圆的基本性质练习题
- 格式:doc
- 大小:143.00 KB
- 文档页数:3
小学五年级圆练习题圆是平面上所有与给定点(圆心)距离相等的点的集合。
这个距离称为半径。
下面是一些适合小学五年级学生的圆练习题:1. 圆的基本性质- 问题:什么是圆心,半径,直径?圆心和半径有什么关系?- 答案:圆心是圆的中心点,半径是从圆心到圆上任意一点的距离,直径是穿过圆心的最长弦,长度是半径的两倍。
2. 圆的周长- 问题:已知圆的半径是3厘米,求这个圆的周长。
- 答案:圆的周长公式是 \( C = 2\pi r \),其中 \( r \) 是半径。
将半径3厘米代入公式,得 \( C = 2 \times 3.14 \times 3 = 18.84 \) 厘米。
3. 圆的面积- 问题:如果圆的半径是4厘米,那么它的面积是多少?- 答案:圆的面积公式是 \( A = \pi r^2 \)。
将半径4厘米代入公式,得 \( A = 3.14 \times 4^2 = 50.24 \) 平方厘米。
4. 圆与正方形的比较- 问题:如果一个圆的直径和正方形的边长相等,都是10厘米,哪个图形的面积更大?- 答案:圆的面积是 \( 3.14 \times (10/2)^2 = 78.5 \) 平方厘米,正方形的面积是 \( 10 \times 10 = 100 \) 平方厘米。
所以正方形的面积更大。
5. 圆的切线- 问题:什么是圆的切线?圆的切线有哪些特点?- 答案:圆的切线是一条刚好接触到圆的直线,且只接触一点。
切线在接触点处的切线与半径垂直。
6. 圆的弧和扇形- 问题:什么是弧?什么是扇形?- 答案:弧是圆上任意两点之间的曲线部分。
扇形是圆心角和它所对的弧以及两条半径所围成的图形。
7. 圆的对称性- 问题:圆有哪些对称性?- 答案:圆是轴对称图形,任何经过圆心的直线都是它的对称轴。
8. 圆的周长和面积的比较- 问题:如果两个圆的周长相等,它们的面积也相等吗?- 答案:是的,如果两个圆的周长相等,根据周长公式 \( C =2\pi r \),它们的半径也相等,因此它们的面积也相等。
中考数学复习 圆的基本性质一、选择题1.如图,点A ,B ,C 是⊙O 上的三点,若∠OBC =50°,则∠A 的度数是( A ) A .40° B .50° C .80° D .100°【解析】∠A =12∠COB =12(180°-2∠OBC )=12(180°-2×50°)=40°.,第1题图) ,第2题图)2.如图为4×4的网格,A ,B ,C ,D ,O 均在格点上,则点O 是( B ) A .△ACD 的外心 B .△ABC 的外心 C .△ACD 的内心 D .△ABC 的内心3.如图,CD 是⊙O 的直径,弦AB ⊥CD ,垂足为M ,若AB =12,OM ∶MD =5∶8,则⊙O 的周长为( B )A .26πB .13π C.96π5 D.3910π5【解析】连结OA ,∵CD 为⊙O 的直径,弦AB ⊥CD ,∴AM =12AB =6,∵OM ∶MD =5∶8,∴设OM =5x ,DM =8x ,∴OA =OD =13x ,∴AM =12x =6,∴x =12,∴OA =132,∴⊙O 的周长=2OA ·π=13π.故选B.,第3题图) ,第4题图)4.如图,扇形OAB 的圆心角为122°,C 是弧AB 上一点,则∠ACB =( D ) A .110° B .120° C .122° D .119°【解析】因为同弧所对的圆周角等于它所对的圆心角的一半,所以与∠AOB 所对同弧的圆周角度数为12∠AOB =61°,由圆内接四边形对角互补,得∠ACB =180°-61°=119°,故选D.5.如图是自行车骑行训练场地的一部分,半圆O 的直径AB =100,在半圆弧上有一运动员C 从B 点沿半圆周匀速运动到M (最高点),此时由于自行车故障原地停留了一段时间,修理好继续以相同的速度运动到A 点停止.设运动时间为t ,点B 到直线OC 的距离为d ,则下列图象能大致刻画d 与t 之间的关系是( C )【解析】设运动员的速度为v ,则运动的路程为v t ,设∠BOC =α,当点C 从B 运动到M 时,∵v t =α·π·50180=5πα18,∴α=18v t 5π,在直角三角形中,∵d =50sin α=50sin 18v t5π,∴d 与t之间的关系d =50sin 18v t 5π,当点C 从M 运动到A 时,d 与t 之间的关系d =50sin(180-18v t5π),故C 正确.二、填空题6.如图,在⊙O 中,AB 是弦,C 是AB ︵上一点.若∠OAB =25°,∠OCA =40°,则∠BOC 的大小为__30__度.【解析】∵∠BAO =25°,∠ACO =40°,OA =OC ,∴∠C =∠CAO =40°,∴∠CAB =∠CAO -∠BAO =15°,∴∠BOC =2∠BAC =30°.,第6题图) ,第7题图)7.如图,点A ,B ,C ,P 在⊙O 上,CD ⊥OA ,CE ⊥OB ,垂足分别为D ,E ,∠DCE =40°,则∠P 的度数为__70°__.【解析】∵CD ⊥OA ,CE ⊥OB ,垂足分别为D ,E ,∠DCE =40°,∴∠DOE =180°-40°=140°,∴∠P =12∠DOE =70°.8.如图,AB 是⊙O 的弦,AB =5,点C 是⊙O 上的一个动点,且∠ACB =45°,若点M ,N 分别是AB ,AC 的中点,则MN 长的最大值是__522__.,第8题图) ,第9题图)9.如图,AB 是⊙O 的直径,且经过弦CD 的中点H ,已知cos ∠CDB =45,BD =5,则OH 的长度为__76__.【解析】连结OD ,∵AB 是⊙O 的直径,且经过弦CD 的中点H ,∴AB ⊥CD ,∴∠OHD=∠BHD =90°,∵cos ∠CDB =DH BD =45,BD =5,∴DH =4,∴BH =BD 2-DH 2=3,设OH=x ,则OD =OB =x +3,在Rt △ODH 中,由勾股定理得x 2+42=(x +3)2,解得x =76,∴OH=76. 若点O 是等腰△ABC 的外心,且∠BOC =60°,底边BC =2,则△ABC 的面积为__2-3或2+3__.【解析】存在两种情况,当△ABC 为钝角三角形时,连结OB ,OC ,∵点O 是等腰△ABC 的外心,且∠BOC =60°,底边BC =2,OB =OC ,∴△OBC 为等边三角形,OB =OC =BC =2,OA ⊥BC 于点D ,∴CD =1,OD =22-12=3,∴S △ABC =BC ·AD 2=2×(2-3)2=2-3;当△ABC 为锐角三角形时,连结OB ,OC ,∵点O 是等腰△ABC 的外心,且∠BOC =60°,底边BC =2,OB =OC ,∴△OBC 为等边三角形,OB =OC =BC =2,OA ⊥BC 于点D ,∴CD =1,OD =22-12=3,∴S △ABC =BC ·DA 2=2×(2+3)2=2+3,由上可得,△ABC 的面积为2-3或2+ 3.