第七届全国大学生数学竞赛非数学类决赛试题
- 格式:docx
- 大小:36.35 KB
- 文档页数:6
前三届高数竞赛预赛试题(非数学类)(参加高等数学竞赛的同学最重要的是好好复习高等数学知识,适当看一些辅导书及相关题目,主要是一些各大高校的试题。
)2009年 第一届全国大学生数学竞赛预赛试卷一、填空题(每小题5分,共20分)1.计算=--++⎰⎰y x y x x yy x Dd d 1)1ln()(____________,其中区域D 由直线1=+y x 与两坐标轴所围成三角形区域.解: 令v x u y x ==+,,则v u y v x -==,,v u v u y x d d d d 1110det d d =⎪⎪⎭⎫⎝⎛-=,令u t -=1,则21t u -=2.设)(x f 是连续函数,且满足⎰--=2022d )(3)(x x f x x f , 则=)(x f ____________.解: 令⎰=20d )(x x f A ,则23)(2--=A x x f ,解得34=A 。
因此3103)(2-=x x f 。
3.曲面2222-+=y x z 平行平面022=-+z y x 的切平面方程是__________.解: 因平面022=-+z y x 的法向量为)1,2,2(-,而曲面2222-+=y x z 在),(00y x 处的法向量为)1),,(),,((0000-y x z y x z y x ,故)1),,(),,((0000-y x z y x z y x 与)1,2,2(-平行,因此,由x z x =,y z y 2=知0000002),(2,),(2y y x z x y x z y x ====,即1,200==y x ,又5)1,2(),(00==z y x z ,于是曲面022=-+z y x 在)),(,,(0000y x z y x 处的切平面方程是0)5()1(2)2(2=---+-z y x ,即曲面 2222-+=y x z 平行平面022=-+z y x 的切平面方程是0122=--+z y x 。
全国大学生竞赛历年试题名师精讲(非数学类)(2009——2013)第五届全国大学生数学竞赛预赛试卷(非数学类)一、 解答下列各题(每小题6分共24分,要求写出重要步骤)1.求极限(lim 1sin nn →∞+.解因为()sin sin 2n π==……(2分);原式lim 1exp lim ln 1nn n n →∞→∞⎡⎤⎛⎫⎛⎫=+=+⎢⎥ ⎢⎥⎝⎝⎣⎦=2.证明广义积分0sin xdx x ⎰不是绝对收敛的解 记()1sin n n nx a dx xππ+=⎰,只要证明0n n a ∞=∑发散即可。
……………………(2分)因为()()()()10112sin sin 111n n n a x dx xdx n n n ππππππ+≥==+++⎰⎰。
…………(2分) 而()021n n π∞=+∑发散,故由比较判别法0n n a ∞=∑发散。
……………………………………(2分)3.设函数()y y x =由323322x x y y +-=确定,求()y x 的极值。
解 方程两边对x 求导,得22236360x xy x y y y ''++-= ………………(1分)故()2222x x y y y x +'=-,令0y '=,得()200x x y x +=⇒=或2x y =-………(2分) 将2x y =-代入所给方程得2,1x y =-=,将0x =代入所给方程得0,1x y ==-,…………………………………(2分)又()()()()()2222222222422x xy y y x x x y yy x y y x ''++--+-''=-()()()0,1,02,1,0200220010,1020x y y x y y y y ''====-==+---''''==-<=>-,故()01y=-为极大值,()21y-=为极小值。
全国大学生竞赛历年试题名师精讲(非数学类)(2009——2013)第五届全国大学生数学竞赛预赛试卷(非数学类)一、 解答下列各题(每小题6分共24分,要求写出重要步骤)1.求极限(lim 1sin nn →∞+.解因为()sin sin 2sinn π==……(2分);原式lim 1exp lim ln 1nn n n →∞→∞⎡⎤⎛⎫⎛⎫=+=+⎢⎥ ⎢⎥⎝⎝⎣⎦=2.证明广义积分0sin xdx x ⎰不是绝对收敛的解 记()1sin n n nx a dx xππ+=⎰,只要证明0n n a ∞=∑发散即可。
