2021年九年级中考专题训练:圆的有关性质(含答案)
- 格式:doc
- 大小:741.50 KB
- 文档页数:15
2021中考专题训练:圆的有关性质一、选择题1. 如图,AB为☉O的直径,C,D为☉O上两点,若∠BCD=40°,则∠ABD的大小为()A.60°B.50°C.40°D.20°2. 如图,△ABC是☉O的内接三角形,∠A=119°,过点C的圆的切线交BO于点P,则∠P的度数为()A.32°B.31°C.29°D.61°3. 如图,线段AB经过☉O的圆心,AC,BD分别与☉O相切于点C,D.若AC=BD=4,∠A=45°,则圆弧CD的长度为 ()A.πB.2πC.2πD.4π4. 如图,AB是⊙O的直径,CD是⊙O的弦,∠ABD=59°,则∠C等于()A.29°B.31°C.59°D.62°5. 如图,AB是⊙O的直径,CD为弦,CD⊥AB于点E,则下列结论中不成立...的是()A .∠COE =∠DOEB .CE =DEC .OE =BED.BD ︵=BC ︵6.△ABC 中,AB =AC ,∠A 为锐角,CD 为AB 边上的高,I 为△ACD 的内切圆圆心,则∠AIB 的度数是( ) A. 120° B. 125° C. 135° D. 150°7. 2019·天水 如图,四边形ABCD 是菱形,⊙O 经过点A ,C ,D ,与BC 相交于点E ,连接AC ,AE .若∠D =80°,则∠EAC 的度数为( )A .20°B .25°C .30°D .35°8. 如图,△ABC 是⊙O 的内接三角形,∠C =30°,⊙O 的半径为5.若P 是⊙O上的一点,在△ABP 中,PB =AB ,则PA 的长为( )A .5B.5 32C .5 2D .5 3二、填空题9. 如图所示,AB 为☉O 的直径,点C 在☉O 上,且OC ⊥AB ,过点C 的弦CD 与线段OB 相交于点E ,满足∠AEC=65°,连接AD ,则∠BAD= 度.10.如图,AB 是⊙O 的直径,C ,D 是⊙O 上的两点,若∠BCD =28°,则∠ABD =________°.11. 如图,C ,D两点在以AB 为直径的圆上,AB =2,∠ACD =30°,则AD =________.12. 2019·随州如图,点A ,B ,C 在⊙O 上,点C 在AMB ︵上.若∠OBA =50°,则∠C 的度数为________.13. 如图,在⊙O 中,半径OA 垂直于弦BC ,点D 在圆上,且∠ADC =30°,则∠AOB 的度数为________.14. 如图2,一下水管道横截面为圆形,直径为100 cm ,下雨前水面宽为60 cm ,一场大雨过后,水面宽为80 cm,则水位上升________cm.链接听P39例4归纳总结15. 在Rt△ABC中,∠C=90°,BC=3,AC=4,点P在以点C为圆心,5为半径的圆上,连接PA,PB.若PB=4,则PA的长为________.16. 如图,定长弦CD在以AB为直径的⊙O上滑动(点C,D与点A,B不重合),M是CD的中点,过点C作CP⊥AB于点P.若CD=3,AB=8,PM=l,则l的最大值是________.三、解答题17.如图①,在△ABC中,点D在边BC上,∠ABC ∶∠ACB ∶∠ADB=1∶2∶3,⊙O是△ABD的外接圆.(1)求证:AC是⊙O的切线;(2)当BD是⊙O的直径时(如图②),求∠CAD的度数.18. 已知:如图5,在⊙O中,M,N分别为弦AB,CD的中点,AB=CD,AB 不平行于CD.求证:∠AMN=∠CNM.19.如图,在△ABC 中,以AB 为直径的⊙O 分别与BC ,AC 相交于点D ,E ,BD =C D ,过点D 作⊙O 的切线交边AC 于点F. (1)求证:DF ⊥AC ;(2)若⊙O 的半径为5,∠CDF =30°,求BD ︵的长.(结果保留π)20. 如图,在Rt △ABC 中,∠ABC =90°,以AB 为直径作半圆O 交AC 于点D ,E 为BC 的中点,连接DE. (1)求证:DE 是半圆O 的切线;(2)若∠BAC =30°,DE =2,求AD 的长.21. (2019•辽阳)如图,BE 是⊙O 的直径,点A 和点D 是⊙O 上的两点,连接AE ,AD ,DE ,过点A 作射线交BE 的延长线于点C ,使EAC EDA ∠=∠. (1)求证:AC 是⊙O 的切线;(2)若23CE AE==,求阴影部分的面积.22. 已知平面直角坐标系中两定点A(-1, 0)、B(4, 0),抛物线y=ax2+bx-2(a ≠0)过点A、B,顶点为C,点P(m, n)(n<0)为抛物线上一点.(1)求抛物线的解析式和顶点C的坐标;(2)当∠APB为钝角时,求m的取值范围;(3)若m>32,当∠APB为直角时,将该抛物线向左或向右平移t(0<t<52)个单位,点C、P平移后对应的点分别记为C′、P′,是否存在t,使得顺次首尾连接A、B、P′、C′所构成的多边形的周长最短?若存在,求t的值并说明抛物线平移的方向;若不存在,请说明理由.2021中考专题训练:圆的有关性质-答案一、选择题1. 【答案】B[解析]如图,连接AD,∵AB为☉O的直径,∴∠ADB=90°.∵∠A和∠BCD都是所对的圆周角,∴∠A=∠BCD=40°,∴∠ABD=90°-40°=50°.故选B.2. 【答案】A[解析]记线段OP交☉O于点F.连接CO,CF,∵∠A=119°,∴∠BFC=61°,∴∠BOC=122°,∴∠COP=58°.∵CP与圆相切于点C,∴OC⊥CP,∴在Rt△OCP中,∠P=90°-∠COP=32°,故选A.3. 【答案】B[解析]连接CO ,DO ,因为AC ,BD 分别与☉O 相切于C ,D ,所以∠ACO=∠BDO=90°,所以∠AOC=∠A=45°,所以CO=AC=4, 因为AC=BD ,CO=DO ,所以OD=BD ,所以∠DOB=∠B=45°, 所以∠DOC=180°-∠DOB -∠AOC=180°-45°-45°=90°,==2π,故选B .4. 【答案】B5. 【答案】C6.【答案】C【解析】由CD 为腰上的高,I 为△ACD 的内心,则∠IAC +∠ICA =12(∠DAC +∠DCA)=12(180°-∠ADC)=12(180°-90°)=45°,所以∠AIC =180°-(∠IAC +∠ICA)=180°-45°=135°.又可证△AIB ≌△AIC ,得∠AIB =∠AIC =135°.7. 【答案】C8. 【答案】D[解析] 如图,连接OB ,OA ,OP ,设OB 与AP 交于点D.由PB=AB 可知PB ︵=AB ︵,从而可知OB ⊥AP.运用“一条弧所对的圆周角等于它所对的圆心角的一半”及“同圆的半径相等”可知△OAB 为等边三角形,在Rt △OAD 中,运用“在直角三角形中,30°角所对的直角边等于斜边的一半”及勾股定理列方程可求得AD 的长,从而可求出AP 的长为5 3.故选D.二、填空题9. 【答案】20 [解析]如图,连接DO ,∵CO ⊥AB , ∴∠COB=90°,∵∠AEC=65°,∴∠C=25°,∵OD=OC ,∴∠ODC=∠C=25°,∴∠DOC=130°,∴∠DOB=40°,∵2∠BAD=∠DOB , ∴∠BAD=20°.10.【答案】62 【解析】根据直径所对的圆周角等于90°及∠BCD =28°,可得∠ACD =∠ACB -∠BCD =90°-28°=62°,再根据同弧所对圆周角相等有∠ABD =∠ACD =62°.11. 【答案】1[解析] ∵AB 为⊙O 的直径,∴∠ADB =90°. ∵∠B =∠ACD =30°, ∴AD =12AB =12×2=1.12. 【答案】40°13. 【答案】60°[解析] ∵OA ⊥BC ,∴AB ︵=AC ︵,∴∠AOB =2∠ADC.∵∠ADC=30°,∴∠AOB =60°.14. 【答案】10或70 [解析] 对于半径为50 cm 的圆而言,圆心到长为60 cm 的弦的距离为40 cm,到长为80 cm的弦的距离为30 cm.①当圆心在两平行弦之外时,两弦间的距离=40-30=10(cm);②当圆心在两平行弦之间时,两弦间的距离=40+30=70(cm).综上所述,水位上升10 cm或70 cm.15. 【答案】3或73[解析] 如图,连接CP,PB的延长线交⊙C于点P′.∵PC=5,BC=3,PB=4,∴BC2+PB2=PC2,∴△CPB为直角三角形,且∠CBP=90°,即CB⊥PB,∴PB=P′B=4.∵∠ACB=90°,∴PB∥AC.又∵PB=AC=4,∴四边形ACBP为平行四边形.又∵∠ACB=90°,∴▱ACBP为矩形,∴PA=BC=3.在Rt△APP′中,∵PA=3,PP′=8,∴P′A=82+32=73.综上所述,PA的长为3或73.16. 【答案】34[解析] 如图,当CD∥AB时,PM的长最大,连接OM,OC.∵CD∥AB,CP⊥AB,∴CP⊥CD.∵M为CD的中点,OM过点O,∴OM⊥CD,∴∠OMC=∠PCD=∠CPO=90°,∴四边形CPOM是矩形,∴PM=OC.∵⊙O的直径AB=8,∴半径OC=4,∴PM=4.三、解答题17. 【答案】(1)证明:如解图,连接OA,OD.设∠ABC=x,∵∠ABC∶∠ACB∶∠ADB=1∶2∶3,∴∠ADB=3x,∠ACB=2x,解图∴∠DAC=x,∠AOD=2∠ABC=2x,∴∠OAD=180°-2x2=90°-x,(2分)∴∠OAC=90°-x+x=90°,∴OA⊥AC,又∵OA为⊙O的半径,∴AC是⊙O的切线.(4分)(2)解:∵BD是⊙O的直径,∴∠BAD=90°,∵∠ABC∶∠ACB∶∠ADB=1∶2∶3,∠ABC+∠ADB=90°,∴∠ABC+3∠ABC=90°,(6分)解得∠ABC=22.5°,∴∠ADB=67.5°,∠ACB=45°,∴∠CAD=∠ADB-∠ACB=22.5°.(8分)18. 【答案】证明:连接OM,ON,OA,OC,如图所示.∵M,N分别为AB,CD的中点,∴OM ⊥AB ,ON ⊥CD ,AM =12AB ,CN =12CD.又∵AB =CD ,∴AM =CN.在Rt △AOM 和Rt △CON 中,⎩⎨⎧OA =OC ,AM =CN ,∴Rt △AOM ≌Rt △CON(HL),∴OM =ON ,∴∠OMN =∠ONM ,∴∠AMO +∠OMN =∠CNO +∠ONM ,即∠AMN =∠CNM.19. 【答案】(1)证明:如解图,连接OD ,(1分)∵DF 是⊙O 的切线,D 为切点,解图∴OD ⊥DF ,∴∠ODF =90°,(2分)∵BD =CD ,OA =OB ,∴OD 是△ABC 的中位线,(3分)∴OD ∥AC ,∴∠CFD =∠ODF =90°,∴DF ⊥AC.(4分)(2)解:∵∠CDF =30°,由(1)得∠ODF =90°,∴∠ODB =180°-∠CDF -∠ODF =60°,∵OB =OD ,∴△OBD 是等边三角形,(7分)∴∠BOD =60°,∴lBD ︵=n πR 180=60π×5180=53π.(8分)20. 【答案】解:(1)证明:如图,连接BD ,OD ,OE.∵AB 为半圆O 的直径,∴∠ADB =∠BDC =90°.在Rt △BDC 中,E 为斜边BC 的中点,∴DE =BE.在△OBE 和△ODE 中,⎩⎨⎧OB =OD ,OE =OE ,BE =DE ,∴△OBE ≌△ODE(SSS),∴∠ODE =∠ABC =90°,即OD ⊥DE.又∵OD 是半圆O 的半径,∴DE 是半圆O 的切线.(2)在Rt △ABC 中,∠BAC =30°,∴BC =12AC. ∵BC =2DE =4,∴AC =8.又∵∠C =90°-∠BAC =60°,DE =BE =EC ,∴△DEC 为等边三角形,∴DC =DE =2,∴AD =AC -DC =6.21. 【答案】(1)如图,连接OA ,过O 作OF AE ⊥于F ,∴90AFO ∠=︒,∴90EAO AOF ∠+∠=︒,∵OA OE =, ∴12EOF AOF AOE ∠=∠=∠, ∵12EDA AOE ∠=∠, ∴EDA AOF ∠=∠,∵EAC EDA ∠=∠,∴EAC AOF ∠=∠,∴90EAO EAC ∠+∠=︒,∵EAC EAO CAO ∠+∠=∠,∴90CAO ∠=︒,∴OA AC ⊥,∴AC 是⊙O 的切线.(2)∵CE AE ==∴C EAC ∠=∠,∵EAC C AEO ∠+∠=∠,∴2AEO EAC ∠=∠,∵OA OE =,AEO EAO ∠=∠,∴2EAO EAC ∠=∠,∵90EAO EAC ∠+∠=︒,∴30EAC ∠=︒,60EAO ∠=︒,∴OAE △是等边三角形,∴OA AE =,60EOA ∠=︒,∴OA =∴260π2π360=AOE S ⋅⨯=扇形,在Rt OAE △中,sin 3OF OA EAO =⋅∠==,∴11322AOE S AE OF =⋅=⨯=△∴阴影部分的面积=2π33-.22. 【答案】(1)因为抛物线y=ax2+bx-2与x轴交于A(-1, 0)、B(4, 0)两点,所以y=a(x+1)(x-4)=ax2-3ax-4a.所以-4a=-2,b=-3a.所以12a=,32b=-.所以221313252()22228y x x x=--=--。
九年级数学中考一轮复习圆的有关性质填空题专题训练(附答案)1.如图,ABC 中,60BAC ∠=︒,45ABC ∠=︒,D 是边BC 上(不与端点重合)的一个动点,以AD 为直径画O 分别交AB ,AC 于E ,F ,连接EF ,若线段AD 长度的最小值为3,则线段EF 长度的最小值为__________.2.如图,D 、E 是以AB 为直径的半圆O 上任意两点,连接AD 、AE 、DE ,AE 与BD 相交于点C ,要使ADC 与ABD △相似,可以添加的一个条件是___________(填正确结论的序号).①ACD DAB ∠=∠;②AD DE =;③2AD BD CD =⋅;④CD AB AC BD ⋅=⋅.3.如图,在Rt ABC △中,90C ∠=︒,6AC =,30B ∠=︒,点F 在边AC 上,并且2CF =,点E 为边BC 上的动点,将CEF △沿直线EF 翻折,点C 落在点P 处,则点P 到边AB 距离的最小值是______.4.如图,点(2,0)A 、(0,1)M 分别是x 轴和y 轴上两点,点B 是以M 为圆心、1为半径的圆上的一个动点,连接AB ,点C 是AB 的中点,连接OC ,则OC 的最大值为________.5.如图是一个隧道的横截面,它的形状是以点O 为圆心的圆的一部分.如果M 是弦CD 的中点,EM 经过圆心O 交O 于点E ,并且4CD m =,6EM m =,则O 的半径为________m .6.如图所示,已知C 为AB 的中点,OA ⊥CD 于M ,CN ⊥OB 于N ,若OA =r ,ON =a ,则CD =_____.7.如图,平面直角坐标系xOy 中,M 点的坐标为(3,0),⊙M 的半径为2,过M 点的直线与⊙M 的交点分别为A ,B ,则△AOB 的面积的最大值为_____,此时A ,B 两点所在直线与x 轴的夹角等于_____°.8.如图,圆心B 在y 轴的负半轴上,半径为5的B 与y 轴的正半轴交于点()0,1A ,过点()0,7P -的直线l 与OB 相交于C 、D 两点,则弦CD 长的所有可能的整数值是___________.9.如图,O 的两条弦AB CD ⊥,若130AOD ∠=︒,则BOC ∠=________.10.如图,在半径为13的⊙O 中,弦AB 与CD 交于点E ,75DEB ∠=︒,6AB =,1AE =,则CD 的长是______.11.如图,在扇形AOB 中,点C 、D 在AB 上,连接AD 、BC 交于点E ,若120AOB ∠=︒,CD 的度数为50°,则AEB ∠=_____°.12.在平面直角坐标系中,⊙C 的圆心坐标为(1,0),AB 为⊙C 的直径,若点A 的坐标为(a ,b ),则点B 的坐标为________.13.在平面直角坐标系中,已知A (3,0),B (-1,0),点C 是y 轴上一动点,当∠BCA=45°时,点C 的坐标为_____________.14.如图,线段AB 是⊙O 的直径,弦CD ⊥AB 于点H ,点M 是CBD 上任意一点,AH =2,CH =4.则sin ∠CMD=________.15.在平面直角坐标系中,以原点O 为圆心的圆过点()0,13M ,直线43=-+y kx k 与O 交于B 、C 两点则弦BC 的长最小值为______.16.如图,AB 是⊙O 的弦,OC ⊥AB ,垂足为点C ,将劣弧AB 沿弦AB 折叠与OC 交于OC 的中点D ,若AB =210,则⊙O 的半径为_____________17.如图,已知AB 是⊙O 的直径,AB =6,C ,D 是圆周上的点,且∠CDB =30°,则BC 的长为_____.18.⊙O 的半径为1,AB 、AC 是⊙O 的两条弦,AB=2、AC=3,则∠CAB 所对圆周角的度数为_______.19.如图,在圆O 的内接五边形ABCDE 中,40CAD ∠=︒,则B E ∠+∠=_______°.20.如图,已知正方形ABCD 的边长为2,点M 和N 分别从B 、C 同时出发,以相同的速度沿BC 、CD 方向向终点C 和D 运动.连接AM ,BN 交于点P ,则PC 长的最小值为____________.21.ABC 是边长为5的等边三角形,点D 在ABC 的外部且30BDC ∠=︒,则AD 的最大值是______.22.如图,⊙O 的直径为5,在⊙O 上位于直径AB 的异侧有定点C 和动点P ,已知BC :CA =4:3,点P 在半圆弧AB 上运动(不与A ,B 重合),过C 作CP 的垂线CD 交PB 的延长线于D 点.则△PCD 的面积最大为______________.23.如图,AB 是⊙O 的直径,点C 在圆上,直线l 经过点C ,且l ∥AB ,P 为直线l 上一个动点,若AC =4,BC =3,以点P ,A ,C 为顶点的三角形与△ABC 相似,则PC =_____.24.如图,直线33y x =+交x 轴于点A ,交y 轴于点B .以A 为圆心,以AB 为半径作弧交x 轴于点A 1;过点A 1作x 轴的垂线,交直线 AB 于点B 1,以A 为圆心,以AB 1为半径作弧交x 轴于点 A 2;…,如此作下去,则点n A 的坐标为___________;25.如图,AB是⊙O的直径,C是BA延长线上一点,点D在⊙O上,且CD=OA,CD 的延长线交⊙O于点E,若∠BOE=54°,则∠C=______.26.如图,AB是⊙O的直径,C、D是⊙O上的两个动点(点C、D不与A、B重合),在运动过程中弦CD始终保持不变,F是弦CD的中点,过点C作CE⊥AB于点E.若CD=5,AB=6,当EF取得最大值时,CE的长度为__________.27.如图,在半径为10cm的⊙O中,圆心O到弦AB的距离OC为6cm,则弦AB的长为_____________cm.28.如图,BC为半圆O的直径,EF⊥BC于点F,且BF:FC=5:1,若AB=8,AE=2,则AD的长为__________.参考答案1.32. 2.①②③3.24 5.1036.7.6 908.8,9,10.9.50︒10.11.14512.()2,a b --13.(0,)或(0,) 14.4515.2416..17.318.15°或75°19.2202021.522.50323.3.2或524.(2n ﹣1,0)25.18°.26 27.1628.12。
2021中考数学 几何专题训练圆的有关性质一、选择题(本大题共10道小题)1. 如图,⊙O 过点B 、C ,圆心O 在等腰直角△ABC 的内部,∠BAC =90°,OA =1,BC =6,则⊙O 的半径为( )A. 10B. 2 3C.13 D. 3 22. 如图,AB 是⊙O 的直径,CD 为弦,CD ⊥AB 于点E ,则下列结论中不成立...的是( )A .∠COE =∠DOEB .CE =DEC .OE =BED.BD ︵=BC ︵3. 如图,AB 是⊙O 的直径,BC ︵=CD ︵=DE ︵,∠COD =34°,则∠AEO 的度数是( )A.51°B.56°C.68°D.78°4. 如图,AB是⊙O的直径,弦CD⊥AB于点E.若AB=8,AE=1,则弦CD的长是( )A.7 B.27 C.6 D.85. 在⊙O中,圆心角∠AOB=3∠COD(∠COD<60°),则劣弧AB,劣弧CD的大小关系是( )A.AB︵=3CD︵B.AB︵>3CD︵C.AB︵<3CD︵D.3AB︵<CD︵6. 2019·梧州如图,在半径为13的⊙O中,弦AB与CD 交于点E,∠DEB=75°,AB=6,AE=1,则CD的长是( )A.2 6 B.2 10 C.2 11D.4 37. 如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6 cm.若不计容器壁厚度,则球的半径为( )A.5 cm B.6 cm C.7 cm D.8 cm8. 如图,将半径为6的⊙O沿AB折叠,AB︵与垂直于AB的半径OC交于点D,且CD=2OD,则折痕AB的长为( )A.4 2 B.8 2 C.6D.6 39. 2020·武汉模拟小名同学响应学习号召,在实际生活中发现问题,并利用所学的数学知识解决问题,他将汽车轮胎如图放置在地面台阶直角处,他测量了台阶高a 为160 mm ,直角顶点A 到轮胎与地面接触点B 的距离AB 为320 mm ,请帮小名同学计算轮胎的直径为( )A .350 mmB .700 mmC .800 mmD .400 mm10. (2019•仙桃)如图,AB 为的直径,BC为的切线,弦AD ∥OC ,直线CD 交的BA 延长线于点E ,连接BD .下列结论:①CD 是的切线;②;③;④.其中正确结论的个数有A .4个B .3个C .2个D .1个O O O CO DB ⊥EDA EBD △∽△ED BC BO BE ⋅=⋅二、填空题(本大题共8道小题)11. 如图所示,AB为☉O的直径,点C在☉O上,且OC⊥AB,过点C的弦CD与线段OB相交于点E,满足∠AEC=65°,连接AD,则∠BAD= 度.12. 如图,AB是⊙O的直径,C,D是⊙O上的两点,若∠BCD=28°,则∠ABD=________°.13. 2018·孝感已知⊙O的半径为10 cm,AB,CD是⊙O的两条弦,AB∥CD,AB=16 cm,CD=12 cm,则弦AB和CD 之间的距离是________cm.14. 已知:如图,A,B是⊙O上的两点,∠AOB=120°,C 是AB︵的中点,则四边形OACB是________.(填特殊平行四边形的名称)15. 如图,点A,B,C都在⊙O上,OC⊥OB,点A在BC︵上,且OA=AB,则∠ABC=________°.16. 如图,在⊙O中,BD为⊙O的直径,弦AD的长为3,AB的长为4,AC平分∠DAB,则弦CD的长为________.17. 如图2,一下水管道横截面为圆形,直径为100 cm,下雨前水面宽为60 cm,一场大雨过后,水面宽为80 cm,则水位上升________cm.链接听P39例4归纳总结18. 只用圆规测量∠XOY 的度数,方法是:以顶点O 为圆心任意画一个圆,与角的两边分别交于点A ,B(如图),在这个圆上顺次截取AB ︵=BC ︵=CD ︵=DE ︵=EF ︵=…,这样绕着圆一周一周地截下去,直到绕第n 周时,终于使第m(m >n)次截得的弧的末端恰好与点A 重合,那么∠XOY 的度数等于________.