三、解答题11.如图,AB 为⊙O 的直径,AB =AC ,BC 交⊙O 于点D ,AC 交⊙O 于点E ,∠BAC =45°.(1)求∠EBC 的度数; (2)求证:BD =CD .解:(1)∠EBC =22.5° (2)证明略12.如图,△ABC 内接于⊙O ,AH ⊥BC 于点H ,若AC =24,AH =18,⊙O 的半径OC =13,求AB 的长.解:如图,作直径AE ,连结CE ,∴∠ACE =90°,∵AH ⊥BC ,∴∠AHB =90°,∴∠ACE =∠AHB ,∵∠B =∠E ,∴△ABH ∽△AEC ,∴AB AE =AHAC,∵AC =24,AH =18,AE =2OC =26,∴AB =18×2624=39213.如图,A ,P ,B ,C 是圆上的四个点,∠APC =∠CPB =60°,AP ,CB 的延长线相交于点D .(1)求证:△ABC 是等边三角形;(2)若∠P AC =90°,AB =23,求PD 的长. 解:(1)∵∠ABC =∠APC ,∠BAC =∠BPC ,∠APC =∠CPB =60°,∴∠ABC =∠BAC =60°,∴△ABC 是等边三角形 (2)∵△ABC 是等边三角形,AB =23,∴AC =BC =AB =23,∠ACB =60°.在Rt △PAC 中,∠PAC =90°,∠APC =60°,AC =2 3.∴AP =2.在Rt △DAC 中,∠DAC =90°,AC =23,∠ACD =60°,∴AD =6.∴PD =AD -AP =6-2=414. 如图,⊙O 的半径为1,A ,P ,B ,C 是⊙O 上的四个点,∠APC =∠CPB =60°. (1)判断△ABC 的形状;(2)试探究线段PA ,PB ,PC 之间的数量关系,并证明你的结论;(3)当点P 位于AB ︵的什么位置时,四边形APBC 的面积最大?求出最大面积.解:(1)等边三角形(2)PA +PB =PC.证明:如图,在PC 上截取PD =PA ,连结AD.∵∠APC =60°, ∴△PAD 是等边三角形,∴PA =AD ,∠PAD =60°.又∵∠BAC =60°, ∴∠PAB =∠DAC. ∵AB =AC, ∴△PAB ≌△DAC ,∴PB =DC. ∵PD +DC =PC, ∴PA +PB =PC(3)当点P 为AB ︵的中点时,四边形APBC 面积最大.理由:如图,过点P 作PE ⊥AB ,垂足为E, 过点C 作CF ⊥AB ,垂足为F .∵S △PAB =12AB·PE ,S △ABC =12AB·CF ,∴S 四边形APBC=12AB (PE +CF ).∵当点P 为AB ︵的中点时,PE +CF =PC ,PC 为⊙O 直径,∴四边形APBC 面积最大.又∵⊙O 的半径为1,∴其内接正三角形的边长AB =3,∴S 四边形APBC =12×2×3=3。
圆的基本性质练习(含答案)圆的基本性质考点1 对称性圆既是__________ ①______ 对称图形,又是 _________ ②____ 对称图形。
任何一条直径所在的直线都是它的 _____ ③。
它的对称中心是_ ④ _____________________ 。
同时圆又具有旋转不变性。
温馨提示:轴对称图形的对称轴是一条直线,因此在谈及圆的对称轴时不能说圆的对称轴是直径。
考点2 垂径定理定理:垂直于弦的直径平分_________ ⑤______ 并且平分弦所对的两条__⑥ __________ 。
常用推论:平分弦(不是直径)的直径垂直于__________ ⑦ _______ ,并且平分弦所对的两条 _______ ⑧ ___________ 。
温馨提示:垂径定理是中考中的重点考查内容,每年基本上都以选择或填空的形式出现,一般分值都在3分左右,这个题目难度不大,只要在平时的练习中,多注意总结它所用的数学方法或数学思想等,以及常用的辅助线的作法。
在这里总结一下:(1)垂径定理和勾股定理的有机结合是计算弦长、半径等问题的有效方法,其关键是构造直角三角形;(2)常用的辅助线:连接半径;过顶点作垂线;(3)另外要注意答案不唯一的情况,若点的位置不确定,则要考虑优弧、劣弧的区别;(4)为了更好理解垂径定理,一条直线只要满足:①过圆心;②垂直于弦;③平分弦;④ 平分弦所对的优弧;⑤平分弦所对的劣弧;考点3 圆心角、弧、弦之间的关系定理:在同圆或等圆中,相等的圆心角所对的弧___________ ⑨ _____ ,所对的弦也______ ⑩_________ o常用的还有:(1)在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角—a ______________ ,所对的弦____ J2 __________ o(2)在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角 _______ 13 _____________ ,所对的弧 __________ 14方法点拨:为了便于理解和记忆,圆心角、弧、弦之间的关系定理,可以归纳为:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应地其余各组量也都相等。
圆的基本性质测试题班级 姓名 得分一:选择题(每题3分,共30分)( )1.下列语句中不正确的有①相等的圆心角所对的弧相等;②平分弦的直径垂直于弦;③圆是轴对称图形,对称轴是任意一条直径所在的直线, ④半圆是弧,⑸直径是圆内 最长的弦,⑥等弧所对的圆周角相等. A .3个 B.4个 C .5个 D.6个( )2. 如图,已知⊙O 的半径为5,弦AB=6,M 是AB 上任意一点,则线段OM 的长可能是:A .2.5B .3.5C .4.5D .5.5 ( )3.如图,,已知AB 是⊙O 的直径,∠BOC=400,那么∠AOE=A.400B. 600C.800D.1200( )4.如图,将圆沿AB 折叠后,圆弧 恰好经过圆心,则 ∠AOB 等于:A .60°B .90°C .120°D .150°(第3题) (第4题) (第5题) (第6题)( )5. 两正方形彼此相邻且内接于半圆,若小正方形的面积为16cm 2,则该半圆的半径为A .(45)+ cmB .9 cmC .45cmD .62cm( )6. 如图,BD 是⊙O 的直径,圆周角∠A = 30︒,则∠CBD 的度数是 A .30︒ B .45︒ C .60︒ D .80︒( )7.AB 为⊙O 的直径,C 、D 是⊙O 上的两点,∠BAC =30º,AD =CD ,则∠DAC 的度数是:A .30ºB .60ºC .45ºD .75º(第7题) (第8题) (第9题) (第10题)( )8.如图,在⊙O 中,CD 是直径,弦AB ⊥CD ,垂足为E ,连接BC ,若AB =2cm ,∠BCD =22°30′,则⊙O 的半径为: A .4cm B.2cm C.1cm D.0.5cm ( )9. 已知⊙O 的直径AB=12,弦AC=6,AD=62,则∠CAD=A. 60°B. 450C.1050 或150D. 60°或 450( )10.如图,AB 是⊙O 的直径,AB=2,点C 在⊙O 上,∠CAB=30°,D 为的中点,P 是直径AB 上一动点,则PC+PD 的最小值为: A.22 B.2 C.1 D.2二:填空题(每题3分,共18分)11. 如图,⊙O 的半径OA=10cm ,弦AB=16cm ,P 为AB 上一动点,则点P 到圆心O 的最短距 离为 。