……………………(2分)因为()()()()10112sin sin 111n n n a x dx xdx n n n ππππππ+≥==+++⎰⎰。
…………(2分) 而()021n n π∞=+∑发散,故由比较判别法0n n a ∞=∑发散。
……………………………………(2分)3.设函数()y y x =由323322x x y y +-=确定,求()y x 的极值。
解 方程两边对x 求导,得22236360x xy x y y y ''++-= ………………(1分)故()2222x x y y y x+'=-,令0y '=,得()200x x y x +=⇒=或2x y =-………(2分) 将2x y =-代入所给方程得2,1x y =-=,将0x =代入所给方程得0,1x y ==-,…………………………………(2分)又()()()()()2222222222422x xy y y x x x y yy x y y x ''++--+-''=-()()()0,1,02,1,0200220010,1020x y y x y y y y ''====-==+---''''==-<=>-, 故()01y =-为极大值,()21y -=为极小值。
前三届高数竞赛预赛试题(非数学类)(参加高等数学竞赛的同学最重要的是好好复习高等数学知识,适当看一些辅导书及相关题目,主要是一些各大高校的试题。
)2009年 第一届全国大学生数学竞赛预赛试卷一、填空题(每小题5分,共20分)1.计算=--++⎰⎰y x yx x yy x Dd d 1)1ln()(____________,其中区域D 由直线1=+y x 与两坐标轴所围成三角形区域.解: 令v x u y x ==+,,则v u y v x -==,,v u v u y x d d d d 1110det d d =⎪⎪⎭⎫ ⎝⎛-=, v u u v u u u y x y x x yy x D D d d 1ln ln d d 1)1ln()(⎰⎰⎰⎰--=--++⎰⎰⎰⎰----=---=1021000d 1)ln (1ln d )d ln 1d 1ln (u uu u u u u u u u v v uuv u u u u u ⎰-=12d 1u uu (*) 令u t -=1,则21t u -=dt 2d t u -=,42221t t u +-=,)1)(1()1(2t t t u u +-=-,⎰+--=0142d )21(2(*)tt t⎰+-=1042d )21(2t t t 1516513221053=⎥⎦⎤⎢⎣⎡+-=t t t2.设)(x f 是连续函数,且满足⎰--=2022d )(3)(x x f x x f , 则=)(x f ____________.解: 令⎰=20d )(x x f A ,则23)(2--=A x x f ,A A x A x A 24)2(28d )23(202-=+-=--=⎰,解得34=A 。
因此3103)(2-=x x f 。
3.曲面2222-+=y x z 平行平面022=-+z y x 的切平面方程是__________. 解: 因平面022=-+z y x 的法向量为)1,2,2(-,而曲面2222-+=y x z 在),(00y x 处的法向量为)1),,(),,((0000-y x z y x z y x ,故)1),,(),,((0000-y x z y x z y x 与)1,2,2(-平行,因此,由x z x =,y z y 2=知0000002),(2,),(2y y x z x y x z y x ====,即1,200==y x ,又5)1,2(),(00==z y x z ,于是曲面022=-+z y x 在)),(,,(0000y x z y x 处的切平面方程是0)5()1(2)2(2=---+-z y x ,即曲面2222-+=y x z 平行平面022=-+z y x 的切平面方程是0122=--+z y x 。
高数竞赛预赛试题〔非数学类〕〔参加高等数学竞赛的同学最重要的是好好复习高等数学知识,适当看一些辅导书及相关题目,主要是一些各大高校的试题。