三、解答题(本大题共4道小题)19. 如图,直线AB 经过⊙O 上的点C ,直线AO 与⊙O 交于点E 和点D ,OB 与⊙O 交于点F ,连接DF ,DC.已知OA =OB ,CA =CB.(1)求证:直线AB 是⊙O 的切线; (2)求证:∠CDF =∠EDC ;(3)若DE =10,DF =8,求CD 的长.20. 如图,AB为⊙O的直径,C为圆外一点,AC交⊙O于点D,BC2=CD·CA,ED︵=BD︵,BE交AC于点F.(1)求证:BC为⊙O的切线;(2)判断△BCF的形状并说明理由;(3)已知BC=15,CD=9,∠BAC=36°,求BD︵的长度(结果保留π).21. 如图,点E是△ABC的内心,线段AE的延长线交BC 于点F(∠AFC≠90°),交△ABC的外接圆于点D.(1)求点F与△ABC的内切圆⊙E的位置关系;(2)求证:ED=BD;(3)若∠BAC=90°,△ABC的外接圆的直径是6,求BD的长;(4)B ,C ,E 三点可以确定一个圆吗?若可以,则它们确定的圆的圆心和半径分别是什么?若不可以,请说明理由.22. (2019•辽阳)如图,是⊙的直径,点和点是⊙上的两点,连接,,,过点作射线交的延长线于点,使. (1)求证:是⊙的切线; (2)若,求阴影部分的面积.BE O A D O AE AD DE A BE C EAC EDA ∠=∠AC O CE AE ==2021中考数学 几何专题训练:圆的有关性质-答案 一、选择题(本大题共10道小题)1. 【答案】C 【解析】延长AO 交BC 于点D ,连接OB.由AB =AC 得点A 在线段BC 的垂直平分线上,因而可得AD ⊥BC ,所以BD =3,不难得出AD =BD =3,于是OD =AD -OA =2,在R t △ODB 中,OB =OD 2+DB 2=22+32=13.2. 【答案】C3. 【答案】A [解析] ∵BC ︵=CD ︵=DE ︵,∠COD =34°, ∴∠BOC =∠COD =∠EOD =34°,∴∠AOE =180°-∠EOD -∠COD -∠BOC =78°. 又∵OA =OE ,∴∠AEO =∠OAE , ∴∠AEO =12×(180°-78°)=51°.4. 【答案】B [解析] 连接OC ,则OC =4,OE =3.在Rt △OCE 中,CE =OC2-OE2=42-32=7.因为AB ⊥CD ,所以CD =2CE =2 7.5. 【答案】A [解析] 把∠AOB三等分,得到的每一份角所对的弧都等于CD︵,因此有AB︵=3CD︵.6. 【答案】C7. 【答案】A [解析] 作出该球轴截面的示意图如图所示.依题意,得BE=2 cm,AE=CE=4 cm.设OE=x cm,则OA =(2+x)cm.∵OA2=AE2+OE2,∴(2+x)2=42+x2,解得x=3,故该球的半径为5 cm.8. 【答案】B [解析] 如图,延长CO交AB于点E,连接OB.∵CE⊥AB,∴AB=2BE.∵OC=6,CD=2OD,∴CD=4,OD=2,OB=6.由折叠的性质可得DE=12×(6×2-4)=4,∴OE=DE-OD=4-2=2.在Rt△OEB中,BE=OB2-OE2=62-22=4 2,∴AB=8 2.故选B.9. 【答案】C10. 【答案】A【解析】如图,连接.∵为的直径,为的切线,∴,∵,∴,.又∵,∴,∴.在和中,,∴,∴.又∵点在上,∴是的切线,故①正确,∵,∴,∵,∴垂直平分,即,故②正确;DOAB O BC O90CBO∠=︒AD OC∥DAO COB∠=∠ADO COD∠=∠OA OD=DAO ADO∠=∠COD COB∠=∠COD△COB△CO COCOD COBOD OB=⎧⎪∠=∠⎨⎪=⎩COD COB△≌△90CDO CBO∠=∠=︒D O CD OCOD COB△≌△CD CB=OD OB=CO DB CO DB⊥∵为的直径,为的切线,∴, ∴,∴,∵,∴,∴,∵,∴,故③正确;∵,,∴,∴,∵,∴,故④正确,故选A .二、填空题(本大题共8道小题)11. 【答案】20 [解析]如图,连接DO ,∵CO ⊥AB ,∴∠COB=90°,∵∠AEC=65°,∴∠C=25°,∵OD=OC ,∴∠ODC=∠C=25°,∴∠DOC=130°,∴∠DOB=40°,∵2∠BAD=∠DOB ,∴∠BAD=20°.12. 【答案】62 【解析】根据直径所对的圆周角等于90°及∠BCD =28°,可得∠ACD =∠ACB -∠BCD =90°-28°=62°,再根据同弧所对圆周角相等有∠ABD =∠ACD =AB O DC O 90EDO ADB ∠=∠=︒90EDA ADO BDO ADO ∠+∠=∠+∠=︒ADE BDO ∠=∠OD OB =ODB OBD ∠=∠EDA DBE ∠=∠E E ∠=∠EDA EBD △∽△90EDO EBC ∠=∠=︒E E ∠=∠EOD ECB △∽△ED OD BE BC =OD OB =ED BC BO BE ⋅=⋅62°.13. 【答案】2或14 [解析] ①当弦AB和CD在圆心同侧时,连接OA,OC,过点O作OE⊥CD于点F,交AB于点E,如图①,∵AB=16 cm,CD=12 cm,∴AE=8 cm,CF=6 cm.∵OA=OC=10 cm,∴EO=6 cm,OF=8 cm,∴EF=OF-OE=2 cm;②当弦AB和CD在圆心异侧时,连接OA,OC,过点O作OE⊥CD于点E并反向延长交AB于点F,如图②,∵AB=16 cm,CD=12 cm,∴AF=8 cm,CE=6 cm.∵OA=OC=10 cm,∴OF=6 cm,OE=8 cm,∴EF=OF+OE=14 cm.∴AB与CD之间的距离为2 cm或14 cm.14. 【答案】菱形[解析] 连接OC.∵C是AB︵的中点,∴∠AOC=∠COB=60°.又∵OA=OC=OB,∴△OAC和△OCB都是等边三角形,∴OA=AC=BC=OB,∴四边形OACB是菱形.15. 【答案】15 [解析] ∵OC⊥OB,∴∠COB=90°. 又∵OC=OB,∴△COB是等腰直角三角形,∴∠OBC=45°.∵OA=AB,OA=OB,∴OA=AB=OB,∴△AOB是等边三角形,∴∠OBA=60°,∴∠ABC=∠OBA-∠OBC=15°.16. 【答案】522 [解析] ∵BD为⊙O的直径,∴∠DAB=∠DCB=90°.∵AD=3,AB=4,∴BD=5.又∵AC平分∠DAB,∴∠DAC=∠BAC=45°,∴∠DBC=∠DAC=45°,∠CDB=∠BAC=45°,从而CD =CB ,∴CD =522.17. 【答案】10或70 [解析] 对于半径为50 cm 的圆而言,圆心到长为60 cm 的弦的距离为40 cm ,到长为80 cm 的弦的距离为30 cm.①当圆心在两平行弦之外时,两弦间的距离=40-30=10(cm);②当圆心在两平行弦之间时,两弦间的距离=40+30=70(cm).综上所述,水位上升10 cm 或70 cm.18. 【答案】⎝ ⎛⎭⎪⎪⎫360n m °[解析] 设∠XOY 的度数为x ,则mx=n ×360°,所以x =⎝ ⎛⎭⎪⎪⎫360n m °.三、解答题(本大题共4道小题)19. 【答案】解:(1)证明:如图,连接OC.∵OA =OB ,AC =CB ,∴OC ⊥AB.又∵点C 在⊙O 上,∴直线AB是⊙O的切线.(2)证明:∵OA=OB,AC=CB,∴∠AOC=∠BOC.∵OD=OF,∴∠ODF=∠OFD.∵∠AOB=∠ODF+∠OFD=∠AOC+∠BOC,∴∠BOC=∠OFD,∴OC∥DF,∴∠CDF=∠OCD.∵OD=OC,∴∠ODC=∠OCD,∴∠CDF=∠EDC.(3)如图,过点O作ON⊥DF于点N,延长DF交AB于点M.∵ON⊥DF,∴DN=NF=4.在Rt△ODN中,∵∠OND=90°,OD=5,DN=4,∴ON=OD2-DN2=3.由(2)知OC∥DF,∴∠OCM+∠CMN=180°.由(1)知∠OCM=90°,∴∠CMN=90°=∠OCM=∠MNO,∴四边形OCMN是矩形,∴CM=ON=3,MN=OC=5.在Rt△CDM中,∵∠DMC=90°,CM=3,DM=DN+MN =9,∴CD=DM2+CM2=92+32=310.20. 【答案】(1)证明:∵BC2=CD·CA,∴BCCA=CD BC,∵∠C=∠C,∴△CBD∽△CAB,∴∠CBD=∠BAC,又∵AB为⊙O的直径,∴∠ADB=90°,即∠BAC+∠ABD=90°,∴∠ABD+∠CBD=90°,即AB⊥BC,又∵AB为⊙O的直径,∴BC为⊙O的切线;(2)解:△BCF为等腰三角形.证明如下:∵ED︵=BD︵,∴∠DAE=∠BAC,又∵△CBD∽△CAB,∴∠BAC=∠CBD,∴∠CBD=∠DAE,∵∠DAE=∠DBF,∴∠DBF=∠CBD,∵∠BDF=90°,∴∠BDC=∠BDF=90°,∵BD=BD,∴△BDF≌△BDC,∴BF=BC,∴△BCF为等腰三角形;(3)解:由(1)知,BC为⊙O的切线,∴∠ABC=90°∵BC2=CD·CA,∴AC=BC2CD=1529=25,由勾股定理得AB=AC2-BC2=252-152=20,∴⊙O的半径为r=AB2=10,∵∠BAC=36°,∴BD︵所对圆心角为72°.则BD︵=72×π×10180=4π.21. 【答案】解:(1)设⊙E切BC于点M,连接EM,则EM⊥BC.又线段AE的延长线交BC于点F,∠AFC≠90°,∴EF>EM,∴点F在△ABC的内切圆⊙E外.(2)证明:∵点E是△ABC的内心,∴∠BAD=∠CAD,∠ABE=∠CBE.∵∠CBD=∠CAD,∴∠BAD=∠CBD.∵∠BED=∠ABE+∠BAD,∠EBD=∠CBE+∠CBD,∴∠BED=∠EBD,∴ED=BD.(3)如图①,连接CD.设△ABC的外接圆为⊙O.∵∠BAC=90°,∴BC是⊙O的直径,∴∠BDC=90°.∵⊙O的直径是6,∴BC=6.∵E为△ABC的内切圆的圆心,∴∠BAD=∠CAD,∴BD=CD.又∵BD 2+CD 2=BC 2,∴BD =CD =3 2.(4)B,C ,E 三点可以确定一个圆.如图②,连接CD .∵点E 是△ABC 的内心,∴∠BAD =∠CAD ,∴BD =CD .又由(2)可知ED =BD ,∴BD =CD =ED ,∴B ,C ,E 三点确定的圆的圆心为点D ,半径为BD (或ED ,CD )的长度.22. 【答案】(1)如图,连接,过作于,∴,∴,OA O OF AE ⊥F 90AFO ∠=︒90EAO AOF ∠+∠=︒∵,∴, ∵, ∴, ∵, ∴, ∴, ∵, ∴, ∴,∴是⊙的切线.(2)∵, ∴, ∵, ∴, ∵,, ∴, ∵, OA OE =12EOF AOF AOE ∠=∠=∠12EDA AOE ∠=∠EDA AOF ∠=∠EAC EDA ∠=∠EAC AOF ∠=∠90EAO EAC ∠+∠=︒EAC EAO CAO ∠+∠=∠90CAO ∠=︒OA AC ⊥ACO CE AE ==C EAC ∠=∠EAC C AEO ∠+∠=∠2AEO EAC ∠=∠OA OE =AEO EAO ∠=∠2EAO EAC ∠=∠90EAO EAC ∠+∠=︒∴,, ∴是等边三角形, ∴,, ∴,∴, 在中,, ∴, ∴阴影部分的面积.30EAC ∠=︒60EAO ∠=︒OAE △OA AE =60EOA ∠=︒OA=2πAOE S =扇形Rt OAE△sin 3OF OA EAO =⋅∠==11322AOE S AE OF =⋅=⨯=△=2π-。
2021年中考数学专题汇编:圆的有关性质(含答案)2021中考数学专题汇编:圆的有关性质一、选择题(本大题共10道小题)1. 如图,已知直径MN ⊥弦AB ,垂足为C ,有下列结论:①AC =BC ;②AN ︵=BN ︵;③AM ︵=BM ︵;④AM =BM .其中正确的个数为( )A .1B .2C .3D .42. 如图,☉O的直径AB 垂直于弦CD.垂足是点E ,∠CAO=22.5°,OC=6,则CD 的长为 ( )A .6B .3C .6D .123. 如图,AB 是⊙O的直径,点C ,D ,E 在⊙O 上.若∠AED =20°,则∠BCD的度数为( )A .100°B .110°C .115°D .120°4. 2019·葫芦岛如图,在⊙O 中,∠BAC =15°,∠ADC =20°,则∠ABO 的度数为( )A .70°B .55°C .45°D .35°5. 2019·赤峰如图,AB是⊙O的弦,OC⊥AB交⊙O于点C,D 是⊙O上一点,∠ADC=30°,则∠BOC的度数为()A.30°B.40°C.50°D.60°6. 如图,在⊙O中,已知∠OAB=22.5°,则∠C的度数为()A.135°B.122.5°C.115.5°D.112.5°7. 如图,在平面直角坐标系中,⊙P的圆心是(2,a)(a>2),半径为2,函数y=x 的图象被⊙P截得的弦AB的长为2 3,则a的值是()A.2 B.2+ 2C.2 3 D.2+ 38. 如图,⊙P与x轴交于点A(—5,0),B(1,0),与y轴的正半轴交于点C.若∠ACB=60°,则点C的纵坐标为()A.13+ 3 B .2 2+ 3C .4 2D .2 2+29. 如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6 cm.若不计容器壁厚度,则球的半径为( )A .5 cmB .6 cmC .7 cmD .8 cm10. 一条排水管的截面如图所示,已知排水管的半径OA =1 m ,水面宽AB =1.2m ,某天下雨后,排水管水面上升了0.2 m ,则此时排水管水面宽为( )A .1.4 mB .1.6 mC .1.8 mD .2 m二、填空题(本大题共8道小题)11. 2019·随州如图,点A ,B ,C 在⊙O 上,点C 在AMB ︵上.若∠OBA =50°,则∠C 的度数为________.12. 如图,AB 为⊙O的直径,弦CD ⊥AB 于点E ,已知CD =6,EB =1,则⊙O 的半径为________.13. 已知:如图,A ,B是⊙O 上的两点,∠AOB =120°,C 是AB ︵的中点,则四边形OACB 是________.(填特殊平行四边形的名称)14. 如图,四边形ABCD 内接于⊙O ,AB 为⊙O 的直径,C 为弧BD 的中点.若∠DAB =40°,则∠ABC =________°.15. 如图所示,OB ,OC是⊙O 的半径,A 是⊙O 上一点.若∠B =20°,∠C =30°,则∠A =________°.16. 如图,已知等腰三角形ABC 中,∠ACB =120°且AC =BC =4,在平面内任作∠APB =60°,则BP 的最大值为________.17. 如图,在☉O 中,弦AB=1,点C 在AB 上移动,连接OC ,过点C 作CD ⊥OC 交☉O 于点D ,则CD 的最大值为 .18. 已知⊙O的半径为2,弦BC =2 3,A 是⊙O 上一点,且AB ︵=AC ︵,直线AO 与BC 交于点D ,则AD 的长为________.三、解答题(本大题共4道小题)19.如图,在△ABC 中,以AB 为直径的⊙O 分别与BC ,AC 相交于点D ,E ,BD =C D ,过点D 作⊙O 的切线交边AC 于点F. (1)求证:DF ⊥AC ;(2)若⊙O 的半径为5,∠CDF =30°,求BD ︵的长.(结果保留π)20. 如图,在⊙O 中,AB =DE ,BC =EF .求证:AC =DF .21. 如图为一拱形公路桥,圆弧形桥拱的水面跨度AB =80米,桥拱到水面的最大高度为20米. (1)求桥拱的半径;(2)现有一艘宽60米,船舱顶部为长方形并高出水面9米的轮船要经过这里,这艘轮船能顺利通过这座拱桥吗?请说明理由.22.如图,AB是⊙O的直径,点E为线段OB上一点(不与O、B重合),作EC⊥OB交⊙O于点C,作直径CD过点C的切线交DB的延长线于点P,作AF⊥PC于点F,连接CB.(1)求证:AC平分∠F AB;(2)求证:BC2=CE·CP;(3)当AB=43且CFCP=34时,求劣弧BD︵的长度.2021中考数学专题汇编:圆的有关性质-答案一、选择题(本大题共10道小题)1. 【答案】D2. 【答案】A[解析]∵∠A=22.5°,∴∠COE=45°,∵☉O的直径AB垂直于弦CD,∴∠CEO=90°,CE=DE.∵∠COE=45°,∴CE=OE=OC=3,∴CD=2CE=6,故选A.3. 【答案】B[解析] 连接AC.∵AB为⊙O的直径,∴∠ACB=90°.∵∠AED=20°,∴∠ACD=20°,∴∠BCD=∠ACB+∠ACD=110°.故选B.4. 【答案】B5. 【答案】D6. 【答案】D[解析] ∵OA=OB,∴∠OAB=∠OBA=22.5°,∴∠AOB=180°-22.5°-22.5°=135°,∴∠C=180°-12×135°=112.5°.7. 【答案】B[解析] 如图,连接PB,过点P作PC⊥AB于点C,过点P作横轴的垂线,垂足为E,交AB于点D,则PB=2,BC=3.在Rt△PBC中,由勾股定理得PC=1.∵直线y=x平分第一象限的夹角,∴△PCD和△DEO都是等腰直角三角形,∴PD=2,DE=OE=2,∴a=PE=2+ 2.故选B.8. 【答案】B[解析] 如图,连接PA,PB,PC,过点P作PD⊥AB 于点D,PE ⊥OC于点E.∵∠ACB=60°,∴∠APB=120°.∵PA=PB,∴∠PAB=∠PBA=30°.∵A(-5,0),B(1,0),∴AB=6,∴AD=BD=3,∴PD=3,PA=PB=PC=2 3.∵PD⊥AB,PE⊥OC,∠AOC=90°,∴四边形PEOD是矩形,∴OE=PD=3,PE=OD=3-1=2,∴CE=PC2-PE2=12-4=2 2,∴OC=CE+OE=2 2+3,∴点C的纵坐标为2 2+ 3.故选B.9. 【答案】A[解析] 作出该球轴截面的示意图如图所示.依题意,得BE=2 cm,AE=CE=4 cm.设OE=x cm,则OA=(2+x)cm.∵OA2=AE2+OE2,∴(2+x)2=42+x2,解得x=3,故该球的半径为5 cm.10. 【答案】B[解析] 如图,过点O作OE⊥AB于点E,交CD于点F,连接OC.∵AB=1.2 m,OE⊥AB,OA=1 m,∴AE=0.6 m,∴OE=0.8 m.∵排水管水面上升了0.2 m,∴OF=0.8-0.2=0.6(m).由题意可知CD∥AB.∵OE⊥AB,∴OE⊥CD,∴CF=OC2-OF2=0.8 m,CD=2CF,∴CD =1.6 m .故选B.二、填空题(本大题共8道小题)11. 【答案】40°12. 【答案】5[解析] 设圆的半径为x ,则OE =x -1.根据垂径定理可知,CE =3,由勾股定理可得32+(x -1)2=x2,解得x =5. 故答案为5.13. 【答案】菱形[解析] 连接OC.∵C 是AB ︵的中点,∴∠AOC =∠COB =60°. 又∵OA =OC =OB ,∴△OAC 和△OCB 都是等边三角形,∴OA =AC =BC =OB ,∴四边形OACB 是菱形.14. 【答案】70[解析] 如图,连接AC.∵AB 为⊙O 的直径,∴∠ACB =90°.∵C为弧BD 的中点,∴∠CAB =12∠DAB =20°,∴∠ABC =70°.15. 【答案】50[解析] 连接OA ,则OA =OB ,OA =OC ,∴∠OAB =∠B ,∠OAC =∠C ,∴∠BAC =∠OAB +∠OAC =∠B +∠C =20°+30°=50°.16. 【答案】8[解析] 由题意可得A ,P ,B ,C 在同一个圆上,所以当BP 为圆的直径时,BP 最大,此时∠P AB =90°.过点C 作CD ⊥AB 于点D ,可求得AB =4 3,进而可求得BP 的最大值为8.17. 【答案】[解析]连接OD ,因为CD ⊥OC ,所以CD=,根据题意可知圆半径一定,故当OC 最小时CD 最大.当OC ⊥AB 时OC 最小,CD 最大值=AB=.18. 【答案】3或1 [解析] 如图所示:∵⊙O 的半径为2,弦BC =2 3,A 是⊙O 上一点,且AB ︵=AC ︵,∴AO ⊥BC ,垂足为D ,则BD =12BC = 3. 在Rt △OBD 中,∵BD2+OD2=OB2,即(3)2+OD2=22,解得OD =1.∴当点A 在如图①所示的位置时,AD =OA -OD =2-1=1;当点A 在如图②所示的位置时,AD =OA +OD =2+1=3.三、解答题(本大题共4道小题)19. 【答案】(1)证明:如解图,连接OD ,(1分) ∵DF 是⊙O 的切线,D 为切点,解图∴OD ⊥DF ,∴∠ODF =90°,(2分) ∵BD =CD ,OA =OB ,∴OD 是△ABC 的中位线,(3分) ∴OD ∥AC ,∴∠CFD =∠ODF =90°,∴DF ⊥AC.(4分)(2)解:∵∠CDF =30°,由(1)得∠ODF =90°,∴∠ODB =180°-∠CDF -∠O DF =60°,∵OB =OD ,∴△OBD 是等边三角形,(7分) ∴∠BOD =60°,∴lBD ︵=n πR 180=60π×5180=53π.(8分)20. 【答案】证明:∵AB =DE ,BC =EF ,∴AB ︵=DE ︵,BC ︵=EF ︵,∴AB ︵+BC ︵=DE ︵+EF ︵,∴AC ︵=DF ︵,∴AC =DF .21. 【答案】解:(1)如图①,设点E 是桥拱所在圆的圆心,连接AE ,过点E 作EF ⊥AB 于点F ,延长EF 交AB ︵于点D.根据垂径定理知F 是AB 的中点,D 是AB ︵的中点,DF 的长是桥拱到水面的最大高度,∴AF =FB =12AB =40米,EF =DE -DF =AE -DF. 由勾股定理,知AE2=AF2+EF2=AF2+(AE -DF)2. 设桥拱的半径为r 米,则r2=402+(r -20)2,解得r =50.答:桥拱的半径为50米.(2)这艘轮船能顺利通过这座拱桥.理由如下:如图②,由题意,知DE ⊥MN ,PM =12MN =30米,EF =50-20=30(米).在Rt △PEM中,PE =EM2-PM2=40米,∴PF =PE -EF =40-30=10(米).∵10米>9米,∴这艘轮船能顺利通过这座拱桥.22. 【答案】(1)证明:∵PF 切⊙O 于点C ,CD 是⊙O 的直径,∴CD ⊥PF ,又∵AF ⊥PC ,∴AF ∥CD ,∴∠OCA =∠CAF ,∵OA =OC ,∴∠OAC =∠OCA ,∴∠CAF =∠OAC ,∴AC 平分∠F AB ;(2)证明:∵AB 是⊙O 的直径,∴∠ACB =90°,∵∠DCP =90°,∴∠ACB =∠DCP =90°,又∵∠BAC =∠D ,∴△ACB ∽△DCP ,∴∠EBC =∠P ,∵CE ⊥AB ,∴∠BEC =90°,∵CD 是⊙O 的直径,∴∠DBC =90°,∴∠CBP =90°,∴∠BEC =∠CBP ,∴△CBE ∽△CPB ,∴BC PC =CE CB ,∴BC 2=CE ·CP ;(3)解:∵AC 平分∠F AB ,CF ⊥AF ,CE ⊥AB ,∴CF =CE ,∵CF CP =34,∴CE CP =34,设CE =3k ,则CP =4k ,∴BC 2=3k ·4k =12k 2,∴BC =23k ,在Rt △BEC 中,∵sin ∠EBC =CE BC =3k 23k =32,∴∠EBC =60°,∴△OBC 是等边三角形,∴∠DOB =120°,∴BD ︵=120π·23180=43π3.。