垂径定理、弦、弧、圆心角、圆周角提高练习一、选择题A1.有下列四个命题:①直径是弦;②经过三个点一定可以作圆;③三角形的外心到三角形各顶点的距离都相等;④半径相等的两个半圆是等弧.其中正确的有( ) A.4个 B.3个 C. 2个 D. 1个A2如图,△ ABC内接于⊙O,D为线段AB的中点,延长OD交⊙O于点E,连接AE,BE,则下列五个结论①AB⊥DE,②AE=BE,③OD=DE,④∠AEO=∠C ,⑤,正确结论的个数是()A、2个B、3个C、4个D、5个∠等于()A.60︒B.50︒A3.如图,点B、C在⊙O上,且BO=BC,则圆周角BACC.40︒ D.30︒A4.如图,⊙O的直径CD⊥AB,∠AOC=50°,则∠B大小为 ( )A.25° B.35°C.45° D.65°(第2题图)(第3题图)(第4题图)A5. 已知圆锥的底面半径长为5,侧面展开后得到一个半圆,则该圆锥的母线长为A.2.5 B.5 C.10 D.15A6、如图,AB是⊙O的弦,半径OA=2,∠AOB,则弦AB的长()(A)2=1202(B)(C)5(D)23B7.如图2△ABC内接于⊙O,若∠OAB=28°,则∠C的大小是()A.62°B.56°C.28 D32°B8. 如图,点A、B、P在⊙O上,且∠APB=50°若点M是⊙O上的动点,要使△ABM为等腰三角形,则所有符合条件的点M有()A.1个B.2个C.3个D.4个D CB A O A BC DOB9、 如图,⊙O 过点B 、C 。
圆心O 在等腰直角△ABC 的内部,∠BAC =90,OA =1,BC =6,则⊙O 的半径为( ) A )10 B )32 C )23 D )13C10.如图,两正方形彼此相邻且内接于半圆,若小正方形的面积为16cm 2,则该半圆的半径为( )A. (45)+ cmB. 9 cmC. 45cmD. 62cmC11.如图,MN 是半径为1的⊙O 的直径,点A 在⊙O 上,∠AMN =30°,B 为AN 弧的中点,点P 是直径MN 上一个动点,则PA+PB 的最小值为A .22 B .2C .1D .2C12、如图所示,在圆⊙O 内有折线OABC,其中OA =8,AB =12, ∠A =∠B =60°,则BC 的长为()A .19 B .16 C .18 D .20二、填空题:A1.如图,⊙O 是正三角形ABC 的外接圆,点P 在劣弧AB 上, ABP ∠=22°,则BCP ∠的度数为_____. A2.如图在等边△ABC 中,以AB 为直径的⊙O 与BC 相交于点D ,连结AD ,则∠DAC 的度数为 .A3.如图,在直径AB =12的⊙O 中,弦CD ⊥AB 于M ,且M 是半径OB 的中点,则弦CD的长是_______.A4.如图,以点P 为圆心的圆弧与x 轴交于A ,B ;两点,点P 的坐标为(4,2),点A(第6题图) (第7题图) (第8(第2题图) (第3题图)· ABC OD 的坐标 为(23,0)则点B 的坐标为 .A5.如图,AB 为⊙O 的弦,⊙O 的半径为5,OC ⊥AB 于点D ,交⊙O 于点C ,且CD =l ,则弦AB 的长是 .A6. 如图,△ABC 是⊙O 的内接三角形,点D 是BC 的中点,已知∠AOB =98°,∠COB =120°.则∠ABD 的度数是 .A7. 现有一个圆心角为 90,半径为cm 8的扇形纸片,用它恰好围成一个圆锥的侧面(接缝忽略不计).该圆锥的高为__________B8.如图,AB 为⊙O 的直径,点C ,D 在⊙O 上.若∠AOD =30°,则∠BCD 的度数是 .B9.如图⊙O 的半径为1cm ,弦AB 、CD 的长度分别为2,1cm cm ,则弦AC 、BD 所夹的锐角α= .B10.如图,菱形OABC 中,∠A=120°,OA=1,将菱形OABC 绕点O 按顺时针方向旋转90°至OA ′B ′C ′的位置,则图中由BB ′,B ′A ′,A ′C ,CB 围成的阴影部分的面积是_______C11.已知⊙O 的半径为10,弦AB 的长为103,点C 在⊙O 上,且C 点到弦AB 所在直线的距离为 5,则以O 、A 、B 、C 为顶点的四边形的面积是 .C12、如图,将半径为1、圆心角为60°的扇形纸片AOB ,在直线l 上向右作无滑动的滚动至扇形A’O’B’处,则顶点O 经过的路线总长为 .A1.如图,⊙O 的直径AB 长为6,弦AC 长为2,∠ACB 的平分线交⊙O 于点D ,求四边形ADBC 的面积.A2.如图,AD 为ABC ∆外接圆的直径,AD BC ⊥, A BDO C (第12题图)垂足为点F,ABC∠的平分线交AD于点E,连接BD,CD.(1) 求证:BD CD=;(2) 请判断B,E,C三点是否在以D为圆心,以DB为半径的圆上?并说明理由. B3.如图9,在平行四边形ABCD中,E为BC边上的一点,且AE与DE分别平分∠BAD和∠ADC.( 1)求证:AE⊥DE;(2)设以AD为直径的半圆交AB于F,连接DF交AE于G,已知CD=5,AE=8,求FGAF的值.C4.如图,圆O的直径为5,在圆O上位于直径AB的异侧有定点C和动点P,已知BC:CA=4:3,点P在半圆弧AB上运动(不与A、B两点重合),过点C作CP的垂线CD交PB的延长线于D点.(1)求证:AC·CD=PC·BC;(2)当点P运动到AB弧中点时,求CD的长;(3)当点P运动到什么位置时,△PCD的面积最大?并求出这个最大面积S。