〕2021年 第一届全国大学生数学竞赛预赛试卷 一、填空题〔每题5分,共20分〕1.计算=--++⎰⎰y x yx x yy x D d d 1)1ln()(,其中区域D 由直线1=+y x 与两坐标轴所围成三角形区域.解:令vx u y x ==+,,那么vu y v x -==,,v u v u y x d d d d 1110det d d =⎪⎪⎭⎫⎝⎛-=,v u u v u u u y x y x x yy x D D d d 1ln ln d d 1)1ln()(⎰⎰⎰⎰--=--++⎰⎰⎰⎰----=---=1021000d 1)ln (1ln d )d ln 1d 1ln (u uu u u u u u u u v v u uv u u u u u〔*〕令u t -=1,那么21t u -=dt 2d t u -=,42221t t u +-=,)1)(1()1(2t t t u u +-=-,⎰+--=0142d )21(2(*)t t t⎰+-=1042d )21(2t t t 151651322153=⎥⎦⎤⎢⎣⎡+-=t t t 2.设)(x f 是连续函数,且满足⎰--=2022d )(3)(x x f x x f , 那么=)(x f .解:令⎰=20d )(x x f A ,那么23)(2--=A x x f ,A A x A x A 24)2(28d )23(202-=+-=--=⎰,解得。
因此。
3.曲面平行平面022=-+z y x 的切平面方程是.解:因平面022=-+z y x 的法向量为)1,2,2(-,而曲面在),(00y x 处的法向量为)1),,(),,((0000-y x z y x z y x ,故)1),,(),,((0000-y x z y x z y x 与)1,2,2(-平行,因此,由x z x =,y z y 2=知0000002),(2,),(2y y x z x y x z y x ====,即1,200==y x ,又5)1,2(),(00==z y x z ,于是曲面22=-+z y x 在)),(,,(0000y x z y x 处的切平面方程是0)5()1(2)2(2=---+-z y x ,即曲面 平行平面022=-+z y x 的切平面方程是0122=--+z y x 。
2009年 第一届全国大学生数学竞赛预赛试卷 一、填空题(每小题5分,共20分)1.计算=--++⎰⎰y x yx x yy x Dd d 1)1ln()(____________,其中区域D 由直线1=+y x 与两坐标轴所围成三角形区域.解: 令v x u y x ==+,,则v u y v x -==,,v u v u y x d d d d 1110det d d =⎪⎪⎭⎫ ⎝⎛-=, v u u v u u u y x y x x yy x D D d d 1ln ln d d 1)1ln()(⎰⎰⎰⎰--=--++⎰⎰⎰⎰----=---=1021000d 1)ln (1ln d )d ln 1d 1ln (u uu u u u u u u u v v uuv u u u u u ⎰-=12d 1u uu (*) 令u t -=1,则21t u -=dt 2d t u -=,42221t t u +-=,)1)(1()1(2t t t u u +-=-,⎰+--=0142d )21(2(*)tt t⎰+-=1042d )21(2t t t 1516513221053=⎥⎦⎤⎢⎣⎡+-=t t t 2.设)(x f 是连续函数,且满足⎰--=2022d )(3)(x x f x x f , 则=)(x f ____________.解: 令⎰=20d )(x x f A ,则23)(2--=A x x f ,A A x A x A 24)2(28d )23(202-=+-=--=⎰,解得34=A 。
因此3103)(2-=x x f 。