2021中考数学 专题训练:圆的有关性质一、选择题1. 如图,AB ,AC 分别是☉O 的直径和弦,OD ⊥AC 于点D ,连接BD ,BC ,若AB=10,AC=8,则BD 的长为 ( )A .2B .4C .2D .4.82. 如图,在⊙O 中,点C 是AB ︵的中点,∠A =50°,则∠BOC =( )A . 40°B . 45°C . 50°D . 60°3. 如图,AB是⊙O 的直径,弦CD ⊥AB 于点E ,则下列结论正确的是( )A .OE =BEB.BC ︵=BD ︵C .△BOC 是等边三角形D .四边形ODBC 是菱形4. 如图,在半径为5的⊙O 中,弦AB =6,OP ⊥AB ,垂足为P ,则OP 的长为( )A .3B .2.5C .4D .3.55. 2019·武汉京山期中在圆柱形油槽内装有一些油,油槽直径MN 为10分米.截面如图,油面宽AB 为6分米,如果再注入一些油后,油面宽变为8分米,则油面AB 上升( )A .1分米B .4分米C .3分米D .1分米或7分米6. (2019•镇江)如图,四边形ABCD 是半圆的内接四边形,AB 是直径,DC CB =.若110C ∠=︒,则ABC ∠的度数等于A .55︒B .60︒C .65︒D .70︒7. 如图,在⊙O 内有折线OABC ,其中OA =8,AB =12,∠A =∠B =60°,则BC 的长为( )A .19B .16C .18D .208. 如图,△ABC 是⊙O 的内接三角形,∠C =30°,⊙O 的半径为5.若P 是⊙O 上的一点,在△ABP 中,PB =AB ,则PA 的长为( )A .5B.5 32C .5 2D .5 3二、填空题 9. 如图,AT 切⊙O 于点A ,AB 是⊙O 的直径.若∠ABT =40°,则∠ATB =________.10. 如图,一下水管道横截面为圆形,直径为100 cm,下雨前水面宽为60 cm,一场大雨过后,水面宽为80 cm,则水位上升了cm.11. 2018·孝感已知⊙O的半径为10 cm,AB,CD是⊙O的两条弦,AB∥CD,AB=16 cm,CD=12 cm,则弦AB和CD之间的距离是________cm.12. 如图0,A,B是⊙O上的两点,AB=10,P是⊙O上的动点(点P与A,B两点不重合),连接AP,PB,过点O分别作OE⊥AP于点E,OF⊥PB于点F,则EF=________.13. 如图,在☉O中,弦AB=1,点C在AB上移动,连接OC,过点C作CD⊥OC交☉O于点D,则CD的最大值为.14. 如图所示,动点C在⊙O的弦AB上运动,AB=23,连接OC,过点C作CD⊥OC交⊙O于点D,则CD的最大值为________.15. 如图,圆内接四边形ABCD中两组对边的延长线分别相交于点E,F,且∠A=55°,∠E=30°,则∠F=________°.16. 如图2,一下水管道横截面为圆形,直径为100 cm,下雨前水面宽为60 cm,一场大雨过后,水面宽为80 cm,则水位上升________cm.链接听P39例4归纳总结三、解答题17. 如图,已知△ABC内接于☉O,AB是直径,点D在☉O上,OD∥BC,过点D作DE⊥AB,垂足为E,连接CD交OE于点F.(1)求证:△DOE∽△ABC;(2)求证:∠ODF=∠BDE.18. 筒车是我国古代发明的一种水利灌溉工具.如图,明朝科学家徐光启在《农政全书》中用图画描绘了筒车的工作原理.如图②,筒车盛水桶的运行轨道是以轴心O为圆心的圆.已知圆心在水面上方,且圆被水面截得的弦AB的长为6米,∠OAB=41.3°.若点C为运行轨道的最高点(C,O的连线垂直于AB).求点C到弦AB所在直线的距离.(参考数据:sin41.3°≈0.66,cos41.3°≈0.75,tan41.3°≈0.88)19. 如图,AB为⊙O 的直径,C 为圆外一点,AC 交⊙O 于点D ,BC 2=CD ·CA ,ED ︵=BD ︵,BE 交AC 于点F . (1)求证:BC 为⊙O 的切线;(2)判断△BCF 的形状并说明理由;(3)已知BC =15,CD =9,∠BAC =36°,求BD ︵的长度(结果保留π).20. 如图,⊙O 的直径AB =4,C 为⊙O 上一点,AC =2.过点C 作⊙O 的切线DC ,P 点为优弧CBA ︵上一动点(不与A 、C 重合). (1)求∠APC 与∠ACD 的度数;(2)当点P 移动到劣弧CB ︵的中点时,求证:四边形OBPC 是菱形; (3)当PC 为⊙O 的直径时,求证:△APC 与△ABC 全等.2021中考数学 专题训练:圆的有关性质-答案一、选择题1. 【答案】C [解析]∵AB 是直径,∴∠C=90°,∴BC==6.∵OD ⊥AC ,∴CD=AD=AC=4, ∴BD==2,故选C .2. 【答案】A【解析】∵OA =OB ,∠A =50°,∴∠B =50°,∴∠AOB =180°-∠A -∠B =180°-50°-50°=80°,∵点C 是AB ︵的中点,∴∠BOC =∠AOC =12∠AOB =40°,故选A.3. 【答案】B[解析] AB 是⊙O 的直径,弦CD ⊥AB 于点E ,由垂径定理可以得到CE =DE ,BC ︵=BD ︵,AC ︵=AD ︵.但并不一定能得到OE =BE ,OC =BC ,从而A ,C ,D 选项都是错误的. 故选B.4. 【答案】C5. 【答案】D6. 【答案】A【解析】如图,连接AC ,∵四边形ABCD 是半圆的内接四边形,∴∠DAB=180°–∠C=70°, ∵DC CB ,∴∠CAB=12∠DAB=35°, ∵AB 是直径,∴∠ACB=90°,∴∠ABC=90°–∠CAB=55°,故选A .7. 【答案】D [解析] 如图,延长AO 交BC 于点D ,过点O 作OE ⊥BC 于点E.∵∠A =∠B =60°,∴△DAB 是等边三角形,∴AD =DB =AB =12,∠ADB =∠A =60°,∴OD =AD -OA =12-8=4.在Rt △ODE 中,∵∠DOE =90°-∠ADB =30°,∴DE =12OD=2,∴BE =DB -DE =12-2=10.由垂径定理,知BC =2BE =20.8. 【答案】D [解析] 如图,连接OB ,OA ,OP ,设OB 与AP 交于点D.由PB =AB 可知PB︵=AB ︵,从而可知OB ⊥AP.运用“一条弧所对的圆周角等于它所对的圆心角的一半”及“同圆的半径相等”可知△OAB 为等边三角形,在Rt △OAD 中,运用“在直角三角形中,30°角所对的直角边等于斜边的一半”及勾股定理列方程可求得AD 的长,从而可求出AP 的长为5 3.故选D.二、填空题 9. 【答案】50° 【解析】∵AT 是⊙O 的切线,AB 是⊙O 的直径,∴∠BAT =90°,在Rt △BAT 中,∵∠ABT =40°,∴∠ATB =50°.10. 【答案】10或70 [解析]作OD ⊥AB 于C ,OD 交☉O 于点D ,连接OB.由垂径定理得:BC=AB=30 cm . 在Rt △OBC 中,OC==40(cm).当水位上升到圆心以下且水面宽80 cm 时, 圆心到水面距离==30(cm),水面上升的高度为:40-30=10(cm).当水位上升到圆心以上且水面宽80 cm 时,水面上升的高度为:40+30=70(cm). 综上可得,水面上升的高度为10 cm 或70 cm . 故答案为10或70.11. 【答案】2或14 [解析] ①当弦AB 和CD 在圆心同侧时,连接OA ,OC ,过点O 作OE ⊥CD 于点F ,交AB 于点E ,如图①, ∵AB =16 cm ,CD =12 cm , ∴AE =8 cm ,CF =6 cm. ∵OA =OC =10 cm , ∴EO =6 cm ,OF =8 cm , ∴EF =OF -OE =2 cm ;②当弦AB 和CD 在圆心异侧时,连接OA ,OC ,过点O 作OE ⊥CD 于点E 并反向延长交AB 于点F ,如图②,∵AB =16 cm ,CD =12 cm , ∴AF =8 cm ,CE =6 cm. ∵OA =OC =10 cm , ∴OF =6 cm ,OE =8 cm , ∴EF =OF +OE =14 cm.∴AB 与CD 之间的距离为2 cm 或14 cm.12. 【答案】5 [解析] ∵OE 过圆心且与PA 垂直,∴PE =EA.同理PF =FB ,∴EF 是△PAB 的中位线, ∴EF =12AB =5.13. 【答案】[解析]连接OD ,因为CD ⊥OC ,所以CD=,根据题意可知圆半径一定,故当OC 最小时CD 最大.当OC ⊥AB 时OC 最小,CD 最大值=AB=.14. 【答案】3 [解析] 如图,连接OD ,过点O 作OH ⊥AB 于点H ,则AH =BH=12AB = 3.∵CD ⊥OC ,∴CD =OD 2-OC 2.∵OD 为⊙O 的半径,∴当OC 最小时,CD 最大.当点C 运动到点H 时,OC 最小,此时CD =BH =3,即CD 的最大值为 3.15. 【答案】40 [解析] ∵∠BCD =180°-∠A =125°,∠CBF =∠A +∠E =85°,∴∠F =∠BCD -∠CBF =125°-85°=40°.16. 【答案】10或70 [解析] 对于半径为50 cm 的圆而言,圆心到长为60 cm 的弦的距离为40 cm ,到长为80 cm 的弦的距离为30 cm.①当圆心在两平行弦之外时,两弦间的距离=40-30=10(cm);②当圆心在两平行弦之间时,两弦间的距离=40+30=70(cm).综上所述,水位上升10 cm 或70 cm.三、解答题17. 【答案】证明:(1)∵AB 是☉O 的直径,∴∠ACB=90°. ∵DE ⊥AB ,∴∠DEO=90°, ∴∠DEO=∠ACB.∵OD ∥BC ,∴∠DOE=∠ABC , ∴△DOE ∽△ABC.(2)∵△DOE ∽△ABC ,∴∠ODE=∠A. ∵∠A 和∠BDC 都是所对的圆周角,∴∠A=∠BDC ,∴∠ODE=∠BDC. ∴∠ODF=∠BDE.18. 【答案】解:连接CO 并延长,交AB 于点D ,∴CD ⊥AB ,且D 为AB 中点,所求运行轨道的最高点C 到弦AB 所在直线的距离即为线段CD 的长. 在Rt △AOD 中,∵AD=AB=3,∠OAD=41.3°, ∴OD=AD ·tan41.3°≈3×0.88=2.64,OA=≈=4,∴CD=CO +OD=AO +OD=4+2.64=6.64(米).答:运行轨道的最高点C 到弦AB 所在直线的距离约为6.64米.19. 【答案】(1)证明:∵BC 2=CD ·CA , ∴BC CA =CD BC , ∵∠C =∠C ,∴△CBD ∽△CAB , ∴∠CBD =∠BAC , 又∵AB 为⊙O 的直径, ∴∠ADB =90°,即∠BAC +∠ABD =90°, ∴∠ABD +∠CBD =90°, 即AB ⊥BC ,又∵AB 为⊙O 的直径, ∴BC 为⊙O 的切线;(2)解:△BCF 为等腰三角形. 证明如下:∵ED ︵=BD ︵, ∴∠DAE =∠BAC , 又∵△CBD ∽△CAB , ∴∠BAC =∠CBD , ∴∠CBD =∠DAE , ∵∠DAE =∠DBF , ∴∠DBF =∠CBD , ∵∠BDF =90°,∴∠BDC =∠BDF =90°, ∵BD =BD ,∴△BDF ≌△BDC , ∴BF =BC ,∴△BCF 为等腰三角形;(3)解:由(1)知,BC 为⊙O 的切线,∴∠ABC =90°∵BC 2=CD ·CA ,∴AC =BC 2CD =1529=25,由勾股定理得AB =AC 2-BC 2=252-152=20,∴⊙O 的半径为r =AB 2=10,∵∠BAC =36°,∴BD ︵所对圆心角为72°.则BD ︵=72×π×10180=4π.20. 【答案】(1)解:∵AC =2,OA =OB =OC =12AB =2,∴AC =OA =OC ,∴△ACO 为等边三角形,∴∠AOC =∠ACO =∠OAC =60°,∴∠APC =12∠AOC =30°,又∵DC 与⊙O 相切于点C ,∴OC ⊥DC ,∴∠DCO =90°,∴∠ACD =∠DCO -∠ACO =90°-60°=30°;解图(2)证明:如解图,连接PB ,OP ,∵AB 为直径,∠AOC =60°,∴∠COB =120°,当点P 移动到CB ︵的中点时,∠COP =∠POB =60°,∴△COP 和△BOP 都为等边三角形,∴OC =CP =OB =PB ,∴四边形OBPC 为菱形;(3)证明:∵CP 与AB 都为⊙O 的直径,∴∠CAP =∠ACB =90°,在Rt △ABC 与Rt △CP A 中,⎩⎨⎧AB =CP AC =AC, ∴Rt △ABC ≌Rt △CP A (HL).。
2021 中考数学专题训练:与圆有关的性质一、选择题1. 如图,点A,B,C均在⊙O上,当∠OBC=40°时,∠A的度数是()A.50°B.55°C.60°D.65°2. 已知⊙O的半径为5 cm,P是⊙O内一点,则OP的长可能是()A.4 cm B.5 cm C.6 cm D.7 cm3. 下列语句中不正确的有()①过圆上一点可以作圆中最长的弦无数条;②长度相等的弧是等弧;③圆上的点到圆心的距离都相等;④在同圆或等圆中,优弧一定比劣弧长.A.1个B.2个C.3个D.4个4. 如图,四边形ABCD是半圆的内接四边形,AB是直径,=.若∠C=110°,则∠ABC的度数等于()A.55°B.60°C.65°D.70°5. 2019·赤峰如图,AB 是⊙O 的弦,OC ⊥AB 交⊙O 于点C ,D 是⊙O 上一点,∠ADC =30°,则∠BOC 的度数为( )A .30°B .40°C .50°D .60°6. (2019•广元)如图,AB ,AC分别是⊙O 的直径和弦,OD AC ⊥于点D ,连接BD ,BC ,且10AB =,8AC =,则BD 的长为A .5B .4C .13D .4.87. 下列说法:①矩形的四个顶点在同一个圆上;②菱形的四个顶点在同一个圆上;③平行四边形的四个顶点在同一个圆上.其中正确的有( )链接听P37例3归纳总结 A .0个 B .1个 C .2个 D .3个8. 如图,在⊙O 中,AB ︵所对的圆周角∠ACB =50°,若P 为AB︵上一点,∠AOP =55°,则∠POB 的度数为( )A .30°B .45°C .55°D .60°9. (2019•镇江)如图,四边形ABCD 是半圆的内接四边形,AB 是直径,DC CB =.若110C ∠=︒,则ABC ∠的度数等于A .55︒B .60︒C .65︒D .70︒10. 2019·天水如图,四边形ABCD 是菱形,⊙O 经过点A ,C ,D ,与BC 相交于点E ,连接AC ,AE .若∠D =80°,则∠EAC 的度数为( )A .20°B .25°C .30°D .35°二、填空题11.如图,AT切⊙O于点A,AB是⊙O的直径.若∠ABT=40°,则∠ATB=________.12. 如图,AC是圆内接四边形ABCD的一条对角线,点D关于AC的对称点E 在边BC上,连接AE,若∠ABC=64°,则∠BAE的度数为.︵13. 如图,△ABC内接于⊙O,AC是⊙O的直径,∠ACB=50°,点D是BAC 上一点,则∠D=________.14. 如图,AB为⊙O的直径,CD⊥AB.若AB=10,CD=8,则圆心O到弦CD 的距离为________.15. 如图所示,OB ,OC 是⊙O 的半径,A 是⊙O 上一点.若∠B =20°,∠C =30°,则∠A =________°.16. (2019•娄底)如图,C 、D 两点在以AB 为直径的圆上,2AB =,30ACD ∠=︒,则AD =__________.17. 如图,⊙O 的直径AB 过弦CD 的中点E ,若∠C =25°,则∠D =________°.18. 如图,△ABC 内接于⊙O ,若∠OAB =32°,则∠C =________°.三、解答题19.如图,MP切⊙O于点M,直线PO交⊙O于点A、B,弦AC∥MP,求证:MO∥B C.20.如图,AB是⊙O的直径,点C、D在⊙O上,∠A=2∠BCD,点E在AB的延长线上,∠AED=∠ABC.(1)求证:DE与⊙O相切;(2)若BF=2,DF=10,求⊙O的半径.21. (2019•辽阳)如图,BE是⊙O的直径,点A和点D是⊙O上的两点,连接AE,∠=∠.AD,DE,过点A作射线交BE的延长线于点C,使EAC EDA(1)求证:AC是⊙O的切线;(2)若23==,求阴影部分的面积.CE AE2021 中考数学专题训练:与圆有关的性质-答案一、选择题1. 【答案】A2. 【答案】A3. 【答案】B[解析] ①②不正确.4. 【答案】A[解析]连接AC,∵四边形ABCD是半圆的内接四边形,∴∠DAB=180°-∠C=70°.∵=,∴∠CAB=∠DAB=35°.∵AB 是直径,∴∠ACB=90°, ∴∠ABC=90°-∠CAB=55°,故选A .5. 【答案】D6. 【答案】C【解析】∵AB 为直径,∴90ACB ∠=︒,∴22221086BC AB AC =-=-=,∵OD AC ⊥,∴142CD AD AC ===, 在Rt CBD △中,2246213BD =+=.故选C .7. 【答案】B[解析] 矩形的两条对角线的交点到矩形的四个顶点的距离相等,故它的四个顶点在以对角线的交点为圆心、对角线长的一半为半径的圆上.8. 【答案】B9. 【答案】A【解析】如图,连接AC ,∵四边形ABCD 是半圆的内接四边形,∴∠DAB=180°–∠C=70°, ∵DC CB =,∴∠CAB=12∠DAB=35°, ∵AB 是直径,∴∠ACB=90°,∴∠ABC=90°–∠CAB=55°,故选A .10. 【答案】C二、填空题11.【答案】50°【解析】∵AT 是⊙O 的切线,AB 是⊙O 的直径,∴∠BAT =90°,在Rt △BAT 中,∵∠ABT =40°,∴∠ATB =50°.12. 【答案】52°[解析]∵圆内接四边形对角互补,∴∠B +∠D=180°,∵∠B=64°,∴∠D=116°.∵点D 关于AC 的对称点是点E ,∴∠D=∠AEC=116°. ∵∠AEC=∠B +∠BAE ,∴∠BAE=52°.13. 【答案】40°【解析】AC 是⊙O 的直径⇒∠ABC =90°⇒⎭⎪⎬⎪⎫ ∠A =90°-50°=40°∠A 和∠D 都是BC ︵所对的圆周角 ⇒∠D =∠A =40°. 14. 【答案】315. 【答案】50 [解析] 连接OA ,则OA =OB ,OA =OC ,∴∠OAB =∠B ,∠OAC =∠C ,∴∠BAC =∠OAB +∠OAC =∠B +∠C =20°+30°=50°.16. 【答案】1【解析】∵AB 为直径,∴90ADB ∠=︒,∵30B ACD ∠=∠=︒,∴112122AD AB ==⨯=. 故答案为:1.17. 【答案】65[解析] ∵∠C =25°,∴∠A =∠C =25°.∵⊙O 的直径AB 过弦CD 的中点E , ∴AB ⊥CD ,∴∠AED =90°, ∴∠D =90°-25°=65°.18. 【答案】58[解析] 方法一:如图①,连接OB.∵在△OAB 中,OA =OB ,∴∠OAB =∠OBA.又∵∠OAB =32°,∴∠OBA =32°,∴∠AOB =180°-2×32°=116°.又∵∠C =12∠AOB(一条弧所对的圆周角是它所对的圆心角的一半), ∴∠C =58°.方法二:如图②,过点A作直径AD,连接BD,则∠ABD=90°,∴∠C=∠D =90°-32°=58°(同弧所对的圆周角相等).三、解答题19. 【答案】证明:∵AB是⊙O的直径,∴∠ACB=90°,∵MP为⊙O的切线,∴∠PMO=90°,∵MP∥AC,∴∠P=∠CAB,∴∠MOP=∠B,故MO∥BC.20. 【答案】(1)证明:如解图,连接DO,∴∠BOD=2∠BCD=∠A,(2分)解图又∵∠DEA=∠CBA,∴∠DEA+∠DOE=∠CAB+∠CBA,又∵∠ACB=90°,∴∠ODE=∠ACB=90°,(5分)∴OD⊥DE,又∵OD是⊙O的半径,∴DE与⊙O相切.(7分)(2)解:如解图,连接BD,可得△FBD ∽△DBO , ∴BD BO =DF OD =BF BD ,(8分)∴BD =DF =10,∴OB =5,(10分)即⊙O 的半径为5.21. 【答案】(1)如图,连接OA ,过O 作OF AE ⊥于F ,∴90AFO ∠=︒,∴90EAO AOF ∠+∠=︒, ∵OA OE =,∴12EOF AOF AOE ∠=∠=∠, ∵12EDA AOE ∠=∠, ∴EDA AOF ∠=∠,∵EAC EDA ∠=∠,∴EAC AOF ∠=∠,∴90EAO EAC ∠+∠=︒,∵EAC EAO CAO ∠+∠=∠, ∴90CAO ∠=︒,∴OA AC ⊥,∴AC 是⊙O 的切线.(2)∵CE AE == ∴C EAC ∠=∠,∵EAC C AEO ∠+∠=∠, ∴2AEO EAC ∠=∠, ∵OA OE =,AEO EAO ∠=∠,∴2EAO EAC ∠=∠, ∵90EAO EAC ∠+∠=︒,∴30EAC ∠=︒,60EAO ∠=︒, ∴OAE △是等边三角形, ∴OA AE =,60EOA ∠=︒,∴OA =∴260π2π360=AOE S ⋅⨯=扇形,在Rt OAE △中,sin 32OF OA EAO =⋅∠==,∴11322AOE S AE OF =⋅=⨯=△∴阴影部分的面积=2π。