第3单元圆的基本性质(压轴33道)一.选择题(共8小题)1.已知⊙O的半径为2,点P是⊙O内一点,且OP=,过P作互相垂直的两条弦AC、BD,则四边形ABCD面积的最大值为()A.4B.5C.6D.72.如图,A点是半圆上一个三等分点,B点是弧AN的中点,P点是直径MN上一动点,⊙O的半径为1,则AP+BP的最小值为()A.1B.C.2D.无法计算3.如图,半圆的直径AB=10cm,弦AC=6cm,把AC沿直线AD对折恰好与AB重合,则AD的长为()A.4cm B.3cm C.5cm D.8cm4.如图,将边长为cm的正方形ABCD沿直线l向右翻动(不滑动),当正方形连续翻动8次后,正方形的中心O经过的路线长是()cm.A.8B.8C.3πD.4π5.如图,AC是圆O的直径,AC=4,弧BA=120°,点D是弦AB上的一个动点,那么OD+BD的最小值为()A.B.C.D.6.如图,圆弧形桥拱的跨度AB=12米,拱高CD=4米,则拱桥的半径为()A.6.5米B.9米C.13米D.15米7.如图,将⊙O沿弦AB折叠,圆弧恰好经过圆心O,点P是优弧上一点,则∠APB的度数为()A.45°B.30°C.75°D.60°8.如图,直径AB为6的半圆,绕A点逆时针旋转60°,此时点B到了点B′,则图中阴影部分的面积是()A.3πB.6πC.5πD.4π二.填空题(共13小题)9.某个圆锥的侧面展开图形是一个半径为6cm,圆心角为120°的扇形,则这个圆锥的底面半径为cm.10.如图,在平面直角坐标系中,弧ABC所在圆的圆心P的坐标为(3,4),弧ABC与x轴交于点(1,0),则⊙P与x轴的另一交点坐标是.11.如图,在四边形ACBD中,AB=BD=BC,AD∥BC,若CD=4,AC=2,则AB的长为.12.一位小朋友在粗糙不打滑的“Z”字形平面轨道上滚动一个半径为10cm的圆盘,如图所示,AB与CD是水平的,BC与水平面的夹角为60°,其中AB =60cm,CD=40cm,BC=40cm,那么该小朋友将圆盘从A点滚动到D点其圆心所经过的路线长为cm.13.如图,边长为1的正方形ABCD绕点A逆时针旋转30°,得到正方形AB′C′D′,则图中阴影部分的面积为.14.如图,在△ABC中,AB=8cm,BC=4cm,∠ABC=30°,把△ABC以点B为中心按逆时针方向旋转,使点C旋转到AB边的延长线上的C′′处,那么AC边扫过的图形(图中阴影部分)的面积是cm2(结果保留π).15.在直径为10m的圆柱形油槽内装入一些油后,截面如图所示,如果油面宽AB=8m,那么油的最大深度是m.16.如图,将半径为1、圆心角为60°的扇形纸片AOB,在直线l上向右作无滑动的滚动至扇形A'O'B'处,则顶点O经过的路线总长为.17.如图所示,把一个直角三角尺ACB绕着30°角的顶点B顺时针旋转,使得点A落在CB的延长线上的点E处,则∠BDC的度数为度.18.如图,若干全等正五边形排成环状.图中所示的是前3个五边形,要完成这一圆环还需个五边形.19.如图(甲),水平地面上有一面积为30πcm2的灰色扇形OAB,其中OA的长度为6cm,且与地面垂直、若在没有滑动的情况下,将图(甲)的扇形向右滚动至OB垂直地面为止,如图(乙)所示,则点O移动的距离cm.20.如图,小方格都是边长为1的正方形,则以格点为圆心,半径为1和2的两种弧围成的“叶状”阴影图案的面积为.21.如图,在平面直角坐标系中,已知点A(﹣3,0),B(0,4),对△AOB 连续作旋转变换,依次得到三角形①,②,③,…,那么第⑤个三角形离原点O最远距离的坐标是,第2012个三角形离原点O最远距离的坐标是.三.解答题(共12小题)22.阅读下列材料:问题:如图1,在正方形ABCD内有一点P,P A=,PB=,PC=1,求∠BPC的度数.小明同学的想法是:已知条件比较分散,可以通过旋转变换将分散的已知条件集中在一起,于是他将△BPC绕点B逆时针旋转90°,得到了△BP′A(如图2),然后连接PP′.请你参考小明同学的思路,解决下列问题:(1)图2中∠BPC的度数为;(2)如图3,若在正六边形ABCDEF内有一点P,且P A=,PB=4,PC=2,则∠BPC的度数为,正六边形ABCDEF的边长为.23.如图(1)正方形ABCD和正方形AEFG,边AE在边AB上,AB=12,AE =.将正方形AEFG绕点A逆时针旋转α(0°≤α≤45°)(1)如图(2)正方形AEFG旋转到此位置,求证:BE=DG;(2)在旋转的过程中,当∠BEA=120°时,试求BE的长;(3)BE的延长线交直线DG于点Q,当正方形AEFG由图(1)绕点A逆时针旋转45°,请直接写出旋转过程中点Q运动的路线长;(4)在旋转的过程中,是否存在某时刻BF=BC?若存在,试求出DQ的长;若不存在,请说明理由.(点Q即(3)中的点)24.已知:如图,在半径为2的半圆O中,半径OA垂直于直径BC,点E与点F分别在弦AB、AC上滑动并保持AE=CF,但点F不与A、C重合,点E不与A、B重合.(1)求四边形AEOF的面积.=y,写出y与x之间的函数关系式,求x的取值范围.(2)设AE=x,S△OEF25.已知:△ABC是⊙O的内接正三角形,P为弧BC上一点(与点B、C不重合),(1)如果点P是弧BC的中点,求证:PB+PC=P A;(2)如果点P在弧BC上移动时,(1)的结论还成立吗?请说明理由.26.某校九年级学习小组在探究学习过程中,用两块完全相同的且含60°角的直角三角板ABC与AFE按如图(1)所示位置放置,现将Rt△AEF绕A点按逆时针方向旋转角α(0°<α<90°),如图(2),AE与BC交于点M,AC与EF交于点N,BC与EF交于点P.(1)求证:AM=AN;(2)当旋转角α=30°时,四边形ABPF是什么样的特殊四边形?并说明理由.27.将△ABC绕点B逆时针旋转α得到△DBE,DE的延长线与AC相交于点F,连接DA、BF.(1)如图1,若∠ABC=α=60°,BF=AF.①求证:DA∥BC;②猜想线段DF、AF的数量关系,并证明你的猜想;(2)如图2,若∠ABC<α,BF=mAF(m为常数),求的值(用含m、α的式子表示).28.如图,已知△BAD≌△ECB,∠BAD=∠BCE=90°,∠ABD=∠BEC=30°,点M为DE的中点,过点E与AD平行的直线交射线AM于点N.(1)如图1,当A,B,E三点在同一直线上时,判断AC与CN数量关系为;(2)将图1中△BCE绕点B逆时针旋转到图2位置时,(1)中的结论是否仍成立?若成立,试证明之,若不成立,请说明理由;(3)将图1中△BCE绕点B逆时针旋转一周,旋转过程中△CAN能否为等腰直角三角形?若能,直接写出旋转角度;若不能,说明理由.29.如图,∠BAC的平分线交△ABC的外接圆于点D,交BC于点F,∠ABC的平分线交AD于点E.(1)求证:DE=DB;(2)若∠BAC=90°,BD=4,求△ABC外接圆的半径;(3)若BD=6,DF=4,求AD的长.30.在数学兴趣小组活动中,小明进行数学探究活动,将边长为2的正方形ABCD 与边长为2的正方形AEFG按图1位置放置,AD与AE在同一直线上,AB 与AG在同一直线上.