3.曲面2222-+=y x z 平行平面022=-+z y x 的切平面方程是__________. 解: 因平面022=-+z y x 的法向量为)1,2,2(-,而曲面2222-+=y x z 在),(00y x 处的法向量为)1),,(),,((0000-y x z y x z y x ,故)1),,(),,((0000-y x z y x z y x 与)1,2,2(-平行,因此,由x z x =,y z y 2=知0000002),(2,),(2y y x z x y x z y x ====,即1,200==y x ,又5)1,2(),(00==z y x z ,于是曲面022=-+z y x 在)),(,,(0000y x z y x 处的切平面方程是0)5()1(2)2(2=---+-z y x ,即曲面2222-+=y x z 平行平面022=-+z y x 的切平面方程是0122=--+z y x 。
高数竞赛预赛试题(非数学类)(参加高等数学竞赛的同学最重要的是好好复习高等数学知识,适当看一些辅导书及相关题目,主要是一些各大高校的试题。
)2009年第一届全国大学生数学竞赛预赛试卷一、填空题(每小题5分,共20分)1.计算____________,其中区域由直线与两坐标轴所围成三角形区域.解: 令,则,,(*)令,则,,,2.设是连续函数,且满足, 则____________.解: 令,则,,解得。
因此。
3.曲面平行平面的切平面方程是__________.解: 因平面的法向量为,而曲面在处的法向量为,故与平行,因此,由,知,即,又,于是曲面在处的切平面方程是,即曲面平行平面的切平面方程是。
4.设函数由方程确定,其中具有二阶导数,且,则________________.解: 方程的两边对求导,得因,故,即,因此二、(5分)求极限,其中是给定的正整数.解 :因故因此三、(15分)设函数连续,,且,为常数,求并讨论在处的连续性.解 : 由和函数连续知,因,故,因此,当时,,故当时,,这表明在处连续.四、(15分)已知平面区域,为的正向边界,试证:(1);(2).证 :因被积函数的偏导数连续在上连续,故由格林公式知(1)而关于和是对称的,即知因此(2)因故由知即五、(10分)已知,,是某二阶常系数线性非齐次微分方程的三个解,试求此微分方程.解设,,是二阶常系数线性非齐次微分方程的三个解,则和都是二阶常系数线性齐次微分方程的解,因此的特征多项式是,而的特征多项式是因此二阶常系数线性齐次微分方程为,由和,知,二阶常系数线性非齐次微分方程为六、(10分)设抛物线过原点.当时,,又已知该抛物线与轴及直线所围图形的面积为.试确定,使此图形绕轴旋转一周而成的旋转体的体积最小.解因抛物线过原点,故,于是即而此图形绕轴旋转一周而成的旋转体的体积即令,得即因此,,.七、(15分)已知满足, 且, 求函数项级数之和.解,即由一阶线性非齐次微分方程公式知即因此由知,,于是下面求级数的和:令则即由一阶线性非齐次微分方程公式知令,得,因此级数的和八、(10分)求时, 与等价的无穷大量.解令,则因当,时,,故在上严格单调减。
2009年 第一届全国大学生数学竞赛预赛试卷一、填空题(每小题5分,共20分)1.计算=--++⎰⎰y x yx x yy x Dd d 1)1ln()(____________,其中区域D 由直线1=+y x 与两坐标轴所围成三角形区域.2.设)(x f 是连续函数,且满足⎰--=2022d )(3)(x x f x x f , 则=)(x f ____________.3.曲面2222-+=y x z 平行平面022=-+z y x 的切平面方程是__________.4.设函数)(x y y =由方程29ln )(y y f e xe =确定,其中f 具有二阶导数,且1≠'f ,则=22d d xy________________.二、(5分)求极限xenx x x x ne e e )(lim 20+++→ ,其中n 是给定的正整数.三、(15分)设函数)(x f 连续,⎰=10d )()(t xt f x g ,且A xx f x =→)(lim,A 为常数,求)(x g '并讨论)(x g '在0=x 处的连续性.四、(15分)已知平面区域}0,0|),{(ππ≤≤≤≤=y x y x D ,L 为D 的正向边界,试证:(1)⎰⎰-=---Lx y Lx yx ye y xe x ye y xed d d d sin sin sin sin ;(2)2sin sin 25d d π⎰≥--Ly yx ye y xe .五、(10分)已知x x e xe y 21+=,xx exe y -+=2,xx x e e xe y --+=23是某二阶常系数线性非齐次微分方程的三个解,试求此微分方程.