2021年九年级数学中考一轮复习中考真题演练:圆的有关性质(附答案)1.如图,坐标平面上,A、B两点分别为圆P与x轴、y轴的交点,有一直线L通过P点且与AB垂直,C点为L与y轴的交点.若A、B、C的坐标分别为(a,0),(0,4),(0,﹣5),其中a<0,则a的值为何?()A.﹣2B.﹣2C.﹣8D.﹣72.如图,在平台上用直径为100mm的两根圆钢棒嵌在大型工件的两侧,测量大的圆形工件的直径D,测得两根圆钢棒与地的两个接触点之间的距离为400mm,则工件直径D(mm)用科学记数法可表示为()mm.A.4×104B.0.4×105C.20000D.4×1023.如图所示,一种花边是由如图弧ACB组成的,弧ACB所在圆的半径为5,弦AB=8,则弧形的高CD为()A.2B.C.3D.4.如图,半圆O的直径AB=10cm,弦AC=6cm,AD平分∠BAC,则AD的长为()A.cm B.cm C.cm D.4cm5.在⊙O中,C是的中点,D是上的任一点(与点A、C不重合),则()A.AC+CB=AD+DB B.AC+CB<AD+DBC.AC+CB>AD+DB D.AC+CB与AD+DB的大小关系不确定6.如图,在⊙O中,AB为直径,∠AOC=80°.点D为弦AC的中点,点E为上任意一点.则∠CED的大小可能是()A.10°B.20°C.30°D.40°7.如图,点A、B、C在⊙O上,∠ACB=54°,则∠ABO的度数是()A.54°B.27°C.36°D.108°8.如图,四边形ABCD内接于⊙O,连接BD.若,∠BDC=50°,则∠ADC的度数是()A.125°B.130°C.135°D.140°9.如图,点O为线段BC的中点,点A,C,D到点O的距离相等,若∠ABC=40°,则∠ADC的度数是()A.130°B.140°C.150°D.160°10.如图,A是硬币圆周上一点,硬币与数轴相切于原点O(A与O点重合).假设硬币的直径为1个单位长度,若将硬币沿数轴正方向滚动一周,点A恰好与数轴上点A′重合,则点A′对应的实数是.11.如图,从一块直径为a+b的圆形纸板上挖去直径分别为a和b的两个圆,则剩下的纸板面积为.12.AB是⊙O的弦,OM⊥AB,垂足为M,连接OA.若△AOM中有一个角是30°,OM =2,则弦AB的长为.13.如图,在⊙O中,弦AB=1,点C在AB上移动,连结OC,过点C作CD⊥OC交⊙O 于点D,则CD的最大值为.14.如图,公园内有一个半径为20米的圆形草坪,A,B是圆上的点,O为圆心,∠AOB =120°,从A到B只有路,一部分市民为走“捷径”,踩坏了花草,走出了一条小路AB.通过计算可知,这些市民其实仅仅少走了步(假设1步为0.5米,结果保留整数).(参考数据:≈1.732,π取3.142)15.小华为了求出一个圆盘的半径,他用所学的知识,将一宽度为2cm的刻度尺的一边与圆盘相切,另一边与圆盘边缘两个交点处的读数分别是“4”和“16”(单位:cm),请你帮小华算出圆盘的半径是cm.16.如图,⊙O的半径为1cm,弦AB、CD的长度分别为cm,1cm,则弦AC、BD所夹的锐角α=度.17.如图,在⊙O中,,∠A=40°,则∠B=度.18.如图,AB是⊙O的直径,点C,D,E都在⊙O上,∠1=55°,则∠2=°.19.如图所示,AB为⊙O的直径,点C在⊙O上,且OC⊥AB,过点C的弦CD与线段OB 相交于点E,满足∠AEC=65°,连接AD,则∠BAD=度.20.已知:如图,在⊙O中,AB为弦,C、D两点在AB上,且AC=BD.求证:△OAC≌△OBD.21.如图,已知△ABC内接于⊙O,且AB=AC,直径AD交BC于点E,F是OE上的一点,使CF∥BD.(1)求证:BE=CE;(2)试判断四边形BFCD的形状,并说明理由;(3)若BC=8,AD=10,求CD的长.22.如图所示,该小组发现8米高旗杆DE的影子EF落在了包含一圆弧型小桥在内的路上,于是他们开展了测算小桥所在圆的半径的活动.小刚身高1.6米,测得其影长为2.4米,同时测得EG的长为3米,HF的长为1米,测得拱高(弧GH的中点到弦GH的距离,即MN的长)为2米,求小桥所在圆的半径.23.如图,在⊙O中,=,CD⊥OA于D,CE⊥OB于E,求证:AD=BE.24.如图,在⊙O中,点P为的中点,弦AD、PC互相垂直,垂足为M,BC分别与AD、PD相交于点E、N,连接BD、MN.(1)求证:N为BE的中点.(2)若⊙O的半径为8,的度数为90°,求线段MN的长.25.如图,四边形ABCD内接于圆,∠ABC=60°,对角线BD平分∠ADC.(1)求证:△ABC是等边三角形;(2)过点B作BE∥CD交DA的延长线于点E,若AD=2,DC=3,求△BDE的面积.26.如图1,⊙O的半径为r(r>0),若点P′在射线OP上,满足OP′•OP=r2,则称点P′是点P关于⊙O的“反演点”.如图2,⊙O的半径为4,点B在⊙O上,∠BOA=60°,OA=8,若点A′,B′分别是点A,B关于⊙O的反演点,求A′B′的长.27.如图,在▱ABCD中,∠BAD为钝角,且AE⊥BC,AF⊥CD.(1)求证:A、E、C、F四点共圆;(2)设线段BD与(1)中的圆交于M、N.求证:BM=ND.参考答案1.解:连接AC,由题意得,BC=OB+OC=9,∵直线L通过P点且与AB垂直,∴直线L是线段AB的垂直平分线,∴AC=BC=9,在Rt△AOC中,AO==2,∵a<0,∴a=﹣2,故选:A.2.解:根据图形可知,两圆相切,过点O作OP垂直O1O2于P,则:PO1=PO2=200 PO=R﹣50根据勾股定理可得:2002+(R﹣50)2=(R+50)2解得:R=200∴D=2R=400=4×102.故选:D.3.解:如图所示,AB⊥CD,根据垂径定理,BD=AB=×8=4.由于圆的半径为5,根据勾股定理,OD===3,CD=5﹣3=2.故选:A.4.解:连接OD,OC,作DE⊥AB于E,OF⊥AC于F,∵∠CAD=∠BAD(角平分线的性质),∴=,∴∠DOB=∠OAC=2∠BAD,∴△AOF≌△ODE,∴OE=AF=AC=3(cm),在Rt△DOE中,DE==4(cm),在Rt△ADE中,AD==4(cm).故选:A.5.解:如图;以C为圆心,AC为半径作圆,交BD的延长线于E,连接AE、CE;∵CB=CE,∴∠CBE=∠CEB;∵∠DAC=∠CBE,∴∠DAC=∠CEB;∵AC=CE,∴∠CAE=∠CEA,∴∠CAE﹣∠DAC=∠CEA﹣∠CED,即∠DAE=∠DEA;∴AD=DE;∵EC+BC>BE,EC=AC,BE=BD+DE=AD+BD,∴AC+BC>BD+AD;故选:C.6.解:连接OD、OE,∵OC=OA,∴△OAC是等腰三角形,∵点D为弦AC的中点,∴∠DOC=40°,∠BOC=100°,设∠BOE=x,则∠COE=100°﹣x,∠DOE=100°﹣x+40°,∵OC=OE,∠COE=100°﹣x,∴∠OEC=∠OCE=40°+x,∵OD<OE,∠DOE=100°﹣x+40°=140°﹣x,∴∠OED<20°+x,∴∠CED=∠OEC﹣∠OED>(40°+x)﹣(20°+x)=20°,∵∠CED<∠ABC=40°,∴20°<∠CED<40°故选:C.7.解:∵∠ACB=54°,∴圆心角∠AOB=2∠ACB=108°,∵OB=OA,∴∠ABO=∠BAO=(180°﹣∠AOB)=36°,故选:C.8.解:连接OA,OB,OC,∵∠BDC=50°,∴∠BOC=2∠BDC=100°,∵,∴∠BOC=∠AOC=100°,∴∠ABC=∠AOC=50°,∴∠ADC=180°﹣∠ABC=130°.故选:B.9.解:由题意得到OA=OB=OC=OD,作出圆O,如图所示,∴四边形ABCD为圆O的内接四边形,∴∠ABC+∠ADC=180°,∵∠ABC=40°,∴∠ADC=140°,故选:B.10.解:将硬币沿数轴正方向滚动一周,点A恰好与数轴上点A'重合,则转过的距离是圆的周长是π,因而点A'对应的实数是π.故答案为:π.11.解:S阴=πab.故答案为:πab.12.解:∵OM⊥AB,∴AM=BM,若∠OAM=30°,则tan∠OAM=,∴AM=6,∴AB=2AM=12;若∠AOM=30°,则tan∠AOM=,∴AM=2,∴AB=2AM=4.故答案为:12或4.13.解:连接OD,如图,∵CD⊥OC,∴∠DCO=90°,∴CD==,当OC的值最小时,CD的值最大,而OC⊥AB时,OC最小,此时D、B两点重合,∴CD=CB=AB=×1=,即CD的最大值为,故答案为:.14.解:作OC⊥AB于C,如图,则AC=BC,∵OA=OB,∴∠A=∠B=(180°﹣∠AOB)=(180°﹣120°)=30°,在Rt△AOC中,OC=OA=10,AC=OC=10,∴AB=2AC=20≈69(步);而的长=≈84(步),的长与AB的长多15步.所以这些市民其实仅仅少走了15步.故答案为15.15.解:如图,记圆的圆心为O,连接OB,OC交AB于D,∴OC⊥AB,BD=AB,由图知,AB=16﹣4=12cm,CD=2cm,∴BD=6,设圆的半径为r,则OD=r﹣2,OB=r,在Rt△BOD中,根据勾股定理得,OB2=AD2+OD2,∴r2=36+(r﹣2)2,∴r=10cm,故答案为10.16.解:连接OA、OB、OC、OD,∵OA=OB=OC=OD=1,AB=,CD=1,∴OA2+OB2=AB2,∴△AOB是等腰直角三角形,△COD是等边三角形,∴∠OAB=∠OBA=45°,∠ODC=∠OCD=60°,∵∠CDB=∠CAB,∠ODB=∠OBD,∴α=180°﹣∠CAB﹣∠OBA﹣∠OBD=180°﹣∠OBA﹣(∠CDB+∠ODB)=180°﹣45°﹣60°=75°.17.解:∵,∴AB=AC,∵∠A=40°,∴∠B=∠C=(180°﹣∠A)÷2=70°.18.解:如图,连接AD.∵AB是直径,∴∠ADB=90°,∵∠1=∠ADE,∴∠1+∠2=90°,∵∠1=55°,∴∠2=35°,故答案为35.19.解:连接OD,如图:∵OC⊥AB,∴∠COE=90°,∵∠AEC=65°,∴∠OCE=90°﹣65°=25°,∵OC=OD,∴∠ODC=∠OCE=25°,∴∠DOC=180°﹣25°﹣25°=130°,∴∠BOD=∠DOC﹣∠COE=40°,∴∠BAD=∠BOD=20°,故答案为:20.20.证明:∵OA=OB,∴∠A=∠B,∵在△OAC和△OBD中:,∴△OAC≌△OBD(SAS).21.(1)证明:∵AD是⊙O的直径,∴∠ABD=∠ACD=90°,在Rt△ABD和Rt△ACD中,,∴Rt△ABD≌Rt△ACD(HL),∴∠BAD=∠CAD,∵AB=AC,∴BE=CE;(2)四边形BFCD是菱形.证明:∵AD是直径,AB=AC,∴AD⊥BC,BE=CE,∵CF∥BD,∴∠FCE=∠DBE,在△BED和△CEF中,,∴△BED≌△CEF(ASA),∴CF=BD,∴四边形BFCD是平行四边形,∵∠BAD=∠CAD,∴BD=CD,∴四边形BFCD是菱形;(3)解:∵AD是直径,AD⊥BC,BE=CE,∵∠AEC=∠CED,∠CAE=∠ECD,∴△AEC∽△CED,∴=,设DE=x,∵BC=8,AD=10,∴42=x(10﹣x),解得:x=2或x=8(舍去)在Rt△CED中,CD===2.22.解:∵小刚身高1.6米,测得其影长为2.4米,∴8米高旗杆DE的影子为:12m,∵测得EG的长为3米,HF的长为1米,∴GH=12﹣3﹣1=8(m),∴GM=MH=4m.如图,设小桥的圆心为O,连接OM、OG.设小桥所在圆的半径为r,∵MN=2m,∴OM=(r﹣2)m.在Rt△OGM中,由勾股定理得:∴r2=(r﹣2)2+16,解得:r=5,答:小桥所在圆的半径为5m.23.证明:连接OC,∵=,∴∠AOC=∠BOC.∵CD⊥OA于D,CE⊥OB于E,∴∠CDO=∠CEO=90°在△COD与△COE中,∵,∴△COD≌△COE(AAS),∴OD=OE,∵AO=BO,∴AD=BE.24.(1)证明:∵AD⊥PC,∴∠EMC=90°,∵点P为的中点,∴,∴∠ADP=∠BCP,∵∠CEM=∠DEN,∴∠DNE=∠EMC=90°=∠DNB,∵,∴∠BDP=∠ADP,∴∠DEN=∠DBN,∴DE=DB,∴EN=BN,∴N为BE的中点;(2)解:连接OA,OB,AB,AC,∵的度数为90°,∴∠AOB=90°,∵OA=OB=8,∴AB=8,由(1)同理得:AM=EM,∵EN=BN,∴MN是△AEB的中位线,∴MN=AB=4.25.(1)证明:∵四边形ABCD内接于圆.∴∠ABC+∠ADC=180°,∵∠ABC=60°,∴∠ADC=120°,∵DB平分∠ADC,∴∠ADB=∠CDB=60°,∴∠ACB=∠ADB=60°,∠BAC=∠CDB=60°,∴∠ABC=∠BCA=∠BAC,∴△ABC是等边三角形.(2)过点A作AM⊥CD,垂足为点M,过点B作BN⊥AC,垂足为点N.∴∠AMD=90°,∵∠ADC=120°,∴∠ADM=60°,∴∠DAM=30°,∴DM=AD=1,AM===,∵CD=3,∴CM=CD+DM=1+3=4,∴S△ACD=CD•AM=×=,Rt△AMC中,∠AMD=90°,∴AC===,∵△ABC是等边三角形,∴AB=BC=AC=,∴BN=BC=,∴S△ABC=×=,∴四边形ABCD的面积=+=,∵BE∥CD,∴∠E+∠ADC=180°,∵∠ADC=120°,∴∠E=60°,∴∠E=∠BDC,∵四边形ABCD内接于⊙O,∴∠EAB=∠BCD,在△EAB和△DCB中,,∴△EAB≌△DCB(AAS),∴△BDE的面积=四边形ABCD的面积=.26.解:设OA交⊙O于C,连结B′C,如图2,∵OA′•OA=42,而r=4,OA=8,∴OA′=2,∵OB′•OB=42,∴OB′=4,即点B和B′重合,∵∠BOA=60°,OB=OC,∴△OBC为等边三角形,而点A′为OC的中点,∴B′A′⊥OC,在Rt△OA′B′中,sin∠A′OB′=,∴A′B′=4sin60°=2.27.证明:(1)∵AE⊥BC,AF⊥CD,∴∠AEC=∠AFC=90°.∴∠AEC+∠AFC=180°.∴A、E、C、F四点共圆;(2)由(1)可知,∠AEC=90°,则AC是直径,设AC、BD相交于点O;∵ABCD是平行四边形,∴O为圆心,OB=OD,∴OM=ON,∴OB﹣OM=OD﹣ON,∴BM=DN.。
24圆的有关性质(共54题)一、单选题1.(2021·甘肃武威市·中考真题)如图,点,,,,A B C D E 在O 上,,42AB CD AOB =∠=︒,则CED ∠=( )A .48︒B .24︒C .22︒D .21︒2.(2021·广西玉林市·中考真题)学习圆的性质后,小铭与小熹就讨论起来,小铭说:“被直径平分的弦也与直径垂直”,小熹说:“用反例就能说明这是假命题” .下列判断正确的是( )A .两人说的都对B .小铭说的对,小燕说的反例不存在C .两人说的都不对D .小铭说的不对,小熹说的反例存在3.(2021·青海中考真题)如图是一位同学从照片上剪切下来的海上日出时的画面,“图上”太阳与海平线交于A ,B 两点,他测得“图上”圆的半径为10厘米,16AB =厘米.若从目前太阳所处位置到太阳完全跳出海平面的时间为16分钟,则“图上”太阳升起的速度为( ).A .1.0厘米/分B .0.8厘米分C .12厘米/分D .1.4厘米/分4.(2021·山东聊城市·中考真题)如图,A ,B ,C 是半径为1的⊙O 上的三个点,若AB ⊙CAB =30°,则⊙ABC 的度数为( )A .95°B .100°C .105°D .110°5.(2021·湖北鄂州市·中考真题)已知锐角40AOB ∠=︒,如图,按下列步骤作图:⊙在OA 边取一点D ,以O 为圆心,OD 长为半径画MN ,交OB 于点C ,连接CD .⊙以D 为圆心,DO 长为半径画GH ,交OB 于点E ,连接DE .则CDE ∠的度数为( )A .20︒B .30C .40︒D .50︒6.(2021·海南中考真题)如图,四边形ABCD 是O 的内接四边形,BE 是O 的直径,连接AE .若2BCD BAD ∠=∠,则DAE ∠的度数是( )A .30B .35︒C .45︒D .60︒7.(2021·四川眉山市·中考真题)如图,在以AB 为直径的O 中,点C 为圆上的一点,3BC AC =,弦CD AB ⊥于点E ,弦AF 交CE 于点H ,交BC 于点G .若点H 是AG 的中点,则CBF ∠的度数为( )A .18°B .21°C .22.5°D .30°8.(2021·四川南充市·中考真题)如图,AB 是O 的直径,弦CD AB ⊥于点E ,2CD OE =,则BCD∠的度数为( )A .15︒B .22.5︒C .30D .45︒9.(2021·四川广安市·中考真题)如图,公园内有一个半径为18米的圆形草坪,从A 地走到B 地有观赏路(劣弧AB )和便民路(线段AB ).已知A 、B 是圆上的点,O 为圆心,120AOB ∠=︒,小强从A 走到B ,走便民路比走观赏路少走( )米.A .6π-B .6π-C .12π-D .12π-10.(2021·重庆中考真题)如图,AB 是⊙O 的直径,AC ,BC 是⊙O 的弦,若20A ∠=︒,则B 的度数为( )A .70°B .90°C .40°D .60°11.(2021·浙江丽水市·中考真题)如图,AB 是O 的直径,弦CD OA ⊥于点E ,连结,OC OD .若O 的半径为,m AOD α∠=∠,则下列结论一定成立的是( )A .tan OE m α=⋅B .2sin CD m α=⋅C .cos AE m α=⋅D .2sin COD S m α=⋅12.(2021·山东泰安市·中考真题)如图,在ABC 中,6AB =,以点A 为圆心,3为半径的圆与边BC 相切于点D ,与AC ,AB 分别交于点E 和点G ,点F 是优弧GE 上一点,18CDE ∠=︒,则GFE ∠的度数是( )A .50°B .48°C .45°D .36°13.(2021·浙江绍兴市·中考真题)如图,正方形ABCD 内接于O ,点P 在AB 上,则P ∠的度数为( )A .30B .45︒C .60︒D .90︒14.(2021·四川凉山彝族自治州·中考真题)点P 是O 内一点,过点P 的最长弦的长为10cm ,最短弦的长为6cm ,则OP 的长为( )A .3cmB .4cmC .5cmD .6cm15.(2021·四川自贡市·中考真题)如图,AB 为⊙O 的直径,弦CD AB ⊥于点F ,OE AC ⊥于点E ,若3OE =,5OB =,则CD 的长度是( )A .9.6B .C .D .1916.(2021·山东临沂市·中考真题)如图,PA 、PB 分别与O 相切于A 、B ,70P ∠=︒,C 为O 上一点,则ACB ∠的度数为( )A .110︒B .120︒C .125︒D .130︒17.(2021·湖北鄂州市·中考真题)如图,Rt ABC 中,90ACB ∠=︒,AC =3BC =.点P 为ABC ∆内一点,且满足22PA PC +2AC =.当PB 的长度最小时,ACP ∆的面积是( )A .3B .CD 18.(2021·浙江嘉兴市·中考真题)如图,在ABC ∆中,90BAC ∠=︒,AB =AC =5,点D 在AC 上,且2AD =,点E 是AB 上的动点,连结DE ,点F ,G 分别是BC ,DE 的中点,连接AG ,FG ,当AG =FG 时,线段DE 长为( )A B C D .419.(2021·四川自贡市·中考真题)如图,()8,0A,()2,0C -,以点A 为圆心,AC 长为半径画弧,交y 轴正半轴于点B ,则点B 的坐标为( )A .()0,5B .()5,0C .()6,0D .()0,620.(2021·广西来宾市·中考真题)如图,O 的半径OB 为4,OC AB ⊥于点D ,30BAC ∠=︒,则OD 的长是( )A B C .2 D .321.(2021·湖北荆州市·中考真题)如图,矩形OABC 的边OA ,OC 分别在x 轴、y 轴的正半轴上,点D 在OA 的延长线上.若()2,0A ,()4,0D ,以О为圆心、OD 长为半径的弧经过点B ,交y 轴正半轴于点E ,连接DE ,BE 、则BED ∠的度数是( )A .15︒B .22.5︒C .30D .45︒22.(2021·湖北宜昌市·中考真题)如图,C ,D 是O 上直径AB 两侧的两点.设25ABC ∠=︒,则BDC ∠=( )A .85︒B .75︒C .70︒D .65︒23.(2021·河北中考真题)如图,等腰AOB 中,顶角40AOB ∠=︒,用尺规按⊙到⊙的步骤操作: ⊙以O 为圆心,OA 为半径画圆;⊙在O 上任取一点P (不与点A ,B 重合),连接AP ;⊙作AB 的垂直平分线与O 交于M ,N ; ⊙作AP 的垂直平分线与O 交于E ,F .结论⊙:顺次连接M ,E ,N ,F 四点必能得到矩形;结论⊙:O 上只有唯一的点P ,使得OFM OAB S S =扇形扇形.对于结论⊙和⊙,下列判断正确的是( )A .⊙和⊙都对B .⊙和⊙都不对C .⊙不对⊙对D .⊙对⊙不对24.(2021·湖北黄冈市·中考真题)如图,O 是Rt ABC △的外接圆,OE AB ⊥交O 于点E ,垂足为点D ,AE ,CB 的延长线交于点F .若3OD =,8AB =,则FC 的长是( )A .10B .8C .6D .425.(2021·湖南邵阳市·中考真题)如图,点A ,B ,C 是O 上的三点.若90AOC ∠=︒,30BAC ∠=︒,则AOB ∠的大小为( )A .25︒B .30C .35︒D .40︒26.(2021·湖南长沙市·中考真题)如图,点A ,B ,C 在⊙O 上,54BAC ∠=︒,则BOC ∠的度数为( )A .27︒B .108︒C .116︒D .128︒27.(2021·湖北武汉市·中考真题)如图,AB 是O 的直径,BC 是O 的弦,先将BC 沿BC 翻折交AB 于点D .再将BD 沿AB 翻折交BC 于点E .若BE DE =,设ABC α∠=,则α所在的范围是( )A .21.922.3α︒<<︒B .22.322.7α︒<<︒C .22.723.1α︒<<︒D .23.123.5α︒<<︒ 二、填空题28.(2021·黑龙江中考真题)如图,在O 中,AB 是直径,弦AC 的长为5cm ,点D 在圆上,且30ADC ∠=︒,则O 的半径为_____.29.(2021·安徽中考真题)如图,圆O 的半径为1,ABC 内接于圆O .若60A ∠=︒,75B ∠=︒,则AB =______.30.(2021·湖南张家界市·中考真题)如图,ABC 内接于O ,50A ∠=︒,点D 是BC 的中点,连接OD ,OB ,OC ,则BOD ∠=_________.31.(2021·广东中考真题)在ABC 中,90,2,3ABC AB BC ∠=︒==.点D 为平面上一个动点,45ADB ∠=︒,则线段CD 长度的最小值为_____.32.(2021·江苏宿迁市·中考真题)如图,在Rt⊙ABC 中,⊙ABC =90°,⊙A =32°,点B 、C 在O 上,边AB 、AC 分别交O 于D 、E 两点﹐点B 是CD 的中点,则⊙ABE =__________.33.(2021·江苏南京市·中考真题)如图,AB 是O 的弦,C 是AB 的中点,OC 交AB 于点D .若8cm,2cm AB CD ==,则O 的半径为________cm .34.(2021·湖北随州市·中考真题)如图,O 是ABC 的外接圆,连接AO 并延长交O 于点D ,若50C ∠=︒,则BAD ∠的度数为______.35.(2021·江苏连云港市·中考真题)如图,OA 、OB 是O 的半径,点C 在O 上,30AOB ∠=︒,40OBC ∠=︒,则OAC ∠=______︒.36.(2021·四川成都市·中考真题)如图,在平面直角坐标系xOy 中,直线33y x =+与O 相交于A ,B 两点,且点A 在x 轴上,则弦AB 的长为_________.37.(2021·江苏扬州市·中考真题)在一次数学探究活动中,李老师设计了一份活动单:“追梦”学习小组通过操作、观察、讨论后汇报:点A 的位置不唯一,它在以BC 为弦的圆弧上(点B 、C 除外),…….小华同学画出了符合要求的一条圆弧(如图1).(1)小华同学提出了下列问题,请你帮助解决.⊙该弧所在圆的半径长为___________;⊙ABC 面积的最大值为_________;(2)经过比对发现,小明同学所画的角的顶点不在小华所画的圆弧上,而在如图1所示的弓形内部,我们记为A ',请你利用图1证明30BA C '∠>︒;(3)请你运用所学知识,结合以上活动经验,解决问题:如图2,已知矩形ABCD 的边长2AB =,3BC =,点P 在直线CD 的左侧,且4tan 3DPC ∠=. ⊙线段PB 长的最小值为_______;⊙若23PCD PAD S S =,则线段PD 长为________.38.(2021·辽宁本溪市·中考真题)如图,由边长为1的小正方形组成的网格中,点A ,B ,C 都在格点上,以AB 为直径的圆经过点C 和点D ,则tan =ADC ∠________.39.