(1)小明发现DG⊥BE,请你帮他说明理由;(2)如图2,小明将正方形ABCD绕点A逆时针旋转,当点B恰好落在线段DG上时,请你帮他求出此时BE的长.31.如图所示,破残的圆形轮片上,弦AB的垂直平分线交弧AB于点C,交弦AB于点D.已知:AB=24cm,CD=8cm.(1)求作此残片所在的圆(不写作法,保留作图痕迹).(2)求残片所在圆的面积.32.如图1,正方形ABCD与正方形AEFG的边AB、AE(AB<AE)在一条直线上,正方形AEFG以点A为旋转中心逆时针旋转,设旋转角为α.在旋转过程中,两个正方形只有点A重合,其它顶点均不重合,连接BE、DG.(1)当正方形AEFG旋转至如图2所示的位置时,求证:BE=DG;(2)如图3,如果α=45°,AB=2,AE=4,求点G到BE的距离.33.如图1所示,将一个边长为2的正方形ABCD和一个长为2、宽为1的长方形CEFD拼在一起,构成一个大的长方形ABEF.现将小长方形CEFD绕点C 顺时针旋转至CE′F′D′,旋转角为a.(1)当点D′恰好落在EF边上时,求旋转角a的值;(2)如图2,G为BC中点,且0°<a<90°,求证:GD′=E′D;(3)小长方形CEFD绕点C顺时针旋转一周的过程中,△DCD′与△CBD′能否全等?若能,直接写出旋转角a的值;若不能说明理由.。
浙教版数学九年级上册第三章圆的基本性质一、选择题1.下列说法正确的是( )A.三个点可以确定一个圆B.半圆(或直径)所对的圆周角是直角C.相等的圆心角所对的弧相等D.长度相等的弧是等弧2.已知一个扇形的面积是24π,弧长是2π,则这个扇形的半径为( )A.24B.22C.12D.63.如图,点A、B、C在⊙O上,∠C=40∘,则∠AOB的度数是( )A.50∘B.60∘C.70∘D.80∘4.如图,AB是⊙O的直径,弦CD⊥AB于点E,若BE=5,AE=1,则弦CD的长是()A.5B.5C.25D.65.将量角器按如图所示的方式放置在三角形纸板上,使点C在半圆上.点A,B的读数分别为86°,30°,则∠ACB的度数是( )A.28°B.30°C.36°D.56°6.如图,AB为⊙O的直径,点C在⊙O上,若∠OCA=50°,AB=4,则BC的长为( )A .103πB .109πC .59πD .518π7.如图, AB 是半圆O 的直径,点C ,D 在半圆O 上.若 ∠ABC =50° ,则 ∠BDC 的度数为( )A .90°B .100°C .130°D .140°8. 如图,正六边形ABCDEF 内接于⊙O ,若⊙O 的周长等于6π,则正六边形的边长为( )A .3B .6C .3D .239.如图,正五边形ABCDE 内接于⊙O ,阅读以下作图过程:①作直径AF ;②以点F 为圆心,FO 为半径作圆弧,与⊙O 交于点M ,N ;③连接AM ,MN ,AN .结论Ⅰ:△AMN 是等边三角形;结论Ⅱ:从点A 开始,以DN 长为半径,在⊙O 上依次截取点,再依次连接这些分点,得到正十八边形.对于结论Ⅰ和结论Ⅱ,下列判断正确的是( )A .Ⅰ和Ⅱ都对B .Ⅰ和Ⅱ都不对C.Ⅰ不对Ⅱ对D.Ⅰ对Ⅱ不对10.如图,抛物线y=x2﹣8x+15与x轴交于A、B两点,对称轴与x轴交于点C,点D(0,﹣2),点E (0,﹣6),点P是平面内一动点,且满足∠DPE=90°,M是线段PB的中点,连接CM.则线段CM的最大值是( )A.3B.412C.72D.5二、填空题11.如图,在⊙O中,弦AB,CD相交于点P.若∠A=40°,∠APD=75°,则∠B= °.12.如图,AB、AC是⊙O的弦,OM⊥AB,ON⊥AC,垂足分别为M、N.如果MN=2.5,那么BC= .13.如图,四边形ABCD内接于⊙O ,若四边形ABCD的外角∠DCE=65°,则∠BAD的度数是 .14.如图,四边形ABCD是菱形,⊙O经过点A、C、D,与BC相交于点E,连接AC、AE.若∠D=70°,则∠EAC的度数为 .15.我国魏晋时期数学家刘徽在《九章算术注》中提到了著名的割圆术:“割之弥细,所失弥少.割之又割,以至于不可割,则与圆周合体,而无所失矣”.“割圆术”孕育了微积分思想,他用这种思想得到了圆周率π的近似值为3.1416.如图,⊙O的半径为1,运用“割圆术”,以圆内接正六边形面积近似估计⊙O,若用圆内接正十二边形作近似估计,可得π的估计值为 .的面积,可得π的估计值为33216.如图,点M(2,0)、N(0,4),以点M为圆心5为半径作⊙M交y轴于A、B两点,点C为⊙M上一动点,连接CN,取CN中点D,连接AD、BD,则A D2+B D2的最大值为 .三、解答题17.如图,四边形ABCD为⊙O的内接四边形,AC是⊙O的直径,AD=BD,∠CAB=32°.求∠ACD的度数.18.如图,OC为⊙O的半径,弦AB⊥OC于点D,OC=10,CD=4,求AB的长.19.如图,正方形网格中,△ABC的顶点均在格点上,请在所给直角坐标系中按要求解答下列问题:(1)△A1B1C1与△ABC关于坐标原点O成中心对称,则B1的坐标为__________;(2)BC与B1C1的位置和数量关系为___________;(3)将△ABC绕某点逆时针旋转90°后,其对应点分别为A2(―1,―2),B2(1,―3),C2(0,―5),则旋转中心的坐标为___________.20.如图,⊙O的直径AB为10cm,弦AC为6cm,∠ACB的平分线交⊙O于点D,(1)求∠ACB的度数;(2)求BC的长;(3)求AD,BD的长.21.如图,AB是⊙O的直径,C是⏜BD的中点,CE⊥AB于点E,BD交CE于点F.(1)求证:CF=BF.(2)若CD=6,AC=8,求⊙O的半径及CE的长.22.如图所示,AB为☉O的直径,AC是☉O的一条弦,D为BC的中点,作DE⊥AC于点E,交AB的延长线于点F,连接DA.(1)若AB=90 cm,则圆心O到EF的距离是多少?说明你的理由.(2)若DA=DF=63,求阴影部分的面积(结果保留π).23.如图,AB是⊙O的直径,弦CD⊥AB与点E,已知AB=10,AE=8,点P为AB上任意一点,(点P不与A、B重合),连结CP并延长与⊙O交于点Q,连QD,PD,AD.(1)求CD的长.(2)若CP=PQ,直接写出AP的长.(3)①若点P在A,E之间(点P不与点E重合),求证:∠ADP=∠ADQ.②若点P在B,E之间(点P不与点E重合),求∠ADP与∠ADQ满足的关系.答案解析部分1.【答案】B2.【答案】A3.【答案】D4.【答案】C5.【答案】A6.【答案】B7.【答案】D8.【答案】C9.【答案】D10.【答案】C11.【答案】3512.【答案】513.【答案】65°14.【答案】15°15.【答案】316.【答案】49217.【答案】61°18.【答案】1619.【答案】(1)(2,2);(2)平行且相等;(3)(0,―1).20.