六、(10分)设抛物线c bx ax y ln 22++=过原点.当10≤≤x 时,0≥y ,又已知该抛物线与x 轴及直线1=x 所围图形的面积为31.试确定c b a ,,,使此图形绕x 轴旋转一周而成的旋转体的体积最小.七、(15分)已知)(x u n 满足),2,1()()(1 =+='-n e x x u x u x n n n, 且neu n =)1(, 求函数项级数∑∞=1)(n nx u之和.八、(10分)求-→1x 时, 与∑∞=02n n x 等价的无穷大量.2010年 第二届全国大学生数学竞赛预赛试卷一、(25分,每小题5分) (1)设22(1)(1)(1),nn x a a a =+++其中||1,a <求lim .n n x →∞(2)求21lim 1x xx ex -→∞⎛⎫+ ⎪⎝⎭。
第七届全国大学生数学竞赛决赛试题答案(非数学类) 2016年3月27日填空题(5 >6分=30分)1.程微分方y 一 (y ) = 0的通解是 _________解:令y 二P ,则y = p ,贝U dp = p 3dx ,积分得到-g p ,= X -G ,即 ―1 _______________________p = y = = _ ,积分得 y =C2±J2(G —x) (&2为常数). p 2(G -x ) *2. __________________________________________________________ 设D: 1兰x 2+ y 2兰4,则积分I = J ] (x + y 2$專刊* dxdy 的值是 _____________________tXjf SdS3.设ft 二阶连续可导,且f t=o ,若y 二f t, 则adx2I解:dx 二 f tdt , dy = f ' t dt ,所以史二U ,则得dx f t d 2y _ d f (t )]dt _ f (t )f (t 卜 f (t f dx 2dt i f (t )J dx f 3(t )4. 设'1,' 2,…,’n 是n 阶方阵A 的特征值,f X 为多项式,则矩阵f A 的行列式的值为 ________ 解: f(A 卜f (匕)f (扎2广f (匕)5. 极限 lim.hsin (二n!e ) 的值为 ____解:卫 22I = 4e 4 °2d 二 r 2sin 2廿 rdr14=—e^ue 』du = — (2e 3- 5)(对称性和极坐标)■: 4编者注:填空题考察基础,简易,稳扎稳打,唾手可得! •(本题满分14分)设f u,v 在全平面上有连续的偏导数,口 , 土逹:=0的所有切平面都交于点a, b,c .z —c z —c证明:记F(x,y,z)=f '◎,口 ),求其偏导数得到其法向量:\.z-c z_c 丿(Fx, Fy, Fz )= i 丄,丄,-(x-a )f1-(y-b)fj --------------------------------------------------- 6 分辽-c z-c (z -c) 丿 (得分比高中数学联赛都容易)为方便取曲面的法向量 n = z -c f 1, z -c f 2,7x -a £-:〔y -b f 2 .记x,y,z 为曲面上的点,X,Y,Z 为切面上的点,则曲面上过点x,y,z 的切平面 方程为〔z - c f 「X -c 〔z-c f 2 V -y _ 丨 x - a f 「y _b f ?上- y i=O ----------------------------- 12 分 容易验证,对任意x,y,z z = c , X,Y,Z 二a,b,c 都满足上述切平面方程•结论 得证。
编者注:此题入手容易,拿分也容易,主要的就是一个思路,不在于过多的计算, 恰到好处的体现了一个很浅显但用数学化的语言描述的一个证明或者定理。
三•(本题满分14分)设f X 在a,b 1上连续,证明:由f x 在a,b 】上连续,知f x 在a,b i 可积.一 1 1 1解:恥小1 1并A 冇01----- - I ]=^a n + ——十0W +1)丿」 n^ n 1,an为整数,所以结果=lim nsin 一5 十1i n 『o(n M二二。