(2021·内蒙古通辽市·中考真题)如图,AB 是⊙O 的弦,AB =C 是⊙O 上的一个动点,且60ACB ∠=︒,若点M ,N 分别是AB ,BC 的中点,则图中阴影部分面积的最大值是__________.40.(2021·湖北襄阳市·中考真题)点O 是ABC 的外心,若110BOC ∠=°,则BAC ∠为______. 41.(2021·湖北恩施土家族苗族自治州·中考真题)《九章算术》被尊为古代数学“群经之首”,其卷九勾股篇记载:今有圆材埋于壁中,不知大小.以锯锯之,深一寸,锯道长一尺.问径几何?如图,大意是,今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯这木材,锯口深CD 等于1寸,锯道AB 长1尺,问圆形木材的直径是多少?(1尺=10寸)答:圆形木材的直径___________寸;42.(2021·湖南长沙市·中考真题)如图,在⊙O 中,弦AB 的长为4,圆心O 到弦AB 的距离为2,则AOC ∠的度数为______.43.(2021·湖南怀化市·中考真题)如图,在O 中,3OA =,45C ∠=︒,则图中阴影部分的面积是_________.(结果保留π)三、解答题44.(2021·山东临沂市·中考真题)如图,已知在⊙O 中, AB BC CD ==,OC 与AD 相交于点E .求证: (1)AD ⊙BC(2)四边形BCDE 为菱形.45.(2021·四川南充市·中考真题)如图,A ,B 是O 上两点,且AB OA =,连接OB 并延长到点C ,使BC OB =,连接AC .(1)求证:AC 是O 的切线.(2)点D ,E 分别是AC ,OA 的中点,DE 所在直线交O 于点F ,G ,4OA =,求GF 的长. 46.(2021·安徽中考真题)如图,圆O 中两条互相垂直的弦AB ,CD 交于点E .(1)M 是CD 的中点,OM =3,CD =12,求圆O 的半径长;(2)点F 在CD 上,且CE =EF ,求证:AF BD ⊥.47.(2021·浙江中考真题)如图,已知AB 是⊙O 的直径,ACD ∠是AD 所对的圆周角,30ACD ∠=︒.(1)求DAB ∠的度数;(2)过点D 作DE AB ⊥,垂足为E ,DE 的延长线交⊙O 于点F .若4AB =,求DF 的长. 48.(2021·四川泸州市·中考真题)如图,ABC 是⊙O 的内接三角形,过点C 作⊙O 的切线交BA 的延长线于点F ,AE 是⊙O 的直径,连接EC(1)求证:ACF B ∠=∠;(2)若AB BC =,AD BC ⊥于点D ,4FC =,2FA =,求AD AE 的值49.(2021·江苏无锡市·中考真题)如图,四边形ABCD 内接于O ,AC 是O 的直径,AC 与BD 交于点E ,PB 切O 于点B .(1)求证:PBA OBC ∠=∠;(2)若20PBA ,40ACD ∠=︒,求证:OAB CDE ∽.50.(2021·甘肃武威市·中考真题)在《阿基米德全集》中的《引理集》中记录了古希腊数学家阿基米德提出的有关圆的一个引理.如图,已知,AB C 是弦AB 上一点,请你根据以下步骤完成这个引理的作图过程.(1)尺规作图(保留作图痕迹,不写作法):⊙作线段AC 的垂直平分线DE ,分别交AB 于点,D AC 于点E ,连接,AD CD ;⊙以点D 为圆心,DA 长为半径作弧,交AB 于点F (,F A 两点不重合),连接,,DF BD BF . (2)直接写出引理的结论:线段,BC BF 的数量关系.51.(2021·四川广元市·中考真题)如图,在Rt ABC 中,90ACB ∠=︒,AD 是BAC ∠的平分线,以AD 为直径的O 交AB 边于点E ,连接CE ,过点D 作//DF CE ,交AB 于点F .(1)求证:DF 是O 的切线;(2)若5BD =,3sin 5B ∠=,求线段DF 的长. 52.(2021·四川遂宁市·中考真题)如图,⊙O 的半径为1,点A 是⊙O 的直径BD 延长线上的一点,C 为⊙O 上的一点,AD =CD ,⊙A =30°.(1)求证:直线AC 是⊙O 的切线;(2)求⊙ABC 的面积;(3)点E 在BND 上运动(不与B 、D 重合),过点C 作CE 的垂线,与EB 的延长线交于点F . ⊙当点E 运动到与点C 关于直径BD 对称时,求CF 的长;⊙当点E 运动到什么位置时,CF 取到最大值,并求出此时CF 的长.53.(2021·四川广元市·中考真题)如图1,在平面直角坐标系xOy 中,抛物线2y ax bx c =++与x 轴分别相交于A 、B 两点,与y 轴相交于点C ,下表给出了这条抛物线上部分点(,)x y 的坐标值:(1)求出这条抛物线的解析式及顶点M 的坐标;(2)PQ 是抛物线对称轴上长为1的一条动线段(点P 在点Q 上方),求AQ QP PC ++的最小值;(3)如图2,点D 是第四象限内抛物线上一动点,过点D 作DF x ⊥轴,垂足为F ,ABD △的外接圆与DF 相交于点E .试问:线段EF 的长是否为定值?如果是,请求出这个定值;如果不是,请说明理由.54.(2021·云南中考真题)如图,AB 是O 的直径,点C 是O 上异于A 、B 的点,连接AC 、BC ,点D 在BA 的延长线上,且DCA ABC ∠=∠,点E 在DC 的延长线上,且BE DC ⊥.(1)求证:DC 是O 的切线: (2)若2,33OA BE OD ==,求DA 的长.。
一、选择题9.(2020·杭州)如图,已知BC是O的直径,半径OA BC⊥,点D在劣弧AC上(不与点A,点C重合),BD与OA交于点E.设AEDα∠=,AODβ∠=,则()A.3α+β=180°B.2α+β=180°C.3α-β=90°D.2α-β=90°{答案}D{解析}本题考查了同圆的半径相等,三角形的内角和定理以及三角形的外角.因为OA⊥BC,所以∠AOB=90°.因为OB=OD,所以∠B=∠D.在△OBD中,∠B+∠D+∠BOD=180°,即2∠D+90°+β=180°,所以2∠D+β=90°.因为∠AED是△ODE的外角,所以∠D=∠AED-∠AOD=α-β,所以2(α-β)+β=90°,整理,得2α-β=90°,因此本题选D.4.(2020·绍兴)如图.点A,B,C,D,E均在⊙O上.∠BAC=15°,∠CED=30°,则∠BOD的度数为()A.45°B.60°C.75°D.90°{答案}D{解析}本题考查了圆周角、圆心角以及它们所对的弧的度数之间的关系.在同圆中,圆周角的度数等于它所对的弧的度数的一半,圆心角的度数等于它所对的弧的度数,因为∠BAC=15°,∠CED=30°,所以弧BC是30°,弧CD是60°,则弧BD是90°,故它所对的圆心角∠BOD的度数是90°.因此本题选D.4.(2020湖州)如图,已知四边形ABCD内接于⊙O,∠ABC=70°,则∠ADC的度数是()A.70°B.110°C.130°D.140°【分析】根据圆内接四边形的性质即可得到结论.【解答】解:∵四边形ABCD内接于⊙O,∠ABC=70°,∴∠ADC=180°﹣∠ABC=180°﹣70°=110°,故选:B.7.(2020·黔东南州)如图,⊙O的直径CD=20,AB是⊙O的弦,AB⊥CD,垂足为M,OM:OC=3:5,则AB的长为()A.8B.12C.16D.2√91{答案}C {解析}如图,连接OA,∵⊙O的直径CD=20,OM:OD=3:5,∴OD=10,OM=6.∵AB⊥CD,∴AM=√OA2−OM2=√102−62=8,∴AB=2AM=16.9.(2020·安徽)已知点A,B,C在⊙O上,则下列命题为真命题的是()A.若半径OB平分弦AC,则四边形OABC是平行四边形B.若四边形OABC是平行四边形,则∠ABC=120°C.若∠ABC=120°,则弦AC平分半径OBD.若弦AC平分半径OB,则半径OB平分弦AC{答案}B{解析}逐项分析如下:选项逐项分析图示真假命题AEDOC连接BD,则△D的大小()A.55°B.65°C.60°D.75°第9题图{答案}B{解析} E是弦BC的中点,由垂径定理的逆定理可知OE△BC,连接OB、OC,由△A=50°可知△BOC=2△A=100°,由等腰三角形的“三线合一”可知△BOD=50°,在等腰△BOD中,△D=(180°-50°)÷2=65°.第9题答图6.(2020·青岛)如图,BD是⊙O的直径,点A,C在⊙O上,弧AB=弧AD,AC交BD于点G.若∠COD=126°,则∠AGB的度数为()A.99°B.108°C.110°D.117°{答案}B{解析}本题考查了圆周角定理及其推论的应用,解答过程如下:∵BD是⊙O的直径,∴∠BAD=90°.∵弧AB=弧AD ,∴∠ADB=∠ABD=45°. ∵∠COD=126°,∴∠CAD=21∠COD=21×126°=63°. ∴∠AGB=∠ADB+∠CAD=45°+63°=108°.因此本题选B .8.(2020·泰安)如图,△ABC 是⊙O 的内接三角形,AB ﹦BC ,∠BAC ﹦30°,AD 是直径,AD ﹦8,则AC 的长为( ) A .4B .4 3C .833 D .2 3{答案} B{解析}本题考查了等腰三角形的性质、直径所对的圆周角是直角以及锐角三角函数,因为△ABC 中,AB ﹦BC ,∠BAC ﹦30°,所以∠B=120°,因为四边形ABCD 内接于⊙O ,所以∠D=60°.因为AD 是⊙O 的直径,所以∠ACD=90°.因为sin ∠D=ACAD,所以AC=AD ·sin ∠D=8=4 3 ,因此本题选B .7. (2020·淮安)如图,点A 、B 、C 在⊙O 上,∠ACB=54°,则∠ABO 的度数是( )A.54°B.27°C.36°D.108°{答案} C{解析}本题考查了同弧所对的圆周角和圆心角的关系,由已知得△AOB=2∠ACB=108°,再在等腰三角形AOB 中由三角形的内角和定理求出△ABO 的度数. ∵∠ACB=54°,∴∠AOB=2∠ACB=108°, ∵OA=OB ,∴∠ABO=∠OAB=(180°-108°)÷2=36°. 故选C .9.(2020·福建)如图,四边形ABCD 内接于O ,=AB CD ,A 为BD 中点,60∠=︒BDC ,则∠ADB等于( )AD(第8题)A.40︒B.50︒C.60︒D.70︒{答案}A{解析}本题考查了弧,弦,圆周角等的关系,∵=AB CD ,A 为BD 中点,∴AB AD CD ==,∵60∠=︒BDC ,∴优弧BAC 是240°,∴弧AB 是80°,∴∠ADB =40°,因此本题选A .7.(2020·荆门)如图4,⊙O 中,OC ⊥AB ,∠APC =28°,则∠BOC 的度数为( ) A .14° B .28° C .42° D .56°{答案}D{解析}连结OA .由垂径定理可知AC =BC ,∴∠BOC =∠AOC .由圆周角定理可知∠AOC =2∠P =56°.∴∠BOC =56°.故选D .16.(2020·镇江)如图,AB 是半圆的直径,C 、D 是半圆上的两点,∠ADC =106∘ ,则 ∠CAB 等于( )A .10∘B .14∘C .16∘D .26∘{答案}C{解析}本题考查了圆周角相关知识,连接BC ,则∠B +∠D =180°,∵∠ADC =106°,∴∠B =74°,∵AB 为⊙O 的直径,∴∠ACB =90°,∴∠CAB =16°.7.(2020·常州)如图,AB 是⊙O 的弦,点C 是优弧AB 上的动点(C 不与A 、B 重合),CH ⊥AB ,垂足为H ,点M 是BC 的中点.若⊙O 的半径是3,则MH 长的最大值是( ) A .3 B .4 C .5 D .6ABCDPC ABO图4(第7题){答案}A{解析}{解析}本题考查了直角三角形斜边中线等于斜边的一半,因为∠BHC =90°,M 为BC 的中点,所以MH =12BC ,而BC 的最大值是直径,所以MH 的最大值等于3. 5.(2020·天水)如图所示,P A 、PB 分别与⊙O 相切于A 、B 两点,点C 为⊙O 上一点,连接AC 、BC ,若∠P =70°,则∠ACB 的度数为( ) A .50° B .55° C .60° D .65°{答案}B{解析}根据切线的性质和圆周角定理可求,连接OA 、OB ,则∠ACB =12∠AOB ,又由P A 、PB 分别与⊙O相切于A 、B 两点,得到∠P AO =∠PBO =90°,所以∠AOB =180°-∠P =180°-70°=110°,从而得到∠ACB =12×110°=55°,因此本题选B .5. (2020·张家界)如图,四边形ABCD 为O 的内接四边形,已知BCD ∠为120︒,则BOD ∠的度数为( )A. 100︒B. 110︒C. 120︒D. 130︒{答案}C{解析}本题考查的是圆内接四边形的性质,掌握圆内接四边形的对角互补是解题的关键. 根据圆内接四边形的性质求出∠A ,根据圆周角定理计算,得到答案. 解:∵四边形ABCD 是⊙O 内接四边形, ∴∠A =180°−∠BCD =60°,由圆周角定理得,∠BOD=2∠A=120°,故选:C .14.(2020·河北)有一题目:“已知:点O为△ABC的外心,∠BOC=130°,求∠A.”嘉嘉的解答为:画以及它的外接圆O,连接OB,OC,如图8.由∠BOC=2∠A=130°,得∠A=65°.而淇淇说:“嘉嘉考虑的不周全,还应有另一个不同的值.”下列判断正确的是A.淇淇说的对,且∠A的另一个值是115°B.淇淇说的不对,∠A就得65°C.嘉嘉求的结果不对,∠A应得50°D.两人都不对,应有3个不同值{答案}A{解析}如图1,当∠A是锐角时,△ABC的外心O在其内部,∠A=65°;如图2,当∠A是钝角时,△ABC 的外心O在其外部,∵∠1=2∠A,∴∠A=12∠1=12×230°=115°.故∠A=65°或115°,答案为A.7.(2020·牡丹江)如图,点A,B,S在圆上,若弦AB的长度等于圆半径的2倍,则△ASB的度数是()A.22.5°B.30°C.45°D.60°{答案}C{解析}设圆心为O,连接OA,OB,如图,∵弦AB的长度等于圆半径的2倍,即AB=2OA=2OB,∴OA2+OB2=AB2,∴△OAB为等腰直角三角形,∠AOB=90°,根据圆周角定理可得∠ASB=21∠AOB=45°,故选C.10.(2020·宜昌)如图,E,F,G为圆上的三点,△FEG=50°,P点可能是圆心的是().图8OBACA BS(第7题图)OA BSA .B .C .D .{答案}C{解析}由圆周角定理可知:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.当点P 为圆心时,根据圆周角定理,可得△FPG=2△FEG .故选:C . 9.(2020·凉山州)下列命题是真命题的是( )A .顶点在圆上的角叫圆周角B .三点确定一个圆C .圆的切线垂直于半径D .三角形的内心到三角形三边的距离相等 {答案}D{解析}因为顶点在圆上且两边都与圆相交的角叫圆周角,不在同一条直线上的三个点确定一个圆,圆的切线垂直于过切点的半径,所以A 、B 、C 选项皆为假命题,故选D . 11.(2020·凉山州)如图,等边三角形ABC 和正方形ADEF 都内接于△O ,则AD ﹕AB =( ) A .22﹕3 B .2﹕3 C .3﹕2 D .3﹕22{答案}B{解析}如答图,连接OA 、OB 、OD ,则△AOD =90°,△AOB =120°.令OA =OB =OD =r ,则AD =2r ,AB =3r ,从而AD ﹕AB =2﹕3,故选B .10.(2020·潍坊)如图,在Rt AOB 中,90,3,4AOB OA OB ∠=︒==,以点O 为圆心,2为半径的圆与OB 交于点C ,过点C 作CD OB ⊥交AB 于点D ,点P 是边OA 上的动点.当PC PD +最小时,OP 的长为( )A12B.34C. 1D.32DP OCBA第11题图O F ED CBA第11题答图r rr OD CB{答案}B{解析}由题意可知,点C 、D 是定点,点P 是边OA 上的动点,PC+PD 最小值时,即为将军饮马问题.点点P 为点C 关于点O 的对称点时,PC+PD 的值最小,求出OP 的长即可.延长CO 交O 于点E ,连接ED ,交AO 于点P ,如图,△CD△OB ,△△DCB=90°,又90AOB ∠=︒,△△DCB=△AOB ,△CD//AO ,△BC CDBO AO =△OC=2,OB=4,△BC=2,△243CD =,解得,CD=32;△CD//AO ,△EO PO EC DC =,即2=43PO,解得,PO=34 . 7.(2020·营口)如图,AB 是⊙O 的直径,点C ,点D 是⊙O 上的两点,连接CA ,CD ,AD ,若∠CAB =40°,则∠ADC 的度数是( )A .110°B .130°C .140°D .160° {答案}B{解析}如图,连接BC ,∵AB 是⊙O 的直径,∴∠ACB=90°,∴∠CAB+∠CBA =90°,∵∠CAB=40°,∴∠CBA =50°,∵∠ADC +∠CBA =180°,∴∠ADC=130°.9.(2020·滨州)在O 中,直径AB =15,弦DE △AB 于点C .若OC :OB =3:5,则DE 的长为( )A .6B .9C .12D .15{答案}C{解析}本题考查了垂径定理和勾股定理,直径AB=15,∴BO=7.5,∵OC :OB=3:5,∴CO=4.5,∴DC=,∴DE=2DC=12,因此本题选C .8.(2020·内江)如图,点A 、B 、C 、D 在△O 上,120AOC ∠=︒,点B 是AC 的中点,则D ∠的度数是( )EDPOCBABABAA. 30B. 40︒C. 50︒D. 60︒{答案} A{解析}本题考查了圆心角、弧、弦的关系定理、圆周角定理,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键.根据圆心角、弧、弦的关系定理得到△AOB =12△AOC ,再根据圆周角定理解答.连接OB ,△点B 是AC 的中点,△△AOB =12△AOC =60°, 由圆周角定理得,△D =12△AOB =30°,因此本题选A . 14.(2020·临沂)如图,在O 中,AB 为直径,80AOC ∠=︒,点D 为弦AC 的中点,点E 为BC上任意一点.则CED ∠的大小可能是( )A.10°B.20°C.30°D.40°{答案}C{解析}梳理题目中的已知条件,有直径,可以相应的有90°的圆周角;80AOC ∠=︒,则50OAC OCA ∠=∠=︒;同时点D 为弦AC 的中点,则可以考虑利用垂径定理;另外,题目中具体数值较少,CED ∠的具体值不容易求,那么我们可以根据已有条件探求它的取值范围,从而确定那个值在范围内.解:连接AE ,作过OD 的直线分别交圆周于点M 、N ,连接CM ,如下图:∵80AOC ∠=︒∴40AEC ∠=︒∴40CED AEC AED ∠=∠-∠<︒; 又∵点D 为弦AC 的中点∴1402COD AOC ∠=∠=︒∴1202CMN COD ∠=∠=︒ ∵CED ∠所对的弧大于CN ∴CED CMN ∠>∠,即:20CED ∠>︒综上:2040CED ︒<∠<︒ ,选C.9.(2020·宜宾)如图,AB 是△O 的直径,点C 是圆上一点,连结AC 和BC ,过点C 作CD △AB 于点D ,且CD =4,BD =3,则△O 的周长是( )MNA .253π B .503π C .6259π D .62536π{答案}A{解析}根据“直径所对的圆周角为直角”,得∠ACB =90°,由CD ⊥AB ,根据勾股定理得BC=5,根据相似三角形的判定(两角对应相等的两个三角形相似)得Rt △ABC ∽Rt △CBD ,再根据相似三角形的三边对应成比例,得AB CB =BC BD ,即AB =253,∴⊙O 的周长是253π. 8.(2020·广州)往直径为52cm 的圆柱形容器内装入一些水以后,截面如图4所示,若水面宽AB=48cm ,则水的最大深度为( )A .8cmB .10cmC .16cmD .20cm{答案}C{解析}本题考查了垂径定理,解答过程如下:过点O 作OC ⊥AB 于D ,交⊙O 于点C ,连接OA .由题意,OA=OC =26cm ,AD=12AB=24cm ,再由勾股定理可得:OC=10cm ,所以水深CD=OC-OD=26-10=16cm.因此本题选C .9.(2020·武汉)如图,在半径为3的⊙O 中,AB 是直径,AC 是弦,D 是弧AC 的中点,AC 与BD 交于点E .若E 是BD 的中点,则AC 的长是 ················································ ( )A B .C .D .图4图4{答案}D{解析}本题考查了圆的垂径定理,弧线圆心角关系,全等判定,中位线等定理,连接OD ,交AC 于点F ,由D 是弧AC 的中点,易证出OD ⊥AC ,AF =CF ,又∵O 是AB 的中点,∴2OF =BC ,∵AB 是直径,∴∠ACB =90°,又∵E 是BD 的中点,∴易证出△EFD ≌△ECB (AAS )∴DF =BC ,又∵半径为3,∴2OF =DF =BC =2,在Rt △ABC 中,2426BC AB 2222=-=-=AC ,因此本题选D .10.(2020·海南)如图,已知AB 是△O 是直径,CD 是弦,若△BCD =36°,则∠ABD 等于( )A .54°B .56°C .64°D .66° {答案}A{解析}∵AB 是⊙O 的直径,∴∠ADB =90°.又由圆周角定理可知∠A =∠C ,∴∠ABD =90°-∠A =90°-36°=54°.6.(2020·吉林)如图,四边形ABCD 内接于O .若108B ∠=︒,则D ∠的大小为( )A. 54︒B. 62︒C. 72︒D. 82︒【答案】C【详解】因为,四边形ABCD 内接于O ,108B ∠=︒,所以,D ∠=180°-18010872B ∠=︒-︒=︒故选:C.9.(2020·黄石)如图,点A 、B 、C 在⊙O 上,CD ⊥OA ,CE ⊥OB ,垂足分别为D 、E ,若∠DCE =40°,则∠ACB 的度数为( )FA .140°B .70°C .110°D .80°{答案} C{解析}先根据四边形的内角和为360°求∠AOB =360°﹣90°﹣90°﹣40°=140°,再由同弧所对的圆周角是圆心角的一半可得∠P 的度数,最后由四点共圆的性质得结论.如图,在优弧AB 上取一点P ,连接AP ,BP ,∵CD ⊥OA ,CE ⊥OB ,∴∠ODC =∠OEC =90°,∵∠DCE =40°,∴∠AOB =360°﹣90°﹣90°﹣40°=140°,∴∠P =12∠AOB =70°,∵A 、C 、B 、P 四点共圆,∴∠P +∠ACB =180°,∴∠ACB =180°﹣70°=110°,故选:C .9.(2020·武威)如图,A 是⊙O 上一点,BC 是直径,AC =2,AB =4,点D 在⊙O 上且平分,则DC的长为( )A .2B .C .2D .【解析】∵点D 在⊙O 上且平分,∴,CAA∵BC是⊙O的直径,∴∠BAC=∠D =90°,∵AC=2,AB=4,∴BC==2,Rt△BDC中,DC2+BD2=BC2,∴2DC2=20,∴DC=,故选:D.二、填空题13.(2020湖州)如图,已知AB是半圆O的直径,弦CD∥AB,CD=8,AB=10,则CD与AB 之间的距离是3.