【答案】(1)∠ACB=90°(2)BC=8cm(3)BD=AD=52cm21.【答案】(1)证明:∵AB是⊙O的直径,∴∠ACB=90°,∴∠A=90°-∠ABC.∵CE⊥AB,∴∠ECB=90°-∠ABC,又∵C是BD的中点,∴CD=BC,∴∠DBC=∠A,∴∠ECB=∠DBC,∴CF= BF;(2)解:∵BC=CD,∴BC=CD=6.在Rt△ABC中,AB= BC2+AC2=62+82=10,∴⊙O的半径为5;∵S△ABC= 12AB×CE= 12BC×AC,∴CE= BC×ACAB =6×810=245.22.【答案】(1)解:如图所示,连接OD,∵D为BC的中点,∴∠CAD=∠BAD.∵OA=OD,∴∠BAD=∠ADO.∴∠CAD=∠ADO.∴OD∥AE.∵DE⊥AC,∴OD⊥EF.∴OD的长是圆心O到EF的距离.∵AB=90 cm,∴OD=12AB=45 cm.(2)解:如图所示,过点O作OG⊥AD交AD于点G.∵DA=DF,∴∠F=∠BAD.由(1),得∠CAD=∠BAD,∵∠F+∠BAD+∠CAD=90°,∴∠F=∠BAD=∠CAD=30°.∴∠BOD=2∠BAD=60°,OF=2OD.∵在Rt△ODF中,OF2-OD2=DF2,∴(2OD)2-OD2=(63)2,解得OD=6.在Rt△OAG中,OA=OD=6,∠OAG=30°,AG=OA2―O G2=33,AD=23,S△AOD=1×63×3=93.2+93=6π+93.∴S阴影=S扇形OBD+S△AOD=60π×6236023.【答案】(1)解:连接OD,∵直径AB=10,AE=8,∴BE=2.∴OE=5-2=3.又∵AB⊥CD,在Rt△PED中,P D2=P E2+E D2∴ED=52―32=4∴CD=2ED=8(2)解:若CP=PQ,则点P与点O重合,或点P与点E重合.所以AP=5或8(3)解:①连接AC,由图可知∠ACQ=∠ADQ,因为AB是⊙O的直径,AB⊥CD,所以CE=DE,即AB是CD的垂直平分线,所以AC=AD,PC=PD,因为AP=AP,所以∠ACP=∠ADP ,所以∠ADP=∠ADQ .②∠ADP+∠ADQ=180°.理由如下:连接AC ,因为AB 是直径,AB ⊥CD ,所以AC=AD ,CE=DE ,所以△ACP ≌△ADP (SSS ),所以∠ACP=∠ADP ,因为∠ACP=12ADQ ,∠ADQ=12ACQ ,所以∠ACP+∠ADQ=12(ADQ +ACQ )=180°.。
高中圆的基本性质练习题及讲解### 高中圆的基本性质练习题及讲解#### 练习题1:圆心与半径的关系设圆的方程为 \((x-a)^2 + (y-b)^2 = r^2\),其中 \((a, b)\) 为圆心坐标,\(r\) 为半径。
若圆上一点 \(P(x_1, y_1)\) 满足\((x_1-a)^2 + (y_1-b)^2 = r^2\),试证明 \(P\) 点在圆上。
解答:根据圆的定义,圆上任意一点到圆心的距离等于半径。
题目中已给出\(P(x_1, y_1)\) 满足圆的方程,即 \((x_1-a)^2 + (y_1-b)^2 =r^2\)。
这表明点 \(P\) 到圆心 \((a, b)\) 的距离的平方等于半径的平方,即 \(P\) 点到圆心的距离为 \(r\)。
因此,点 \(P\) 在圆上。
#### 练习题2:圆与直线的位置关系已知圆心为 \(O(0, 0)\),半径为 \(r\) 的圆,直线方程为 \(y =mx + c\)。
若圆与直线相切,求 \(c\) 的值。
解答:圆与直线相切意味着圆心到直线的距离等于半径。
圆心 \(O(0, 0)\)到直线 \(y = mx + c\) 的距离 \(d\) 可以用点到直线距离公式计算,即 \(d = \frac{|c|}{\sqrt{1+m^2}}\)。
由于圆与直线相切,所以\(d = r\)。
因此,我们有 \(\frac{|c|}{\sqrt{1+m^2}} = r\)。
解得 \(c = \pm r\sqrt{1+m^2}\)。
#### 练习题3:圆的切线性质若直线 \(y = mx + c\) 为圆 \((x-a)^2 + (y-b)^2 = r^2\) 的切线,求切线斜率 \(m\) 的范围。
解答:由于直线是圆的切线,圆心到直线的距离等于半径。
使用点到直线距离公式,我们有 \(\frac{|b - ma - c|}{\sqrt{1+m^2}} = r\)。
初中数学:圆的基本性质测试题(含答案)一、选择题(每小题4分,共24分)1.如图G -3-1,在⊙O 中,AB ︵=AC ︵,∠AOB =40°,则∠ADC 的度数是( ) A .40° B .30° C .20° D .15°2.在同圆或等圆中,下列说法错误的是( ) A .相等的弦所对的弧相等 B .相等的弦所对的圆心角相等 C .相等的圆心角所对的弧相等 D .相等的圆心角所对的弦相等G -3-1G -3-23.如图G -3-2,在两个同心圆中,大圆的半径OA ,OB ,OC ,OD 分别交小圆于点E ,F ,G ,H ,∠AOB =∠GOH ,则下列结论中,错误的是( )A .EF =GH B.EF ︵=GH ︵ C .∠AOC =∠BOD D.AB ︵=GH ︵4.已知正六边形的边长为2,则它的外接圆的半径为( )A.1 B. 3 C.2 D.2 35.在如图G-3-3所示的暗礁区,两灯塔A,B之间的距离恰好等于圆的半径,为了使航船(S)不进入暗礁区,那么S对两灯塔A,B的视角∠ASB必须( ) A.大于60° B.小于60°C.大于30° D.小于30°G-3-3G-3-46.如图G-3-4,AB是⊙O的直径,C,D是⊙O上的点,且OC∥BD,AD分别与BC,OC相交于点E,F,则下列结论:①AD⊥BD;②∠AOC=∠AEC;③BC 平分∠ABD;④AF=DF;⑤BD=2OF;⑥△CEF≌△BED.其中一定成立的是( ) A.②④⑤⑥ B.①③⑤⑥C.②③④⑥ D.①③④⑤二、填空题(每小题4分,共24分)7.如图G-3-5,AB是⊙O的直径,AC=BC,则∠A=________°.G-3-5G-3-68.如图G-3-6,在⊙O的内接四边形ABCD中,点E在DC的延长线上.若∠A=50°,则∠BCE=________°.9.如图G-3-7,AB是⊙O的直径,C是⊙O上的一点.若BC=6,AB=10,OD⊥BC于点D,则OD的长为________.G-3-7G-3-810.用一条宽相等的足够长的纸条,打一个结,然后轻轻拉紧、压平就可以得到如图G-3-8所示的正五边形ABCDE,其中∠BAC=________°.11.如图G-3-9,⊙O的半径为4,△ABC是⊙O的内接三角形,连结OB,OC.若∠BAC和∠BOC互补,则弦BC的长度为________.G-3-9图G-3-1012.