变形的基本形式;(4)截面法,应力和应变。
二、重点与难点重点同教学内容,基本上无难点。
三、教学方式讲解,用多媒体显示工程图片资料,提出问题,引导学生思考,讨论。
四、建议学时1~2学时五、实施学时六、讲课提纲1、由结构与构件的工作条件引出构件的强度、刚度和稳定性问题。
强度:构件抵抗破坏的能力;刚度:构件抵抗变形的能力;稳定性:构件保持自身的平衡状态为。
2、安全性和经济性是一对矛盾,由此引出材料力学的任务。
3、引入变形固体基本假设的必要性和可能性连续性假设:材料连续地、不间断地充满了变形固体所占据的空间;均匀性假设:材料性质在变形固体内处处相同;各向同性假设:材料性质在各个方向都是相同的。
弹性假设:材料在弹性范围内工作。
所谓弹性,是指作用在构件上的荷载撤消后,构件的变形全部小时的这种性质;小变形假设:构件的变形与构件尺寸相比非常小。
4、构件分类杆,板与壳,块体。
它们的几何特征。
5、杆件变形的基本形式基本变形:轴向拉伸与压缩,剪切,扭转,弯曲。
各种基本变形的定义、特征。
几种基本变形的组合。
6、截面法,应力和应变截面法的定义和用法;为什么要引入应力,应力的定义,正应力,切应力;为什么要引入应变,应变的定义,正应变,切应变。
第二章轴向拉伸与压缩一、教学目标和教学内容1、教学目标⑴掌握轴向拉伸与压缩基本概念;⑵熟练掌握用截面法求轴向内力及内力图的绘制;⑶熟练掌握横截面上的应力计算方法,掌握斜截面上的应力计算方法;⑷具有胡克定律,弹性模量与泊松比的概念,能熟练地计算轴向拉压情况下杆的变形;⑸了解低碳钢和铸铁,作为两种典型的材料,在拉伸和压缩试验时的性质。
第二章 弹性力学基本理论及变分原理弹性力学是固体力学的一个分支。
它研究弹性体在外力或其他因素(如温度变化)作用下产生的应力、应变和位移,并为各种结构或其构件的强度、刚度和稳定性等的计算提供必要的理论基础和计算方法。
本章将介绍弹性力学的基本方程及有关的变分原理。
§2.1小位移变形弹性力学的基本方程和变分原理在结构数值分析中,经常用到弹性力学中的定解问题及与之等效的变分原理。
现将它们连同相应的矩阵形式的张量表达式综合引述于后,详细推导可参阅有关的书籍。
§2.1.1弹性力学的基本方程的矩阵形式弹性体在载荷作用下,体内任意一点的应力状态可由6个应力分量表示,它们的矩阵表示称为应力列阵或应力向量111213141516222324252633343536444546555666x x y y z z xy xy yz yz zx zx D D D D D D D D D D D D D D D D D D D D D σεσεσετγτγτγ⎧⎫⎡⎤⎧⎫⎪⎪⎢⎥⎪⎪⎪⎪⎢⎥⎪⎪⎪⎪⎢⎥⎪⎪⎪⎪⎪⎪=⎢⎥⎨⎬⎨⎬⎢⎥⎪⎪⎪⎪⎢⎥⎪⎪⎪⎪⎢⎥⎪⎪⎪⎪⎢⎥⎪⎪⎪⎪⎩⎭⎣⎦⎩⎭ (2.1.1) 弹性体在载荷作用下,将产生位移和变形,弹性体内任意一点位移可用3个位移分量表示,它们的矩阵形式为[]T u u v u v w w ⎧⎫⎪⎪==⎨⎬⎪⎪⎩⎭(2.1.2)弹性体内任意一点的应变,可由6个应变分量表示,应变的矩阵形式为x y Tz xy z xy yz zx xy yz zx εεεσεεεγγγγγγ⎧⎫⎪⎪⎪⎪⎪⎪⎪⎪⎡⎤==⎨⎬⎣⎦⎪⎪⎪⎪⎪⎪⎪⎪⎩⎭(2.1.3)对于三维问题,弹性力学的基本方程可写成如下形式 1 平衡方程0xy x zx x f x y z τστ∂∂∂+++=∂∂∂ 0xy y zy y f xyzτστ∂∂∂+++=∂∂∂0yz zx zz f x y zττσ∂∂∂+++=∂∂∂ x f 、y f 和z f 为单位体积的体积力在x 、y 、z 方向的分量。