【分析】过点O作OH⊥CD于H,连接OC,如图,根据垂径定理得到CH=DH=4,再利用勾股定理计算出OH=3,从而得到CD与AB之间的距离.【解答】解:过点O作OH⊥CD于H,连接OC,如图,则CH=DH=12CD=4,在Rt△OCH中,OH=√52−42=3,所以CD与AB之间的距离是3.故答案为3.16.(2020·遵义)如图,⊙O是△ABC的外接圆,∠BAC=45°,AD⊥BC于点D,延长AD交⊙O于点E,若BD=4,CD=1,则DE的长是_________.{答案}{解析}本题考查圆的基本性质、相似三角形的判定与性质、全等三角形的判定与性质,利用特殊角作垂线构造全等三角形是解题的关键.如图,过点B作BH⊥AC于点H,交AE于点F,连接BE,则△AHF≌△BHC.∴AF=BC=5.∵∠HAF=∠HBC,∠HAF=∠EBC,∴∠HBC=∠EBC.∵AD⊥BC于点D,∴DE=DF.∵∠CAE=∠CBE,∠ACB=∠AEB,∴△ACD∽△BED.∴CD ADDE BD=,即DEDE+=154.∴DE=-+541(舍去负值).故答案为-+541.-+5412F HEAD COBDCOBA19.(2020·黔东南州)如图,AB是半圆O 的直径,AC=AD,OC =2,∠CAB=30°,则点O到CD的距离OE为.{答案}√2 {解析}∵AC=AD,∠A=30°,∴∠ACD=∠ADC=75°.∵AO=OC,∴∠OCA=∠A=30°,∴∠OCD=45°,∴△OCE是等腰直角三角形.在等腰Rt△OCE中,OC=2,∴OE=√2.19.(2020·绥化)如图5,正五边形ABCDE内接于⊙O,点P为DE上一点(点P与点D,点E不重合),连接PC、PD,DG⊥PC,垂足为G,∠PDG等于______度.{答案}54{解析}连结CE.正五边形的内角∠CDE=15×(5-2)×180°=108°.∵DC=DE,∴∠P=∠DEC =12×(180°-108°)=36°.∵DG⊥PC,∴∠PDG=90°-∠P=54°.14.(2020·聊城)如图,在⊙O中,四边形OABC为菱形,点D在AmC︵上,则∠ADC的度数是.{答案}60°{解析}利用圆周角定理、圆内接四边形的性质以及菱形的对角相等构建方程求解.在菱形OABC 中,∠B=∠O,又∵∠O=2∠D,∠D+∠B=180°,∴∠D+2∠D=180°,∴∠D=60°.14.(2020·贵阳)(4分)如图,△ABC是△O的内接正三角形,点O是圆心,点D,E分别在边AC,AB上,若DA=EB,则△DOE的度数是度.{答案}120.{解析}解:连接OA,OB,△△ABC是△O的内接正三角形,△△AOB=120°,△OA=OB,△△OAB=△OBA=30°,△△CAB=60°,△△OAD=30°,△△OAD=△OBE,△AD=BE,△△OAD△△OBE(SAS),△△DOA=△BOE,△△DOE=△DOA+△AOE=△AOB=△AOE+△BOD=120°,故答案为:120.16.(2020·黑龙江龙东)如图,AD是△ABC的外接圆△O的直径,若△BCA=50°,则△ADB=°.图5O PGDECABODABCm{答案}50.{解析}本题考查了圆周角的性质,解:△AD是△ABC的外接圆△O的直径,△点A,B,C,D在△O上,△△BCA=50°,△△ADB=△BCA=50°,故答案为:50.15.(2020·襄阳)在⊙O中,若弦BC垂直平分半径OA,则弦BC所对的圆周角等于__________°.{答案}60或120.{解析}如答图,连接OB,OC,由弦BC垂直平分半径OA,得OD=12OA=12OB,∠ODB=90°,从而cos∠DOB=12,∠DOB=60°,于是∠DOC=120°.∴∠BP1C=12∠BOC=60°.∵∠BP1C+∠BP2C=180°,∴∠BP2C=120°.综上,弦BC所对的圆周角等于60°或120°,故答案为60或120.(2020·四川甘孜州)14.如图,AB为⊙O的直径,弦CD⊥AB于点H,若AB=10,CD=8,则OH的长度为________.{答案}3{解析}本题考查了垂径定理和勾股定理.连接OC,∵AB为⊙O的直径,AB=10,∴OC=OA=5.∵弦CD ⊥AB于点H,CD=8,∴CH=4.在Rt△OCH中,由勾股定理得OH=OC CH-22=-2254=3.故答案为3.14.(2020·盐城)如图,在O中,点A在BC上,100,BOC∠=︒则BAC∠=P2P1DOCB第15题答图14.130°,解析:本题考查了同弧所对的圆周角是圆心角的一半和圆内接四边形对角互补等知识,因此在⊙O上取一点D,连接CD,BD,则∴∠BDC=12∠BOC=50°∵四边形ABDC为圆内接四边形∴∠BAC+∠BDC=180°∵∠BDC=50°∴∠BAC=130°此本题答案为130° .(2020·济宁)15.如图,在四边形ABCD中,以AB为直径的半圆O经过点C,D.AC与BD相交于点E,CD2=CE·CA,分别延长AB,DC相交于点P,PB=BO,CD=22.则BO的长是_________.{答案}4{解析}:连结OC,如图,∵CD2=CE•CA,∴CD CA CE DC,而∠ACD=∠DCE,∴△CAD∽△CDE,∴∠CAD=∠CDE,∵∠CAD=∠CBD,∴∠CDB=∠CBD,∴BC=DC;设⊙O的半径为r,∵CD =CB ,∴CD CB =,∴∠BOC =∠BAD ,∴OC ∥AD , ∴22PC PO rCD OA r===, ∴PC =2CD =42,∵∠PCB =∠P AD ,∠CPB =∠APD , ∴△PCB ∽△P AD , ∴PC PBPA PD =,即42362r =, ∴r =4, ∴OB =4.16. (2020·岳阳)如图,AB 为半圆O 的直径,M ,C 是半圆上的三等分点,AB =8,BD 与半圆O 相切于点B ,点P 为AM 上一动点(不与点A ,M 重合),直线PC 交BD 于点D ,BE ⊥OC 于点E ,延长BE 交PC 于点F ,则下列结论正确的是 .(写出所有正确结论的序号) ①PD PB =;②BC 的长为π34; ③︒=∠45DBE ; ④PFB BCF ∆∆∽; ⑤CP CF ⋅为定值.{答案}②⑤{解析}∵M ,C 是半圆上的三等分点,∴∠BOC =︒=︒⨯6018031,根据同弧所对的圆周角等于圆心角的一半,∠BPC =21∠BOC =︒=︒⨯306021,∵BD 与半圆O 相切于点B ,∴∠ABD =90°∵P 是AM 上一动点,∴∠PBA 角度不确定,∴∠PBD 不确定,∠D 也不确定,所以PB =PD 不成立,结论①错误;∵直径AB =8,∴半径为4,∴60441803BC ππ⨯==,∴结论②正确;∵BE ⊥OC ,∴∠BEO =90°,∴∠OBE =180°-90°-60°=30°,∴∠DBE =∠ABD -∠OBE =90°-30°=60°,∴结论③错误;∵∠PFB=∠FCB +∠FBC ,所以∠PFB >∠FBC ,∴△BCF 和△PFB 不可能相似,∴结论④错误;∵OB =OC ,∠BOC =60°,∴△BOC 是等边三角形,∴∠CBO =60°,∵BE ⊥OC ,所以∠CB E =21∠CBO =30°,∴∠CBF =∠CPB ,又∵∠BCF =∠PCB ,∴△BCF ∽△PCB ,∴CPCB CB CF =,∴2CB CP CF =⋅,∵△OBC 是等边三角形,∴CB =OB =4,∴16=⋅CP CF ,为定值,∴结论⑤正确.综上,结论正确的是②⑤.12.(2020·随州)如图,点A,B,C在⊙O 上,AD是∠BAC的角平分线,若∠BOC=120°,则∠CAD的度数为 .{答案}30°{解析}本题考查了圆周角定理、角平分线的定义,解答过程如下:∵∠BOC=120°,∴∠BAC=21∠BOC=21×120°=60°.∵AD是∠BAC的角平分线,∴∠CAD=21∠BAC=21×60°=30°.12.(2020·南通)⊙O的半径为13,弦AB的长度是10,则圆心O到弦AB的距离为▲ .{答案}12{解析}过圆心作弦AB的垂线,连接OA,由垂径定理和勾股定理可求出距离.作OC9.(2020·青海)已知⊙O的直径为10cm,AB,CD是⊙O的两条弦,AB∥CD,AB=8cm,CD=6cm,则AB与CD之间的距离为______cm.{答案}7或1{解析}过圆心O作OM⊥AB于M,交CD于点N,连结OB,OD.∵AB∥CD,∴MN⊥CD.由垂径定理可知MB=4,ND=3.∴OM=22OB MB-=3,ON=22OD ND-=4.(1)当圆心O在AB,CD之间时,如图#(1),MN=OM+ON=7;(2)当圆心O在AB,CD同侧时,如图#(2),MN=ON-OM=1.⊥AB于点C,∴AC=152AB=,∴222213512OC OA AC=-=-=.13.(2020·成都)如图,A,B,C是△O上的三个点,△AOB=50°,△B=55°,则△A的度数为.{答案}30°{解析}首先根据△B的度数求得△BOC的度数,然后求得△AOC的度数,从而求得等腰三角形的底角即可.解:△OB=OC,△B=55°,△△BOC=180°﹣2△B=70°,△△AOB=50°,△△AOC=△AOB+△BOC=70°+50°=120°,O图#(1)DCA BMNO图#(2)DCA BMN△OA=OC,△△A=△OCA=180°−120°2=30°,故答案为:30°.14.(2020·安顺)如图,ABC∆是O⊙的内接正三角形,点O是圆心,点D,E分别在边AC,AB上,若DA EB=,则DOE∠的度数是度.{答案}120{解析}连接OA,OB.∵ABC∆是O⊙的内接正三角形,∴30OAD OBE∠=∠=︒,120AOB∠=︒.又∵AD=BE,OA=OB,∴△OAD≌△OBE.∴AOD BOE∠=∠.即DOE∠=120︒. 16.(2020·滨州)如图,O是正方形ABCD的内切圆,切点分别为E、F,G,H,ED与O相交于点M,则sin∠MFG的值为________{答案}55{解析}本题考查了圆周角的性质及锐角三角函数的概念,设正方形的边长为a,∵⊙O是正方形ABCD的内切圆,AE=12AB=12a,AD=EG=BC=a,DE=52a,根据圆周角的性质可得:∠MFG=∠MEG.∵sin∠MFG=sin∠MEG=55DGDE=,∴sin∠MFG=55,因此本题填55.19.(2020·临沂)我们知道,两点之间线段最短,因此,连接两点间线段的长度叫做两点间的距离;同理,连接直线外一点与直线上各点的所有线段中,垂线段最短,因此,直线外一点到这条直线的垂线第14题图第14题答段的长度,叫做点到直线的距离.类似地,连接曲线外一点与曲线上各点的所有线段中...................,最短线段的长......度.,叫做点到曲线的距离..........依此定义,如图,在平面直角坐标系中,点(2,1)A 到以原点为圆心,以1为半径的圆的距离为_________.{答案1{解析} 连接OA 交圆周于点N ,过点A 作x 轴的垂线,垂足为点M : ∵点(2,1)A ∴OM=2,AM=1∴OA ==.∴1AN OA ON =-=.14.(2020·宜宾)如图,A 、B 、C 是△O 上的三点,若△OBC 是等边三角形,则cos△A = .{答案{解析}利用等边三角形的性质、圆周角定理、特殊角的三角函数值求解.∵△OBC 是等边三角形, ∴∠BOC =60°,∴∠A =30°,∴cos ∠A =cos30°=2. 15. (2020·攀枝花) 如图,已知锐角三角形ABC 内接于半径为2的O ,OD BC ⊥于点D ,60BAC ∠=︒,则OD = .{答案}1{解析}如图,连接OB 、OC ,则易知2120BOC BAC ∠=∠=︒, 由垂径定理可知1602BOD BOD ∠=∠=︒,则30OBD ∠=︒,∴112OD OB ==.NM三、解答题22.(2020·温州)如图,C,D为⊙O上两点,且在直径AB两侧,连结CD交AB于点E,G是AC上一点,∠ADC =∠G.(1)求证:∠1=∠2(2)点C关于DG的对称点为F,连结CF.当点F落在直径AB上时CF=10,tan∠1=2,5求⊙O的半径.{解析}本题考查了垂径定理及解直角三角形.(1)由∠ADC=∠G得到AC=AD,从而得到CB DB=,从而∠1=∠2;(2)根据圆是轴对称图形可知CF=DF,又由点C关于DG的对称点为F得到CD=DF,从而求得DE=5,分别解Rt△AED和Rt△BDE,求得AE和EB,从而得到直径AB。
2021中考数学冲刺集训:圆的有关性质一、选择题1. 如图,AB为☉O的直径,C,D为☉O上两点,若∠BCD=40°,则∠ABD的大小为()A.60°B.50°C.40°D.20°2. 如图,在直角坐标系中,以原点为圆心,半径为5的圆内有一点P(0,-3),那么经过点P的所有弦中,最短的弦的长为()A.4 B.5 C.8 D.103. 如图,A、D是⊙O上的两个点,BC是直径,若∠D=32°,则∠OAC等于()A. 64°B. 58°C. 72°D. 55°4. 如图,AB是⊙O的直径,EF,EB是⊙O的弦,且EF=EB,EF与AB交于点C,连接OF.若∠AOF=40°,则∠F的度数是()A.20°B.35°C.40°D.55°5. △ABC中,AB=AC,∠A为锐角,CD为AB边上的高,I为△ACD的内切圆圆心,则∠AIB的度数是()A. 120°B. 125°C. 135°D. 150°6. 如图,AB是⊙O的直径,弦CD⊥AB于点E.若AB=8,AE=1,则弦CD的长是()A.7 B.27 C.6 D.87. 2019·武汉京山期中在圆柱形油槽内装有一些油,油槽直径MN为10分米.截面如图,油面宽AB为6分米,如果再注入一些油后,油面宽变为8分米,则油面AB上升()A.1分米B.4分米C.3分米D.1分米或7分米8. 如图,量角器的零刻度线与三角尺ABC的斜边AB重合,其中量角器的零刻度线的端点N与点A重合,射线CP从CA处出发按顺时针方向以每秒2度的速度旋转,CP与量角器的半圆弧交于点E,第24秒时,点E在量角器上对应的读数是()A.48°B.64°C.96°D.132°二、填空题9. 如图,在⊙O中,A,B是圆上的两点,已知∠AOB=40°,直径CD∥AB,连接AC,则∠BAC=________度.10. 如图,AB 是⊙O的直径,C ,D 是⊙O 上的两点,若∠BCD =28°,则∠ABD=________°.11. 如图0,A ,B 是⊙O 上的两点,AB =10,P 是⊙O 上的动点(点P 与A ,B 两点不重合),连接AP ,PB ,过点O 分别作OE ⊥AP 于点E ,OF ⊥PB 于点F ,则EF =________.12. 已知:如图,A ,B 是⊙O 上的两点,∠AOB =120°,C 是AB ︵的中点,则四边形OACB是________.(填特殊平行四边形的名称)13. 如图,AB 为⊙O 的直径,弦CD ⊥AB 于点E ,已知CD =6,EB =1,则⊙O 的半径为________.14. 如图,在⊙O 的内接五边形ABCDE 中,∠CAD =35°,则∠B +∠E =________°.15. 如图,⊙O 的直径AB 过弦CD 的中点E ,若∠C =25°,则∠D =________°.16. 在Rt △ABC 中,∠C =90°,BC =3,AC =4,点P 在以点C 为圆心,5为半径的圆上,连接PA ,PB.若PB =4,则PA 的长为________.三、解答题17. 如图,AB 为⊙O 的直径,C 为圆外一点,AC 交⊙O 于点D ,BC 2=CD ·CA ,ED ︵=BD ︵,BE 交AC 于点F . (1)求证:BC 为⊙O 的切线;(2)判断△BCF 的形状并说明理由;(3)已知BC =15,CD =9,∠BAC =36°,求BD ︵的长度(结果保留π).18. 如图,四边形ABCD 内接于圆O ,∠BAD =90°,AC 为直径,过点A 作圆O的切线交CB 的延长线于点E ,过AC 的三等分点F (靠近点C )作CE 的平行线交AB 于点G ,连接CG . (1)求证:AB =CD ; (2)求证:CD 2=BE ·BC ;(3)当CG =3,BE =92,求CD 的长.19. (2019•辽阳)如图,BE是⊙O的直径,点A和点D是⊙O上的两点,连接AE,∠=∠.AD,DE,过点A作射线交BE的延长线于点C,使EAC EDA(1)求证:AC是⊙O的切线;(2)若23==,求阴影部分的面积.CE AE20. 如图,四边形OBCD中的三个顶点在⊙O上,A是优弧BAD上的一个动点(不与点B,D重合).(1)当圆心O在∠BAD的内部时,若∠BOD=120°,则∠OBA+∠ODA=________°.(2)若四边形OBCD为平行四边形.①当圆心O在∠BAD的内部时,求∠OBA+∠ODA的度数;②当圆心O在∠BAD的外部时,请画出图形并直接写出∠OBA与∠ODA的数量关系.2021中考数学冲刺集训:圆的有关性质-答案一、选择题1. 【答案】B[解析]如图,连接AD,∵AB为☉O的直径,∴∠ADB=90°.∵∠A和∠BCD都是所对的圆周角,∴∠A=∠BCD=40°,∴∠ABD=90°-40°=50°.故选B.2. 【答案】C[解析] 过点P作弦AB⊥OP,连接OB,如图.则PB=AP,∴AB=2BP=2 OB2-OP2.再过点P任作一条弦MN,过点O作OG⊥MN于点G,连接ON.则MN=2GN=2 ON2-OG2.∵OP>OG,OB=ON,∴MN>AB,∴AB是⊙O中的过点P最短的弦.在Rt△OPB中,PO=3,OB=5,由勾股定理,得PB=4,则AB=2PB=8.3. 【答案】B【解析】∵∠D与∠AOC同对弧AC,∴∠AOC=2∠D=2×32°=64°,∵OA=OC,∴∠OAC=∠OCA,在△OAC中,根据三角形内角和为180°,可得∠OAC=12(180°-∠AOC)=12×(180°-64°)=58°.4. 【答案】B5. 【答案】C【解析】由CD 为腰上的高,I 为△ACD 的内心,则∠IAC +∠ICA=12(∠DAC +∠DCA)=12(180°-∠ADC)=12(180°-90°)=45°,所以∠AIC =180°-(∠IAC +∠ICA)=180°-45°=135°.又可证△AIB ≌△AIC ,得∠AIB =∠AIC =135°.6. 【答案】B [解析] 连接OC ,则OC =4,OE =3.在Rt △OCE 中,CE =OC2-OE2=42-32=7.因为AB ⊥CD ,所以CD =2CE =2 7.7. 【答案】D8. 【答案】C[解析] ∵∠ACB =90°,∴点C 在以O 为圆心,OA 长为半径的圆上.第24秒时,∠ACE =48°,∴∠EOA =2∠ACE =96°.二、填空题9. 【答案】35 【解析】∵OA =OB =OC ,∴∠OAB =∠B ,∠C =∠OAC ,∵∠AOB =40°,∴∠B =∠OAB =70°,∵CD ∥AB ,∴∠BAC =∠C ,∴∠OAC=∠BAC =12∠OAB =35°. 10. 【答案】62 【解析】根据直径所对的圆周角等于90°及∠BCD =28°,可得∠ACD =∠ACB -∠BCD =90°-28°=62°,再根据同弧所对圆周角相等有∠ABD =∠ACD =62°.11. 【答案】5 [解析] ∵OE 过圆心且与PA 垂直,∴PE =EA.同理PF =FB ,∴EF 是△PAB 的中位线, ∴EF =12AB =5.12. 【答案】菱形 [解析] 连接OC.∵C 是AB ︵的中点, ∴∠AOC =∠COB =60°. 又∵OA =OC =OB ,∴△OAC 和△OCB 都是等边三角形, ∴OA =AC =BC =OB ,∴四边形OACB是菱形.13. 【答案】5[解析] 设圆的半径为x,则OE=x-1.根据垂径定理可知,CE=3,由勾股定理可得32+(x-1)2=x2,解得x=5.故答案为5.14. 【答案】215[解析] 连接CE,则∠B+∠AEC=180°,∠DEC=∠CAD=35°,∴∠B +∠AED=(∠B+∠AEC)+∠DEC=180°+35°=215°.15. 【答案】65[解析] ∵∠C=25°,∴∠A=∠C=25°.∵⊙O的直径AB过弦CD的中点E,∴AB⊥CD,∴∠AED=90°,∴∠D=90°-25°=65°.16. 【答案】3或73[解析] 如图,连接CP,PB的延长线交⊙C于点P′.∵PC=5,BC=3,PB=4,∴BC2+PB2=PC2,∴△CPB为直角三角形,且∠CBP=90°,即CB⊥PB,∴PB=P′B=4.∵∠ACB=90°,∴PB∥AC.又∵PB=AC=4,∴四边形ACBP为平行四边形.又∵∠ACB=90°,∴▱ACBP为矩形,∴PA=BC=3.在Rt△APP′中,∵PA=3,PP′=8,∴P′A=82+32=73.综上所述,PA的长为3或73.三、解答题17. 【答案】(1)证明:∵BC 2=CD ·CA , ∴BC CA =CD BC , ∵∠C =∠C ,∴△CBD ∽△CAB , ∴∠CBD =∠BAC , 又∵AB 为⊙O 的直径, ∴∠ADB =90°,即∠BAC +∠ABD =90°, ∴∠ABD +∠CBD =90°, 即AB ⊥BC ,又∵AB 为⊙O 的直径, ∴BC 为⊙O 的切线;(2)解:△BCF 为等腰三角形. 证明如下:∵ED ︵=BD ︵,∴∠DAE =∠BAC , 又∵△CBD ∽△CAB , ∴∠BAC =∠CBD , ∴∠CBD =∠DAE , ∵∠DAE =∠DBF , ∴∠DBF =∠CBD , ∵∠BDF =90°,∴∠BDC =∠BDF =90°, ∵BD =BD ,∴△BDF ≌△BDC , ∴BF =BC ,∴△BCF 为等腰三角形;(3)解:由(1)知,BC 为⊙O 的切线, ∴∠ABC =90° ∵BC 2=CD ·CA ,∴AC =BC 2CD =1529=25,由勾股定理得AB =AC 2-BC 2=252-152=20, ∴⊙O 的半径为r =AB2=10, ∵∠BAC =36°, ∴BD ︵所对圆心角为72°.则BD ︵=72×π×10180=4π.18. 【答案】(1)证明:∵AC 为直径, ∴∠ABC =∠ADC =90°, ∴∠ABC =∠BAD =90°, ∴BC ∥AD ,∴∠BCA =∠CAD , 又∵AC =CA ,∴△ABC ≌△CDA (AAS), ∴AB =CD ;(2)证明:∵AE 为⊙O 的切线且O 为圆心, ∴OA ⊥AE , 即CA ⊥AE ,∴∠EAB +∠BAC =90°, 而∠BAC +∠BCA =90°, ∴∠EAB =∠BCA , 而∠EBA =∠ABC , ∴△EBA ∽△ABC , ∴EB AB =BA BC , ∴AB 2=BE ·BC , 由(1)知AB =CD , ∴CD 2=BE ·BC ;(3)解:由(2)知CD 2=BE ·BC ,即CD 2=92BC ①,∵FG ∥BC 且点F 为AC 的三等分点, ∴G 为AB 的三等分点, 即CD =AB =3BG ,在Rt △CBG 中,CG 2=BG 2+BC 2,即3=(13CD )2+BC 2②, 将①代入②,消去CD 得,BC 2+12BC -3=0, 即2BC 2+BC -6=0,解得BC =32或BC =-2(舍)③,将③代入①得,CD =332.19. 【答案】(1)如图,连接OA ,过O 作OF AE 于F ,∴90AFO ∠=︒,∴90EAO AOF ∠+∠=︒,∵OA OE =, ∴12EOF AOF AOE ∠=∠=∠, ∵12EDA AOE ∠=∠, ∴EDA AOF ∠=∠,∵EAC EDA ∠=∠,∴EAC AOF ∠=∠,∴90EAO EAC ∠+∠=︒,∵EAC EAO CAO ∠+∠=∠,∴90CAO ∠=︒,∴OA AC ⊥,∴AC 是⊙O 的切线.(2)∵23CE AE ==∴C EAC ∠=∠,∵EAC C AEO ∠+∠=∠,∴2AEO EAC ∠=∠,∵OA OE =,AEO EAO ∠=∠,∴2EAO EAC ∠=∠,∵90EAO EAC ∠+∠=︒,∴30EAC ∠=︒,60EAO ∠=︒,∴OAE △是等边三角形,∴OA AE =,60EOA ∠=︒,∴OA =∴2πAOE S =扇形,在Rt OAE △中,sin 32OF OA EAO =⋅∠==,∴11322AOE S AE OF =⋅=⨯=△∴阴影部分的面积=2π-20. 【答案】52解:(1)60(2)①如图(a).∵四边形OBCD 为平行四边形,∴∠BOD =∠BCD ,∠OBC =∠ODC .又∵∠BAD +∠BCD =180°,∠BAD =12∠BOD ,∴12∠BOD +∠BOD =180°,解得∠BOD =120°,∴∠BAD =12∠BOD =12×120°=60°,∠OBC =∠ODC =180°-∠BOD =180°-120°=60°. 又∵∠ABC +∠ADC =180°,∴∠OBA +∠ODA =∠ABC +∠ADC -(∠OBC +∠ODC )=180°-(60°+60°)=60°.②如图(b)所示,连接AO .∵OA =OB ,∴∠OBA =∠OAB .∵OA =OD ,∴∠OAD =∠ODA .∵∠OAB=∠OAD+∠BAD,∴∠OBA=∠ODA+∠BAD=∠ODA+60°. 如图(c),同理可得∠ODA=∠OBA+60°.。