如图G-3-10,已知正六边形ABCDEF内接于半径为4的⊙O,则B,D 两点间的距离为__________.三、解答题(共52分)13.(12分)如图G-3-11所示,⊙O的直径AB长为6,弦AC长为2,∠ACB 的平分线交⊙O于点D,求四边形ADBC的面积.图G-3-1114.(12分)如图G-3-12,∠BAC的平分线交△ABC的外接圆于点D,∠ABC 的平分线交AD于点E,连结DB.(1)求证:DE=DB;(2)若∠BAC=90°,BD=4,求△ABC的外接圆半径.图G -3-1215.(12分)作图与证明:如图G -3-13,已知⊙O 和⊙O 上的一点A ,请完成下列任务:(1)作⊙O 的内接正六边形ABCDEF ;(2)连结BF ,CE ,判断四边形BCEF 的形状,并加以证明.图G -3-1316.(16分)如图G -3-14,正方形ABCD 内接于⊙O ,E 为CD ︵上任意一点,连结DE ,AE .(1)求∠AED的度数;(2)如图②,过点B作BF∥DE交⊙O于点F,连结AF,AF=1,AE=4,求DE 的长.图G-3-14详解详析1.C 2.A 3.D 4.C 5.D6.D [解析] ∵AB是⊙O的直径,∴∠D=90°,即AD⊥BD,∴①正确;∵OC∥BD,∴∠C=∠CBD.又∵OB=OC,∴∠C=∠OBC,∴∠OBC=∠CBD,即BC平分∠ABD,∴③正确;∵∠D=90°,OC∥BD,∴∠CFD=∠D=90°,即OC⊥AD,∴AF=DF,∴④正确;又∵AO=BO,∴OF是△ABD的中位线,∴OF=12BD,即BD=2OF,∴⑤正确.故选D.7.45 [解析] ∵AB是⊙O的直径,∴∠C=90°.∵AC=BC,∴△ABC是等腰直角三角形,∴∠A=∠B=12(180°-∠C)=45°.8.509.4 [解析] ∵AB是⊙O的直径,∴∠ACB=90°.∵BC=6,AB=10,∴AC =102-62=8.∵OD⊥BC于点D,∴DB=DC.又∵OA=OB,∴OD=12AC=4.10.3611.4 3 [解析] ∵∠BAC+∠BOC=180°,2∠BAC=∠BOC,∴∠BOC=120°,∠BAC=60°.过点O作OD⊥BC于点D,则∠BOD=12∠BOC=60°.∵OB=4,∴OD=2,∴BD=OB2-OD2=42-22=2 3,∴BC=2BD=4 3.12.4 3 [解析] 如图,连结OB,OC,OD,BD,BD交OC于点P,∴∠BOC=∠COD=60°,∴∠BOD =120°,BC ︵=CD ︵, ∴OC ⊥BD . ∵OB =OD , ∴∠OBD =30°. ∵OB =4,∴PB =OB ·cos ∠OBD =32OB =2 3, ∴BD =2PB =4 3.13.解:∵AB 是⊙O 的直径, ∴∠ACB =∠ADB =90°. 在Rt △ABC 中,AB =6,AC =2, ∴BC =AB 2-AC 2=62-22=4 2. ∵∠ACB 的平分线交⊙O 于点D , ∴∠DCA =∠BCD , ∴AD ︵=BD ︵, ∴AD =BD ,∴在Rt △ABD 中,AD =BD =3 2,∴四边形ADBC 的面积=S △ABC +S △ABD =12AC ·BC +12AD ·BD =12×2×4 2+12×32×3 2=9+4 2.故四边形ADBC的面积是9+4 2.14.解:(1)证明:连结CD,∵AD平分∠BAC,∴∠BAD=∠CAD.又∵∠CBD=∠CAD,∴∠BAD=∠CBD.∵BE平分∠ABC,∴∠CBE=∠ABE,∴∠DBE=∠CBE+∠CBD=∠ABE+∠BAD.又∵∠BED=∠ABE+∠BAD,∴∠DBE=∠BED,∴DE=DB.(2)∵∠BAC=90°,∴BC是圆的直径,∴∠BDC=90°.∵AD平分∠BAC,BD=4,∴BD=CD=4,∴BC=BD2+CD2=4 2.∴△ABC的外接圆半径为2 2.15.解:(1)如图①,首先作直径AD,然后分别以A,D为圆心,OA长为半径画弧,分别交⊙O 于点B ,F ,C ,E ,连结AB ,BC ,CD ,DE ,EF ,AF ,则正六边形ABCDEF 即为所求.(2)四边形BCEF 是矩形.证明:如图②,连结OE ,∵六边形ABCDEF 是正六边形,∴AB =AF =DE =DC =FE =BC ,∴AB ︵=AF ︵=DE ︵=DC ︵,∴BF ︵=CE ︵,∴BF =CE ,∴四边形BCEF 是平行四边形.∵六边形ABCDEF 是正六边形,∴∠DEF =∠EDC =120°.∵DE =DC ,∴∠DEC =∠DCE =30°,∴∠CEF =∠DEF -∠DEC =90°,∴平行四边形BCEF 是矩形.16.解:(1)如图①,连结OA ,OD .∵四边形ABCD是正方形,∴∠AOD=90°,∴∠AED=12∠AOD=45°.(2)如图②,连结CF,CE,CA,过点D作DH⊥AE于点H.∵BF∥DE,AB∥CD,∴∠ABF=∠CDE.∵∠CFA=∠AEC=90°,∠AED=∠BFC=45°,∴∠DEC=∠AFB=135°.又∵CD=AB,∴△CDE≌△ABF,∴AF=CE=1,∴AC=AE2+CE2=17,∴AD=22AC=342.∵∠DHE=90°,∴∠HDE=∠HED=45°,∴DH=EH,设DH=EH=x,在Rt△ADH中,∵AD2=AH2+DH2,∴344=(4-x)2+x2,解得x=32或x=52,∴DE=2DH=3 22或5 22.。
圆的基本性质一、选择题1、下面三个命题:①圆既是轴对称图形,又是中心对称图形;②垂直于弦的直径平分这条弦;③相等的圆心角所对的弧相等。
其中是真命题的是 ( )A.①②;B. ①③;C. ②③;D. ①②③。
2、已知⊙O 的半径为5cm ,P 为该圆内一点,且OP=1cm ,则过点P 的弦中,最短的弦长为( )A 、8cm ;B 、6cm ;C 、; D 、。
3.如图1,CD 是O 的直径,A B ,是O 上的两点,若20ABD ∠=,则ADC ∠的度数为( )A .40B .50 C .60 D .70图1 图2 图34、如图2,点A 、B 、D 、C 是⊙O 上的四个点,且∠BOC=110°,则∠BAC 的度数是( )A.110°B.70°C.100°D.55°5、如图3,正方形ABCD 的四个顶点分别在⊙O 上,点P 在劣弧CD 上不同于点C 得到任意一点,则∠BPC 的度数是( )A 、45 ;B 、60 ;C 、75 ;D 、90。
6、如图4,AD 平分∠BAC ,则图中相似三角形有( )A 、2对;B 、3对;C 、4对;D 、5对。
图4D二、精心填一填(每小题3分,共24分)7、如图,已知AB是⊙O的直径,弦CD与AB相交于点E。
若______,则CE=DE(只须填上一个适合的条件即可)。