2021年九年级数学中考一轮复习圆的有关性质选择题专题训练(附答案) 1.下列说法中,不正确的是( )A .圆心角的角度与它所对的弧的度数相等B .同圆中,所有半径都相等C .圆既是轴对称图形又是中心对称图形D .长度相同的弧是等弧2.如图点O 为坐标原点,点A 的坐标为(3,0),点B 的坐标为(0,4),圆D 过A ,B ,O 三点,点C 为弧OBA 上的一点(不与O 、A 两点重合),连接OC ,AC ,则tanC 的值为( )A .35B .34C .45D .433.如图,AC 为半圆的直径,弦3AB =,30BAC ∠=︒,点E 、F 分别为AB 和AC 上的动点,则BF EF +的最小值为( )A .3B .332C .3D .332+ 4.如图,CD 是O 的直径,O 上的两点A ,B 分别在直径CD 的两侧,且70ABC ∠=︒,则AOD ∠的度数为( ).A .20°B .30°C .40°D .50°5.如图,在⊙O 中,AB 为直径,点C 为圆上一点,将劣弧AC 延弦AC 翻折交AB 于点D ,连接CD .若∠BAC =20度,则∠BDC =( )A .80°B .70°C .60°D .50° 6.如图,⊙O 是△ABC 的外接圆,连接OB ,若∠OBC =30°,则∠A 的度数为( )A .55°B .60°C .65°D .70°7.下列命题:①垂直于弦的直径平分弦,并且平分弦所对的两条弧;②在同圆或等圆中相等的圆心角所对的弧相等;③在同圆或等圆中如果两条弦相等,那么它们所对的圆心角相等;④圆内接四边形的对角互补.其中正确的命题共有( )A .4个B .3个C .2个D .1个8.如图,在平行四边形ABCO 中,45C ∠=︒,点A ,B 在⊙O 上,点D 在优弧ADB 上,DA DB =,则AOD ∠的度数为( )A .165°B .155°C .145°D .135°9.如图所示,在⊙O 中,半径OD ⊥弦AB 于点C ,连接AO 并延长交⊙O 于点E ,连接EC ,若AB =8,CD =2,则EC 的长度为( ).A .25B .8C .210D .213 10.如图,ABC 为O 的一个内接三角形,过点B 作O 的切线PB 与OA 的延长线交于点P .已知34ACB ∠=︒,则P ∠等于( )A .17°B .27°C .32°D .22°11.如图,动点M 在边长为2的正方形ABCD 内,且AM BM ⊥,P 是CD 边上的一个动点,E 是AD 边的中点,则线段PE PM +的最小值为( )A .101-B .21+C .10D .51+ 12.如图,在O 中,AB ,AC 为互相垂直且相等的两条弦,⊥OD AB ,OE AC ⊥,垂足分别为D ,E ,若4AB =,则O 的半径是( )A .22B .2C .3D .42 13.如图,在平面直角坐标系xOy 中,以原点O 为圆心的圆过点(10,0)A ,直线8y kx =+与O交于B、C两点,则弦BC长的最小值().A.8 B.10 C.12 D.1614.如图,在半径为5的⊙O中,AB,CD是互相垂直的两条弦,垂足为P,且AB=CD=8,则OP的长为()A.3 B.4 C.32D.4515.如图,AB为⊙O的直径,AC交⊙O于E点,BC交⊙O于D点,CD=BD,∠C=70°,现给出以下四个结论:①∠A=45°;②AC=AB;③AE=BE;④2CE•AB=BC2,其中正确..结论有()A.1个B.2个C.3个D.4个16.如图,MN是半径为1的⊙O的直径,点A在⊙O上,∠AMN=30°,点B为劣弧AN的中点,P是直径MN上一动点,则PA+PB的最小值为()A.2B.1 C.2 D.2217.如图,P 与y 轴交于点()0,4M -,()0,10N -,圆心P 的横坐标为4-,则P 的半径为( )A .3B .4C .5D .6 18.如图,直径为10的A 经过点C 和点O ,B 是y 轴右侧A 优弧上一点,30OBC ∠=︒,则点C 的坐标为( )A .(0,5)B .(0,53)C .5(0,)3 D .5(0,3)319.如图,C 、D 是以AB 为直径的O 上的两个动点(点C 、D 不与A 、B 重合),在运动过程中弦CD 始终保持长度不变,M 是弦CD 的中点,过点C 作CP AB ⊥于点P .若3CD =,5AB =,PM x =,则x 的最大值是( )A .4B .5C .2.5D .23 20.点A ,B 的坐标分别为A (4,0),B (0,4),点C 为坐标平面内一点,BC ﹦2,点M 为线段AC 的中点,连接OM ,则OM 的最大值为( )A.22+1 B.22+2 C.42+1 D.42-221.如图,在⊙O中,直径AB与弦MN相交于点P,∠NPB=45°,若AP=2,BP=6,则MN的长为()A.14B.25C.214D.822.如图,在圆O中,弦AB=4,点C在AB上移动,连接OC,过点C作CD⊥OC交圆O 于点D,则CD的最大值为()A.22B.2 C.32D.5223.如图,已知BC是⊙O的直径,半径OA⊥BC,点D在劣弧AC上(不与点A,点C重合),BD与OA交于点E.设∠AED=α,∠AOD=β,则()A.3α+β=180°B.2α+β=180°C.3α﹣β=90°D.2α﹣β=90°24.如图,已知直线5-512y x与x轴、y轴分别交于B、C两点,点A是以D(0,2)为圆心,2为半径的⊙D上的一个动点,连接AC、AB,则△ABC面积的最小值是()A.30 B.29 C.28 D.2725.如图,BC是⊙O直径,A是圆周上一点,把△ABC绕点C顺时针旋转得△EDC,连结BD,当BD∥AC时,记旋转角为x度,若∠ABC=y度,则y与x之间满足的函数关系式为()A.y=180-2x B.y=12x+90 C.y=2x D.y=12x 参考答案1.D 2.B 3.B 4.C 5.B 6.B 7.A 8.D 9.D 10.D 11.A 12.C 13.C 14.C15.B 16.A 17.C 18.A 19.C 20.A 21.C 22.B 23.D 24.B 25.D。
初三数学中考复习圆的基本性质专题训练题含答案编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(初三数学中考复习圆的基本性质专题训练题含答案)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为初三数学中考复习圆的基本性质专题训练题含答案的全部内容。
2019 初三数学中考复习圆的基本性质专题训练题1。
正六边形ABCDEF内接于⊙O,正六边形的周长是12,则⊙O的半径是( B )A.错误! B.2 C.2 错误! D.2 错误!2.如图是“明清影视城"的一扇圆弧形门,小红到影视城游玩,她了解到这扇门的相关数据:这扇圆弧形门所在的圆与水平地面是相切的,AB=CD =0。
25米,BD=1。
5米,且AB,CD与水平地面都是垂直的,根据以上数据,请你帮小红计算出这扇圆弧形门的最高点离地面的距离是( B ) A.2米 B.2。
5米 C.2。
4米 D.2.1米3.如图,将⊙O沿弦AB折叠,圆弧恰好经过圆心O,点P是优弧AMB上一点,则∠APB的度数为( D )A.45° B.30° C.75° D.60°4.如图,已知AC是⊙O的直径,点B在圆周上(不与点A,C重合),点D 在AC的延长线上,连结BD交⊙O于点E.若∠AOB=3∠ADB,则( D )A.DE=EB B。
错误!DE=EB C.错误!DE=DO D.DE=OB 5.如图,在⊙O中,AB是直径,CD是弦,AB⊥CD,垂足为E,连结CO,AD,∠BAD=20°,则下列说法中正确的是( D )A.AD=2OB B.CE=EO C.∠OCE=40° D.∠BOC=2∠BAD 6.如图,四边形PAOB是扇形OMN的内接矩形,顶点P在错误!上,且不与点M,N重合,当点P在错误!上移动时,矩形PAOB的形状、大小随之变化,则AB 的长度( A )A.不变 B.变小 C.变大 D.不能确定7.如图,四边形ABCD为⊙O内接四边形,延长AB与DC相交于点G,AO⊥CD,垂足为E,连结BD,∠GBC=50°,则∠DBC的度数为( C )A.50° B.60° C.80° D.90°8.如图,已知四边形ABCD内接于半径为4的⊙O中,且∠C=2∠A,则BD=__4错误!.9.如图,点A,B,C为⊙O上的三个点,∠BOC=2∠AOB,∠BAC=40°,则∠ACB=__20__度.10.如图,已知AM为⊙O的直径,直线BC经过点M,且AB=AC,∠BAM=∠CAM,线段AB和AC分别交⊙O于点D,E,∠BMD=40°,则∠EOM=__80°__.11.如图,△ABC内接于⊙O,∠ACB=90°,∠ACB的角平分线交⊙O于点D.若AC=6,BD=5错误!,则BC的长为__8__.12.在半径为1的⊙O中,弦AB,AC的长分别为1和2,则∠BAC的度数为__15°或105°__.13.如图,一条公路的转弯处是一段圆弧(错误!).(1)用直尺和圆规作出错误!所在圆的圆心O;(要求保留作图痕迹,不写作法)(2)若错误!的中点C到弦AB的距离为20 m,AB=80 m,求错误!所在圆的半径.解:(1)作图如图所示:(2)连结AB,OB,OC.设OC交AB于点D,∵AB=80 m,C为错误!的中点,∴OC⊥AB.∴AD=BD=40 m,CD=20 m.设OB=r m,则OD=(r-20)m。
2021年九年级数学中考一轮复习知识点专题突破测评:圆的有关性质(附答案)1.如图,在△ABC中,∠ACB=90°,∠A=40°,以C为圆心,CB为半径的圆交AB于点D,连接CD,则∠ACD=()A.10°B.15°C.20°D.25°2.下列说法:(1)长度相等的弧是等弧,(2)半径相等的圆是等圆,(3)等弧能够重合,(4)半径是圆中最长的弦,其中正确的有()A.1个B.2个C.3个D.4个3.如图,AB是⊙O的直径,BC是⊙O的弦=.若BD=2,CD=6,则BC的长为()A.B.C.D.4.已知⊙O的直径CD为2,弧AC的度数为80°,点B是弧AC的中点,点P在直径CD 上移动,则BP+AP的最小值为()A.1B.2C.2D.5.如图,AB为⊙O的弦,半径OC⊥AB于点D,且AB=6,OD=4,则DC的长为()A.1B.2C.2.5D.56.如图,把一个量角器放在∠BAC的上面,点B恰好在量角器上40°的位置,则∠BAC 的度数是()A.40°B.80°C.20°D.10°7.如图,四边形ABCD内接于⊙O,AE⊥CB交CB的延长线于点E,若BA平分∠DBE,AD=5,CE=,则AE=()A.3B.3C.4D.28.在直角坐标平面内,点A的坐标为(1,0),点B的坐标为(a,0),圆A的半径为2.下列说法中不正确的是()A.当a=﹣1时,点B在圆A上B.当a<1时,点B在圆A内C.当a<﹣1时,点B在圆A外D.当﹣1<a<3时,点B在圆A内9.如图,AB是⊙O的直径,CD是⊙O的弦,AB、CD的延长线交于点E.若AB=2DE,∠E=18°,则∠C的度数为.10.《西游记》“三打白骨精”中,唐僧冤枉了孙悟空,念起了紧箍咒,疼的孙悟空抱头打滚.假如唐僧念的咒语使悟空头上的紧箍咒缩了1cm,假设紧箍咒是圆形,那么紧箍咒的半径缩短了cm.(结果保留π)11.如图,在⊙O中,B,P,A,C是圆上的点,弧PB=弧PC,PD⊥CD,CD交⊙O于A,若AC=AD,PD=,sin∠P AD=,则△P AB的面积为.12.如图,⊙O中,已知弧AB=弧BC,且弧AB:弧AmC=3:4,则∠AOC=度.13.在平面直角坐标系中,以原点为圆心,5为半径的⊙O与直线y=kx+2k+3(k≠0)交于A,B两点,则弦AB长的最小值是.14.如图,正方形ABCD内接于⊙O,点E在⊙O上,则∠BEC=.15.如图,点A、B、C、D、E在⊙O上,且为50°,则∠E+∠C=°.16.已知圆O的直径为6,点M到圆心O的距离为4,则点M与⊙O的位置关系是.17.如图,在图中,用图形(阴影)表示与A的距离小于或等于2cm的所有点组成的图形.18.如图,D、E分别是⊙O两条半径OA、OB的中点,=.(1)求证:CD=CE.(2)若∠AOB=120°,OA=x,四边形ODCE的面积为y,求y与x的函数关系式.19.如图,在△OAB中OA=OB,⊙O交AB于点C、D,求证:AC=BD.20.如图,AB为半圆O的直径,CD是半圆上两点,AC=2BC,F在BD上且CF⊥CD,求证:AD=2BF.21.如图,四边形ABCD内接于⊙O,AD,BC的延长线交于点E,F是BD延长线上一点,∠CDE=∠CDF=60°.(1)求证:△ABC是等边三角形;(2)判断DA,DC,DB之间的数量关系,并证明你的结论.22.如图,已知矩形ABCD的边AB=3cm,BC=4cm,以点A为圆心,4cm为半径作⊙A,则点B,C,D与⊙A怎样的位置关系.参考答案1.如图,在△ABC中,∠ACB=90°,∠A=40°,以C为圆心,CB为半径的圆交AB于点D,连接CD,则∠ACD=()A.10°B.15°C.20°D.25°解:∵∠ACB=90°,∠A=40°,∴∠B=50°,∵CD=CB,∴∠BCD=180°﹣2×50°=80°,∴∠ACD=90°﹣80°=10°;故选:A.2.下列说法:(1)长度相等的弧是等弧,(2)半径相等的圆是等圆,(3)等弧能够重合,(4)半径是圆中最长的弦,其中正确的有()A.1个B.2个C.3个D.4个解:(1)长度相等的弧是等弧,错误;(2)半径相等的圆是等圆,正确;(3)等弧能够重合,正确;(4)半径是圆中最长的弦,错误;故选:B.3.如图,AB是⊙O的直径,BC是⊙O的弦=.若BD=2,CD=6,则BC的长为()A.B.C.D.解:连AD,过点D作直径DE,与AC交于点F,连结CE,∴DE⊥AC,CD⊥CE,∵,∴AD=CD,∴,,∴BD=CE=2,∴,∵∠ECA=∠CDE,∠ECD=∠CFD=90°,∴△ECF∽△EDC,∴,∴,∴,∴,∴=.故选:B.4.已知⊙O的直径CD为2,弧AC的度数为80°,点B是弧AC的中点,点P在直径CD 上移动,则BP+AP的最小值为()A.1B.2C.2D.解:过点B关于CD的对称点B′,连接AB′交CD于点P,延长AO交圆O与点E,连接B′E.∵点B与点B′关于CD对称,∴PB=PB′,=,∴当点B′、P、A在一条直线上时,PB+P A有最小值,最小值为AB′.∵点B是的中点,∴=120°.∴∠B′EA=60°.∴AB′=AE•sin60°=2×=.故选:D.5.如图,AB为⊙O的弦,半径OC⊥AB于点D,且AB=6,OD=4,则DC的长为()A.1B.2C.2.5D.5解:连接OA,∵半径OC⊥AB,∴AD=BD=AB=×6=3,∵OD=4,∴OA==5,∴OC=OA=5,∴DC=OC﹣OD=5﹣4=1.故选:A.6.如图,把一个量角器放在∠BAC的上面,点B恰好在量角器上40°的位置,则∠BAC 的度数是()A.40°B.80°C.20°D.10°解:如图,∠BOC=40°,则∠BAC=∠BOC=20°.故选:C.7.如图,四边形ABCD内接于⊙O,AE⊥CB交CB的延长线于点E,若BA平分∠DBE,AD=5,CE=,则AE=()A.3B.3C.4D.2解:连接AC,如图,∵BA平分∠DBE,∴∠1=∠2,∵∠1=∠CDA,∠2=∠3,∴∠3=∠CDA,∴AC=AD=5,∵AE⊥CB,∴∠AEC=90°,∴AE===2.故选:D.8.在直角坐标平面内,点A的坐标为(1,0),点B的坐标为(a,0),圆A的半径为2.下列说法中不正确的是()A.当a=﹣1时,点B在圆A上B.当a<1时,点B在圆A内C.当a<﹣1时,点B在圆A外D.当﹣1<a<3时,点B在圆A内解:如图:∵A(1,0),⊙A的半径是2,∴AC=AE=2,∴OE=1,OC=3,A、当a=﹣1时,点B在E上,即B在⊙A上,正确,故本选项不合题意;B、当a=﹣3时,B在⊙A外,即说当a<1时,点B在圆A内错误,故本选项符合题意;C、当a<﹣1时,AB>2,即说点B在圆A外正确,故本选项不合题意;D、当﹣1<a<3时,B在⊙A内正确,故本选项不合题意;故选:B.9.如图,AB是⊙O的直径,CD是⊙O的弦,AB、CD的延长线交于点E.若AB=2DE,∠E=18°,则∠C的度数为36°.解:连接OD,∵AB=2DE,∴OD=DE,∴∠E=∠EOD,在△EDO中,∠ODC=∠E+∠EOD=36°,∵OC=OD,∴∠C=∠ODC=36°.故答案为:36°.10.《西游记》“三打白骨精”中,唐僧冤枉了孙悟空,念起了紧箍咒,疼的孙悟空抱头打滚.假如唐僧念的咒语使悟空头上的紧箍咒缩了1cm,假设紧箍咒是圆形,那么紧箍咒的半径缩短了cm.(结果保留π)解:设紧箍咒开始的半径为R,缩短后的半径为r,则2πR﹣2πr=1,解得:R﹣r=,故答案为:.11.如图,在⊙O中,B,P,A,C是圆上的点,弧PB=弧PC,PD⊥CD,CD交⊙O于A,若AC=AD,PD=,sin∠P AD=,则△P AB的面积为2.解:过P作PH⊥AB于H,连接BC、PC,∵,∴PB=PC,∴∠PCB=∠PBC,∵B,P,A,C是圆O上的点,∴∠P AD=∠PBC=∠PCB=∠P AB,∵PH⊥AB,PD⊥CD,∴PH=PD=,sin∠P AD==,∴P A=,∴AH=1=AD,PH=PD,Rt△PCD中,CD=2,PD=,由勾股定理得:PC==,∴PB=PC=,∴BH===2,∴S△ABP=AB•PH=×(1+2)×=2,故答案为:2.12.如图,⊙O中,已知弧AB=弧BC,且弧AB:弧AmC=3:4,则∠AOC=144度.解:∵弧AB=弧BC,且弧AB:弧AmC=3:4,∴弧ABC:弧AmC=6:4,∴∠AOC的度数为(360°÷10)×4=144°.13.在平面直角坐标系中,以原点为圆心,5为半径的⊙O与直线y=kx+2k+3(k≠0)交于A,B两点,则弦AB长的最小值是4.解:对于直线y=kx+2k+3=k(x+2)+3,当x=﹣2时,y=3故直线y=kx+2k+3恒经过点(﹣2,3),记为点D,过点D作DH⊥x轴于点H,则OH=2,DH=3,OD==,由于过圆内定点D的所有弦中,与OD垂直的弦最短,因此运用垂径定理及勾股定理可得:AB的最小值为2BD=2=4,故答案为:4.14.如图,正方形ABCD内接于⊙O,点E在⊙O上,则∠BEC=45°.解:连接OB,OC,∵正方形ABCD内接于⊙O,∴∠BOC=90°,∴∠BEC=90°÷2=45°.故答案为:45°.15.如图,点A、B、C、D、E在⊙O上,且为50°,则∠E+∠C=155°.解:连接EA,∵为50°,∴∠BEA=25°,∵四边形DCAE为⊙O的内接四边形,∴∠DEA+∠C=180°,∴∠DEB+∠C=180°﹣25°=155°,故答案为:155.16.已知圆O的直径为6,点M到圆心O的距离为4,则点M与⊙O的位置关系是在圆外.解:∵⊙O的直径为6,∴⊙O的半径为3,∵点M到圆心O的距离为4,∴4>3,∴点M在⊙O外.故答案为:在圆外.17.如图,在图中,用图形(阴影)表示与A的距离小于或等于2cm的所有点组成的图形.解:如图,与A的距离小于或等于2cm的所有点组成的图形是如图所示的阴影部分.18.如图,D、E分别是⊙O两条半径OA、OB的中点,=.(1)求证:CD=CE.(2)若∠AOB=120°,OA=x,四边形ODCE的面积为y,求y与x的函数关系式.(1)证明:连接OC,∵=,∴∠COA=∠COB,∵D、E分别是⊙O两条半径OA、OB的中点,∴OD=OE,在△COD和△COE中,,∴△COD≌△COE(SAS)∴CD=CE;(2)解:连接AC,∵∠AOB=120°,∴∠AOC=60°,又OA=OC,∴△AOC为等边三角形,∵点D是OA的中点,∴CD⊥OA,OD=OA=x,在Rt△COD中,CD=OD•tan∠COD=x,∴四边形ODCE的面积为y=×OD×CD×2=x2.19.如图,在△OAB中OA=OB,⊙O交AB于点C、D,求证:AC=BD.证明:过点O作OE⊥AB于点E,∵在⊙O中,OE⊥CD,∴CE=DE,∵OA=OB,OE⊥AB,∴AE=BE,∴AE﹣CE=BE﹣DE,∴AC=BD.20.如图,AB为半圆O的直径,CD是半圆上两点,AC=2BC,F在BD上且CF⊥CD,求证:AD=2BF.证明:∵AB为半圆O的直径,∴∠ACB=90°,∵CF⊥CD,∴∠DCF=90°,∴∠DCA=∠BCF,∵∠DAC=∠CBF.∴△ADC∽△BFC,∴===2,即AD=2BF.21.如图,四边形ABCD内接于⊙O,AD,BC的延长线交于点E,F是BD延长线上一点,∠CDE=∠CDF=60°.(1)求证:△ABC是等边三角形;(2)判断DA,DC,DB之间的数量关系,并证明你的结论.(1)证明:∵∠CDE=∠CDF=60°,∴∠CDE=∠EDF=60°,∵四边形ABCD内接于⊙O,∴∠CDE=∠ABC=60°,由圆周角定理得,∠ACB=∠ADB=∠EDF=60°,∴△ABC是等边三角形;(2)解:DA+DC=DB,理由如下:在BD上截取PD=AD,∵∠ADP=60°,∴△APD为等边三角形,∴AD=AP,∠APD=60°,∴∠APB=120°,在△APB和△ADC中,,∴△APB≌△ADC(AAS),∴BP=CD,∴DB=BP+PD=DA+DC.22.如图,已知矩形ABCD的边AB=3cm,BC=4cm,以点A为圆心,4cm为半径作⊙A,则点B,C,D与⊙A怎样的位置关系.解:连接AC,∵AB=3cm,BC=AD=4cm,∴AC=5cm,∴点B在⊙A内,点D在⊙A上,点C在⊙A外。
2021 中考专题冲刺训练:圆的有关性质一、选择题1. 已知:如图,OA,OB是⊙O的两条半径,且OA⊥OB,点C在⊙O上,则∠ACB 的度数为()A.45°B.35°C.25°D.20°2. 如图,在△ABC中,O是AB边上的点,以O为圆心,OB为半径的☉O与AC 相切于点D,BD平分∠ABC,AD=OD,AB=12,CD的长是()A.2B.2C.3D.43. 如图,四边形ABCD是圆内接四边形,E是BC延长线上一点.若∠BAD=105°,则∠DCE的度数为()A.115°B.105°C.100°D.95°4. 一块圆形宣传标志牌如图所示,点A,B,C在⊙O上,CD垂直平分AB于点D.现测得AB=8 dm,DC=2 dm,则圆形标志牌的半径为()A .6 dmB .5 dmC .4 dmD .3 dm5.如图,AB 是⊙O 的直径,EF ,EB 是⊙O 的弦,且EF =EB ,EF 与AB 交于点C ,连接OF .若∠AOF =40°,则∠F 的度数是( )A .20°B .35°C .40°D .55°6. (2019•益阳)如图,PA 、PB 为圆O 的切线,切点分别为A 、B ,PO 交AB 于点C ,PO 的延长线交圆O 于点D ,下列结论不一定成立的是A .PA=PB B .∠BPD=∠APDC .AB ⊥PD D .AB 平分PD7. 如图,在⊙O 中,AB ︵所对的圆周角∠ACB =50°,若P 为AB︵上一点,∠AOP =55°,则∠POB 的度数为( )A .30°B .45°C .55°D .60°8. 2020·武汉模拟小名同学响应学习号召,在实际生活中发现问题,并利用所学的数学知识解决问题,他将汽车轮胎如图放置在地面台阶直角处,他测量了台阶高a为160 mm,直角顶点A到轮胎与地面接触点B的距离AB为320 mm,请帮小名同学计算轮胎的直径为()A.350 mm B.700 mmC.800 mm D.400 mm二、填空题9. 如图,点A,B,C在☉O上,BC=6,∠BAC=30°,则☉O的半径为.10. 如图所示,AB为☉O的直径,点C在☉O上,且OC⊥AB,过点C的弦CD 与线段OB相交于点E,满足∠AEC=65°,连接AD,则∠BAD=度.︵11. 如图,△ABC内接于⊙O,AC是⊙O的直径,∠ACB=50°,点D是BAC 上一点,则∠D=________.12.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,若AB =8,CD =6,则BE =________.13. 如图所示,AB ,CD ,EF都是⊙O 的直径,且∠1=∠2=∠3,则⊙O 的弦AC ,BE ,DF 的大小关系是____________.14. 已知:如图,A ,B是⊙O 上的两点,∠AOB =120°,C 是AB ︵的中点,则四边形OACB 是________.(填特殊平行四边形的名称)15. 如图所示,OB ,OC是⊙O 的半径,A 是⊙O 上一点.若∠B =20°,∠C =30°,则∠A =________°.16. 如图,在⊙O中,弦AB =1,点C 在AB 上移动,连接OC ,过点C 作CD⊥OC 交⊙O 于点D ,则CD 的最大值为________.三、解答题17. 如图,在⊙O 中,M ,N 分别是半径OA ,OB 的中点,且CM ⊥OA 交⊙O 于点C ,DN ⊥OB 交⊙O 于点D .求证:AC ︵=BD ︵.18.如图,AB 是⊙O 的直径,点C 、D 在⊙O 上,∠A =2∠BCD ,点E 在AB 的延长线上,∠AED =∠ABC. (1)求证:DE 与⊙O 相切;(2)若BF =2,DF =10,求⊙O 的半径.19. 已知:如图5,在⊙O 中,M ,N 分别为弦AB ,CD 的中点,AB =CD ,AB不平行于CD.求证:∠AMN =∠CNM.20. 2018·天津 如图,已知AB 是⊙O 的直径,弦CD 与AB 相交,∠BAC =38°.(1)如图①,若D 为AB ︵的中点,求∠ABC 和∠ABD 的大小;(2)如图②,过点D 作⊙O 的切线,与AB 的延长线交于点P ,若DP ∥AC ,求∠OC D 的大小.21. 如图,A (-5,0),B (-3,0),点C 在y 轴的正半轴上,∠CBO =45°,CD //AB ,∠CDA =90°.点P 从点Q (4,0)出发,沿x 轴向左以每秒1个单位长的速度运动,运动时间为t 秒. (1)求点C 的坐标;(2)当∠BCP =15°时,求t 的值;(3)以点P 为圆心,PC 为半径的⊙P 随点P 的运动而变化,当⊙P 与四边形ABCD 的边(或边所在的直线)相切时,求t 的值.2021 中考专题冲刺训练:圆的有关性质-答案一、选择题1. 【答案】A2. 【答案】A[解析]∵☉O 与AC 相切于点D ,∴AC ⊥OD ,∴∠ADO=90°,∵AD=OD ,∴tan A==,∴∠A=30°,∵BD 平分∠ABC ,∴∠OBD=∠CBD ,∵OB=OD ,∴∠OBD=∠ODB ,∴∠ODB=∠CBD ,∴OD ∥BC ,∴∠C=∠ADO=90°,∴∠ABC=60°,BC=AB=6,∵∠CBD=30°,∴CD=BC=×6=2.故选A.3. 【答案】B4. 【答案】B[解析] 如图,连接OD,OB,则O,C,D三点在一条直线上.因为CD垂直平分AB,AB=8 dm,所以BD=4 dm,OD=(OC-2)dm.由勾股定理,得42+(OC-2)2=OC2,解得OC=5(dm).故选B.5. 【答案】B6. 【答案】D【解析】∵PA,PB是⊙O的切线,∴PA=PB,所以A成立;∠BPD=∠APD,所以B成立;∴AB⊥PD,所以C成立;∵PA,PB是⊙O的切线,∴AB⊥PD,且AC=BC,只有当AD∥PB,BD∥PA时,AB平分PD,所以D不一定成立,故选D.7. 【答案】B8. 【答案】C二、填空题9. 【答案】6[解析]连接OB,OC.∵∠BOC=2∠BAC=60°,OB=OC,∴△BOC 是等边三角形,∴OB=BC=6,故答案为6.10. 【答案】20[解析]如图,连接DO ,∵CO ⊥AB ,∴∠COB=90°,∵∠AEC=65°,∴∠C=25°,∵OD=OC ,∴∠ODC=∠C=25°,∴∠DOC=130°,∴∠DOB=40°,∵2∠BAD=∠DOB , ∴∠BAD=20°.11. 【答案】40°【解析】AC 是⊙O 的直径⇒∠ABC =90°⇒⎭⎪⎬⎪⎫ ∠A =90°-50°=40°∠A 和∠D 都是BC ︵所对的圆周角 ⇒∠D =∠A =40°.12.【答案】4-7【解析】如解图,连接OC ,∵AB 是⊙O 的直径,CD ⊥AB ,AB =8,CD =6,∴CE =DE =3,OC =OB =4. 在Rt △OCE 中,OE =42-32=7,∴BE =OB -OE =4-7.13. 【答案】AC =BE =DF14. 【答案】菱形[解析] 连接OC.∵C 是AB ︵的中点, ∴∠AOC =∠COB =60°. 又∵OA =OC =OB ,∴△OAC 和△OCB 都是等边三角形, ∴OA =AC =BC =OB , ∴四边形OACB 是菱形.15. 【答案】50[解析] 连接OA ,则OA =OB ,OA =OC ,∴∠OAB =∠B ,∠OAC =∠C ,∴∠BAC =∠OAB +∠OAC =∠B +∠C =20°+30°=50°.16. 【答案】12 [解析] 连接OD.因为CD ⊥OC ,所以CD =OD2-OC2,根据题意可知圆的半径一定,故当OC 最小时CD 最大,故当OC ⊥AB 时CD 最大,此时CD =12AB =12.三、解答题17. 【答案】证明:如图,连接OC ,OD ,则OC =OD .∵M ,N 分别是半径OA ,OB 的中点, ∴OM =ON .∵CM ⊥OA ,DN ⊥OB ,∴∠OMC =∠OND =90°. 在Rt △OMC 和Rt △OND 中,⎩⎨⎧OC =OD ,OM =ON ,∴Rt △OMC ≌Rt △OND (HL), ∴∠MOC =∠NOD ,∴AC ︵=BD ︵.18. 【答案】(1)证明:如解图,连接DO , ∴∠BOD =2∠BCD =∠A ,(2分)解图又∵∠DEA =∠CBA ,∴∠DEA +∠DOE =∠CAB +∠CBA , 又∵∠ACB =90°,∴∠ODE =∠ACB =90°,(5分) ∴OD ⊥DE ,又∵OD 是⊙O 的半径, ∴DE 与⊙O 相切.(7分) (2)解:如解图,连接BD , 可得△FBD ∽△DBO , ∴BD BO =DF OD =BFBD ,(8分) ∴BD =DF =10, ∴OB =5,(10分) 即⊙O 的半径为5.19. 【答案】证明:连接OM ,ON ,OA ,OC ,如图所示.∵M ,N 分别为AB ,CD 的中点,∴OM ⊥AB ,ON ⊥CD ,AM =12AB ,CN =12CD. 又∵AB =CD ,∴AM =CN. 在Rt △AOM 和Rt △CON 中, ⎩⎨⎧OA =OC ,AM =CN , ∴Rt △AOM ≌Rt △CON(HL),∴OM =ON ,∴∠OMN =∠ONM ,∴∠AMO +∠OMN =∠CNO +∠ONM ,即∠AMN =∠CNM.20. 【答案】解:(1)如图①,连接OD .∵AB 是⊙O 的直径,∴∠ACB =90°,∴∠ABC =90°-∠BAC =90°-38°=52°.∵D 为AB ︵的中点,∠AOB =180°,∴∠AOD =90°,∴∠ABD =12∠AOD =45°.(2)如图②,连接OD .∵DP 切⊙O 于点D ,∴OD ⊥DP ,即∠ODP =90°.∵DP ∥AC ,∠BAC =38°,∴∠P =∠BAC =38°.∵∠AOD 是△ODP 的一个外角,∴∠AOD =∠P +∠ODP =128°,∴∠ACD =64°.∵OC =OA ,∠BAC =38°,∴∠OCA =∠BAC =38°,∴∠OCD =∠ACD -∠OCA =64°-38°=26°.21. 【答案】(1)点C 的坐标为(0,3).(2)如图2,当P 在B 的右侧,∠BCP =15°时,∠PCO =30°,4t =如图3,当P在B的左侧,∠BCP=15°时,∠CPO=30°,433t=+.图2 图3(3)如图4,当⊙P与直线BC相切时,t=1;如图5,当⊙P与直线DC相切时,t=4;如图6,当⊙P与直线AD相切时,t=5.6.图4 图5 图6。
2021中考专题训练:圆的有关性质一、选择题1. 如图,AB为☉O的直径,C,D为☉O上两点,若∠BCD=40°,则∠ABD的大小为()A.60°B.50°C.40°D.20°2. 如图,△ABC是☉O的内接三角形,∠A=119°,过点C的圆的切线交BO于点P,则∠P的度数为()A.32°B.31°C.29°D.61°3. 如图,线段AB经过☉O的圆心,AC,BD分别与☉O相切于点C,D.若AC=BD=4,∠A=45°,则圆弧CD的长度为 ()A.πB.2πC.2πD.4π4. 如图,AB是⊙O的直径,CD是⊙O的弦,∠ABD=59°,则∠C等于()A.29°B.31°C.59°D.62°5. 如图,AB是⊙O的直径,CD为弦,CD⊥AB于点E,则下列结论中不成立...的是()A .∠COE =∠DOEB .CE =DEC .OE =BED.BD ︵=BC ︵6.△ABC 中,AB =AC ,∠A 为锐角,CD 为AB 边上的高,I 为△ACD 的内切圆圆心,则∠AIB 的度数是( ) A. 120° B. 125° C. 135° D. 150°7. 2019·天水 如图,四边形ABCD 是菱形,⊙O 经过点A ,C ,D ,与BC 相交于点E ,连接AC ,AE .若∠D =80°,则∠EAC 的度数为( )A .20°B .25°C .30°D .35°8. 如图,△ABC 是⊙O 的内接三角形,∠C =30°,⊙O 的半径为5.若P 是⊙O上的一点,在△ABP 中,PB =AB ,则PA 的长为( )A .5B.5 32C .5 2D .5 3二、填空题9. 如图所示,AB 为☉O 的直径,点C 在☉O 上,且OC ⊥AB ,过点C 的弦CD 与线段OB 相交于点E ,满足∠AEC=65°,连接AD ,则∠BAD= 度.10.如图,AB 是⊙O 的直径,C ,D 是⊙O 上的两点,若∠BCD =28°,则∠ABD =________°.11. 如图,C ,D两点在以AB 为直径的圆上,AB =2,∠ACD =30°,则AD =________.12. 2019·随州如图,点A ,B ,C 在⊙O 上,点C 在AMB ︵上.若∠OBA =50°,则∠C 的度数为________.13. 如图,在⊙O 中,半径OA 垂直于弦BC ,点D 在圆上,且∠ADC =30°,则∠AOB 的度数为________.14. 如图2,一下水管道横截面为圆形,直径为100 cm ,下雨前水面宽为60 cm ,一场大雨过后,水面宽为80 cm,则水位上升________cm.链接听P39例4归纳总结15. 在Rt△ABC中,∠C=90°,BC=3,AC=4,点P在以点C为圆心,5为半径的圆上,连接PA,PB.若PB=4,则PA的长为________.16. 如图,定长弦CD在以AB为直径的⊙O上滑动(点C,D与点A,B不重合),M是CD的中点,过点C作CP⊥AB于点P.若CD=3,AB=8,PM=l,则l的最大值是________.三、解答题17.如图①,在△ABC中,点D在边BC上,∠ABC ∶∠ACB ∶∠ADB=1∶2∶3,⊙O是△ABD的外接圆.(1)求证:AC是⊙O的切线;(2)当BD是⊙O的直径时(如图②),求∠CAD的度数.18. 已知:如图5,在⊙O中,M,N分别为弦AB,CD的中点,AB=CD,AB 不平行于CD.求证:∠AMN=∠CNM.19.如图,在△ABC 中,以AB 为直径的⊙O 分别与BC ,AC 相交于点D ,E ,BD =C D ,过点D 作⊙O 的切线交边AC 于点F. (1)求证:DF ⊥AC ;(2)若⊙O 的半径为5,∠CDF =30°,求BD ︵的长.(结果保留π)20. 如图,在Rt △ABC 中,∠ABC =90°,以AB 为直径作半圆O 交AC 于点D ,E 为BC 的中点,连接DE. (1)求证:DE 是半圆O 的切线;(2)若∠BAC =30°,DE =2,求AD 的长.21. (2019•辽阳)如图,BE 是⊙O 的直径,点A 和点D 是⊙O 上的两点,连接AE ,AD ,DE ,过点A 作射线交BE 的延长线于点C ,使EAC EDA ∠=∠. (1)求证:AC 是⊙O 的切线;(2)若23CE AE==,求阴影部分的面积.22. 已知平面直角坐标系中两定点A(-1, 0)、B(4, 0),抛物线y=ax2+bx-2(a ≠0)过点A、B,顶点为C,点P(m, n)(n<0)为抛物线上一点.(1)求抛物线的解析式和顶点C的坐标;(2)当∠APB为钝角时,求m的取值范围;(3)若m>32,当∠APB为直角时,将该抛物线向左或向右平移t(0<t<52)个单位,点C、P平移后对应的点分别记为C′、P′,是否存在t,使得顺次首尾连接A、B、P′、C′所构成的多边形的周长最短?若存在,求t的值并说明抛物线平移的方向;若不存在,请说明理由.2021中考专题训练:圆的有关性质-答案一、选择题1. 【答案】B[解析]如图,连接AD,∵AB为☉O的直径,∴∠ADB=90°.∵∠A和∠BCD都是所对的圆周角,∴∠A=∠BCD=40°,∴∠ABD=90°-40°=50°.故选B.2. 【答案】A[解析]记线段OP交☉O于点F.连接CO,CF,∵∠A=119°,∴∠BFC=61°,∴∠BOC=122°,∴∠COP=58°.∵CP与圆相切于点C,∴OC⊥CP,∴在Rt△OCP中,∠P=90°-∠COP=32°,故选A.3. 【答案】B[解析]连接CO ,DO ,因为AC ,BD 分别与☉O 相切于C ,D ,所以∠ACO=∠BDO=90°,所以∠AOC=∠A=45°,所以CO=AC=4, 因为AC=BD ,CO=DO ,所以OD=BD ,所以∠DOB=∠B=45°, 所以∠DOC=180°-∠DOB -∠AOC=180°-45°-45°=90°,==2π,故选B .4. 【答案】B5. 【答案】C6.【答案】C【解析】由CD 为腰上的高,I 为△ACD 的内心,则∠IAC +∠ICA =12(∠DAC +∠DCA)=12(180°-∠ADC)=12(180°-90°)=45°,所以∠AIC =180°-(∠IAC +∠ICA)=180°-45°=135°.又可证△AIB ≌△AIC ,得∠AIB =∠AIC =135°.7. 【答案】C8. 【答案】D[解析] 如图,连接OB ,OA ,OP ,设OB 与AP 交于点D.由PB=AB 可知PB ︵=AB ︵,从而可知OB ⊥AP.运用“一条弧所对的圆周角等于它所对的圆心角的一半”及“同圆的半径相等”可知△OAB 为等边三角形,在Rt △OAD 中,运用“在直角三角形中,30°角所对的直角边等于斜边的一半”及勾股定理列方程可求得AD 的长,从而可求出AP 的长为5 3.故选D.二、填空题9. 【答案】20 [解析]如图,连接DO ,∵CO ⊥AB , ∴∠COB=90°,∵∠AEC=65°,∴∠C=25°,∵OD=OC ,∴∠ODC=∠C=25°,∴∠DOC=130°,∴∠DOB=40°,∵2∠BAD=∠DOB , ∴∠BAD=20°.10.【答案】62 【解析】根据直径所对的圆周角等于90°及∠BCD =28°,可得∠ACD =∠ACB -∠BCD =90°-28°=62°,再根据同弧所对圆周角相等有∠ABD =∠ACD =62°.11. 【答案】1[解析] ∵AB 为⊙O 的直径,∴∠ADB =90°. ∵∠B =∠ACD =30°, ∴AD =12AB =12×2=1.12. 【答案】40°13. 【答案】60°[解析] ∵OA ⊥BC ,∴AB ︵=AC ︵,∴∠AOB =2∠ADC.∵∠ADC=30°,∴∠AOB =60°.14. 【答案】10或70 [解析] 对于半径为50 cm 的圆而言,圆心到长为60 cm 的弦的距离为40 cm,到长为80 cm的弦的距离为30 cm.①当圆心在两平行弦之外时,两弦间的距离=40-30=10(cm);②当圆心在两平行弦之间时,两弦间的距离=40+30=70(cm).综上所述,水位上升10 cm或70 cm.15. 【答案】3或73[解析] 如图,连接CP,PB的延长线交⊙C于点P′.∵PC=5,BC=3,PB=4,∴BC2+PB2=PC2,∴△CPB为直角三角形,且∠CBP=90°,即CB⊥PB,∴PB=P′B=4.∵∠ACB=90°,∴PB∥AC.又∵PB=AC=4,∴四边形ACBP为平行四边形.又∵∠ACB=90°,∴▱ACBP为矩形,∴PA=BC=3.在Rt△APP′中,∵PA=3,PP′=8,∴P′A=82+32=73.综上所述,PA的长为3或73.16. 【答案】34[解析] 如图,当CD∥AB时,PM的长最大,连接OM,OC.∵CD∥AB,CP⊥AB,∴CP⊥CD.∵M为CD的中点,OM过点O,∴OM⊥CD,∴∠OMC=∠PCD=∠CPO=90°,∴四边形CPOM是矩形,∴PM=OC.∵⊙O的直径AB=8,∴半径OC=4,∴PM=4.三、解答题17. 【答案】(1)证明:如解图,连接OA,OD.设∠ABC=x,∵∠ABC∶∠ACB∶∠ADB=1∶2∶3,∴∠ADB=3x,∠ACB=2x,解图∴∠DAC=x,∠AOD=2∠ABC=2x,∴∠OAD=180°-2x2=90°-x,(2分)∴∠OAC=90°-x+x=90°,∴OA⊥AC,又∵OA为⊙O的半径,∴AC是⊙O的切线.(4分)(2)解:∵BD是⊙O的直径,∴∠BAD=90°,∵∠ABC∶∠ACB∶∠ADB=1∶2∶3,∠ABC+∠ADB=90°,∴∠ABC+3∠ABC=90°,(6分)解得∠ABC=22.5°,∴∠ADB=67.5°,∠ACB=45°,∴∠CAD=∠ADB-∠ACB=22.5°.(8分)18. 【答案】证明:连接OM,ON,OA,OC,如图所示.∵M,N分别为AB,CD的中点,∴OM ⊥AB ,ON ⊥CD ,AM =12AB ,CN =12CD.又∵AB =CD ,∴AM =CN.在Rt △AOM 和Rt △CON 中,⎩⎨⎧OA =OC ,AM =CN ,∴Rt △AOM ≌Rt △CON(HL),∴OM =ON ,∴∠OMN =∠ONM ,∴∠AMO +∠OMN =∠CNO +∠ONM ,即∠AMN =∠CNM.19. 【答案】(1)证明:如解图,连接OD ,(1分)∵DF 是⊙O 的切线,D 为切点,解图∴OD ⊥DF ,∴∠ODF =90°,(2分)∵BD =CD ,OA =OB ,∴OD 是△ABC 的中位线,(3分)∴OD ∥AC ,∴∠CFD =∠ODF =90°,∴DF ⊥AC.(4分)(2)解:∵∠CDF =30°,由(1)得∠ODF =90°,∴∠ODB =180°-∠CDF -∠ODF =60°,∵OB =OD ,∴△OBD 是等边三角形,(7分)∴∠BOD =60°,∴lBD ︵=n πR 180=60π×5180=53π.(8分)20. 【答案】解:(1)证明:如图,连接BD ,OD ,OE.∵AB 为半圆O 的直径,∴∠ADB =∠BDC =90°.在Rt △BDC 中,E 为斜边BC 的中点,∴DE =BE.在△OBE 和△ODE 中,⎩⎨⎧OB =OD ,OE =OE ,BE =DE ,∴△OBE ≌△ODE(SSS),∴∠ODE =∠ABC =90°,即OD ⊥DE.又∵OD 是半圆O 的半径,∴DE 是半圆O 的切线.(2)在Rt △ABC 中,∠BAC =30°,∴BC =12AC. ∵BC =2DE =4,∴AC =8.又∵∠C =90°-∠BAC =60°,DE =BE =EC ,∴△DEC 为等边三角形,∴DC =DE =2,∴AD =AC -DC =6.21. 【答案】(1)如图,连接OA ,过O 作OF AE ⊥于F ,∴90AFO ∠=︒,∴90EAO AOF ∠+∠=︒,∵OA OE =, ∴12EOF AOF AOE ∠=∠=∠, ∵12EDA AOE ∠=∠, ∴EDA AOF ∠=∠,∵EAC EDA ∠=∠,∴EAC AOF ∠=∠,∴90EAO EAC ∠+∠=︒,∵EAC EAO CAO ∠+∠=∠,∴90CAO ∠=︒,∴OA AC ⊥,∴AC 是⊙O 的切线.(2)∵CE AE ==∴C EAC ∠=∠,∵EAC C AEO ∠+∠=∠,∴2AEO EAC ∠=∠,∵OA OE =,AEO EAO ∠=∠,∴2EAO EAC ∠=∠,∵90EAO EAC ∠+∠=︒,∴30EAC ∠=︒,60EAO ∠=︒,∴OAE △是等边三角形,∴OA AE =,60EOA ∠=︒,∴OA =∴2πAOE S =扇形,在Rt OAE △中,sin 3OF OA EAO =⋅∠==,∴11322AOE S AE OF =⋅=⨯=△∴阴影部分的面积=2π33-.22. 【答案】(1)因为抛物线y=ax2+bx-2与x轴交于A(-1, 0)、B(4, 0)两点,所以y=a(x+1)(x-4)=ax2-3ax-4a.所以-4a=-2,b=-3a.所以12a=,32b=-.所以221313252()22228y x x x=--=--。