8、已知AB、CD为⊙O的两条弦,圆心O到它们的距离分别为OM、ON,如果AB>CD,那么OM____ON。
(填“>、=、<”中的一种)9、在⊙O中,AB是直径,CD是弦,若AB⊥CD于E,且AE=2,EB=8,则CD=__________.10、△ABC的三边长分别是AB=4cm,AC=2cm,,以点C为圆心,CA为半径画圆交边AB于另一点D,设AD的中点为E,则CE=_______。
11、半径为10cm的圆内有两条平行弦,长度分别为12cm、16cm,则这两条平所弦间的距离为_______cm。
圆的基本性质练习题
姓名______________学号__________
一.选择题:(本题共10小题,每小题3分,共30分)
1. 已知扇形的弧长为π8,扇形的圆心角为060,则这个扇形的半径为( )
A. 12
B. 24
C. 62
D. 48
2.如图,△ABC 的顶点A 、B 、C 均在⊙O 上,若∠ABC+∠AOC=90°,则∠AOC 的大小是( )
A. 030
B. 045
C. 060
D. 070
3.下列说法正确的是( )
A .半圆是弧,弧也是半圆
B .三点确定一个圆
C .平分弦的直径垂直于弦
D .直径是同一圆中最长的弦
4.如图,DC 是⊙O 直径,弦AB ⊥CD 于F ,连接BC ,DB ,则下列结论错误的是( )
A .弧AD=弧BD
B .AF=BF
C .OF=CF
D D .∠DBC=90°
5.已知⊙O 的直径为10,若PO=5,则点P 与⊙O 的位置关系是( )
A .点P 在⊙O 内
B .点P 在⊙O 上
C .点P 在⊙O 外
D .无法判断
6.如图,A 、B 、C 、D 四个点均在⊙O 上,∠AOD=70°,AO ∥DC ,则∠B 的度数为( )
A.40°
B.45°
C.50°
D.55°
7.如图,⊙O 的半径为10,若OP=8,则经过点P 的弦长可能是( )
A .10
B .6
C .19
D .22
8. 如图,在半径为13cm 的圆形铁片上切下一块高为8cm 的弓形铁片,则弓形弦AB 的长为( )
A 、10cm
B 、16cm
C 、24cm
D 、26cm
9.如图,点C 是以AB 为直径的半圆O 的三等分点,AC=2,则图中阴影部分的面积是( )
A 、334-π
B 、3234-π
C 、332-π
D 、33
2-π 10.如图,Rt △ABC 中,AB ⊥BC ,AB=6,BC=4,P 是△ABC 内部的一个动点,且满足∠PAB=∠PBC ,则线段CP 长的最小值为( )
A .
2
3 B .2 C .13138 D .131312 二.填空题(本题共6小题,每题4分,共24分)
温馨提示:填空题必须是最简洁最正确的答案! 11.一正六边的边长为8,则它的外接圆的直径为_______________
12.四边形ABCD 内接于⊙O ,弧AB :弧BC :弧CD=2:3:5,∠BAD=120°,则∠ABC=_____
13.如图,将弧AC 沿弦AC 折叠交直径AB 于圆心O ,则弧AC= 度.
14.在半径为2的圆中,弦AC 长为1,M 为AC 中点,过M 点最长的弦为BD ,则四边形ABCD 的面积为
15.如图,⊙O 是△ABC 的外接圆,AO ⊥BC 于点F ,D 为弧AC 的中点,且弧CD 的度数为70°,则∠BAF=
16.如图,⊙O 的半径OD ⊥弦AB 于点C ,连结AO 并延长交⊙O 于点E ,连结EC .若AB=8,CD=2,则EC 的长为________________
17. 已知△ABC 的边BC=23cm ,且△ABC 内接于半径为2cm 的⊙O ,则∠A= 度.
18.如图,C 、D 是以AB 为直径的圆O 上的两个动点(点C 、D 不与A 、B 重合),在运动过程中弦CD 始终保持不变,M 是弦CD 的中点,过点C 作CP ⊥AB 于点P .若CD=3,AB=5,PM=x ,则x 的最大值是_________.
19.如图,△ABC 内接于⊙O ,∠B=90°,AB=BC ,D 是⊙O 上与点B
关于圆心O 成中心对称的点,P 是BC 边上一点,连接AD 、DC 、AP .已知AB=8,CP=2,Q 是线段AP 上一动点,连接BQ 并延长交四边形
ABCD 的一边于点R ,且满足AP=BR ,则
=QR
BQ ______ 三.解答题(共6题,共66分) 温馨提示:解答题应将必要的解答过程呈现出
来!
20(本题6分)如图,AB ,CD 是⊙O 的两条直径,过点A 作AE ∥CD 交
⊙O 于点E ,连接BD ,DE ,求证:BD=DE .
21(本题8分).如图所示,AB=AC ,AB 为⊙O 的直径,AC 、BC 分别交
⊙O 于E 、D ,连结ED 、BE .(1)求证:BE ⊥AC ;(2)求证:BD=DE ;
22(本题8分).如图,在直角坐标系中,⊙E 的半径为5,点E (1,
﹣4).(1)求
弦AB 与弦CD 的长;(2)求点A ,B 坐标.
23(本题10分).如图,AB 是⊙O 的直径,弦CD⊥AB 于点E ,点P 在⊙O 上,PB 与CD 交于点F ,∠PBC=∠C.(1)求证:CB∥PD;(2)若∠PBC=22.5°,⊙O 的半径R=2,求劣弧AC 的长度.
24.如图,在⊙O 中,两弦AB 与CD 的中点分别是P 、Q ,且⋂⋂=CD AB ,连结PQ ,求证:∠APQ =∠CQP 。
25.如图,AB 为⊙O 的直径,点C 在⊙O 上,∠BAC 的平分线交BC 于D ,交⊙O 于E ,且AC =6,AB =8,求CE 的长。
26.如图,已知AD 是△ABC 外角∠EAC 的平分线,交BC 的延长线于点D ,延长DA 交△ABC 的外接圆于点F ,连结FB 、FC 。
(1)求证:FB =FC ;(2)若AB 是△ABC 的外接圆的直径,∠EAC =1200,BC =6cm ,求AD 的长。
27.有两个内角分别是它们对角的一半的四边形叫做半对角四边形.
(1)如图1,在半对角四边形ABCD 中,∠B = 21∠D ,∠C = 2
1∠A ,求∠B 与∠C 的度数之和;
(2)如图2,锐角△ABC 内接于⊙O ,若边AB 上存在一点D ,使得BD =BO .∠OBA 的平分线交OA 于点E ,连结DE 并延长交AC 于点F ,∠AFE =2∠EAF .
求证:四边形DBCF 是半对角四边形;
28.如图,以矩形OCPD 的顶点O 为原点,它的两条边所在的直线分别为x 轴和y 轴建立直角坐标系.以点P 为圆心,PC 为半径的⊙P 与x 轴的正半轴交于A 、B 两点.若抛物线y=ax 2+bx+4经过A ,B ,C 三点,且AB=6.
(1)求⊙P 的半径R 的长;(2)求该抛物线的解析式;
(3)求出该抛物线与⊙P 的第四个交点E 的坐标.。