试证明:曲面试证明: b2. f aF 、(bf(x j J f (t dt Idx = [ f (x dxZ bb令 F x = f tdt.则 F ' x =-f x . -------------------------------------------------------------- 5 分x根据要证明试的左边,则bb2 f x f t dt dxaxb b b=2 f x F x dx - -2 F x F ' x dx - -2 F x dF xa-------------------------------------------- 14 分 得证•编辑者注:此题属于送分题,很容易上手,非常基础但不失大气! 四(本题满分14分)设A 是m n 矩阵,B 是n p 矩阵,C 是p q 矩阵,试 证明:R(AB)+R(BC)-RB)银(ABC),其中R(X)表示矩阵R 的秩.所以二 4五(本题满分14分)设人二.tan nxdx ,n 为正整数.(1)若 n 一2,计算 I n I n^证:即证明 R(AB)+R(BC) <R(ABC)+R(B)=R‘ABC QOB>-------------- 3 分由于 'Em A广 ABC O' 'E q O ''O AB ' 由」 Q En 」 Q BVC E P 丿-BC B 丿------------------------ 7分0 AB" ■O -Ep^ ‘AB O 'I-BC B 」l E p丿lB BC 丿 ------------------------- 10分'Em QEn J'E q<_CE P丿O<E— E p可逆,ABC 01 R =RQ B 丿'AB <B OBC> 采(AB)+R(BC) ------------------------------- 14 分 --F xO(2)设p 为实数,讨论级数二-1 nI n P的绝对收敛性和条件收敛性.n 4编辑者注:第一问送分题,不予置评;第二问就是高中的分类讨论思想,注意其 区别性,掌握好概念,也有放缩的意蕴,只要基础扎实,得满分不是问题..兀4肚4 J!4解:(1) l n l n^= tan nxdxtan n 'xdx= tan n,xd tanx二丄tan 」x 。
:4二丄 ---------- 6分 n 「1 n 「1■TT(2)由于 0 < x < 二,所以 0<tanx <1, tan n 42x c tan nx c tan n ,x .4因此 I n 2 < I n < J,于是 I n 2 I n ::: 21 n ::: J I n根据p 的取值不同,分类讨论 oO1co由于v —・收敛,所以7 -1 nI n p绝对收敛. n V n - 1 n =2Q Q当0<P <1时,由于{幣}单调减少,并趋近于0,由莱布尼兹判别法,知Z (-1)nI :n=2收敛.1 “ 12卩口十-亦,而二时发散,所以“ -1%是条件收敛的.Q Q当p O 时,则I n p羽,由级数收敛的必要条件可知,瓦(-1)n|n p是发散的.n=2------------------------------------ 14 分六(本题满分14分)设P x, y 和R x, y,z 在空间上有连续偏导数,设上半球面S: z=z ° +J r 2-(x —x ° 2-(y -y ° 了,方向向上,若对任何点(x °, y °,Z 0 )和 r>0,故捫V 亠,则2(n —1) >2( n+1)I p<I n < 1 ,2(n —1)当p>1时,(-1亢:::I p ::1n2pn —1p ,(n 2)10分第二型曲面积分11Pdydz Qdxdy 二 0S试证明:—=0.ex证明:设上半球面S 的底平面为D,方向向下,S 和D 围成的区域记为门,由高 \ (冲 FP \Pdydz Qdxdy dv丿 弹&®丿由于底平面为负面,所以..Pdydz Rdxdy 二- Rd 二,再由题设条件得DD-..Rd 二— - dv*DM . X - Z注意到上试对任何r>0都成立,由此证明R x 0, y 0,z 0 =0 反证法:若不然,设 Rx 0,y 0,z ()- 0由于 Rd 二二R \ ,z )二r 2,这里,z^ D.D而当r —; 0 ;R 1 ,z °「R X 0,y °,Z 0,因此*左端为一个二阶的无穷小类似地,当-卩x °,y0,z0 .「R x °,y0,z0 “, 兰.兰 dv 时一个三阶的无穷小, -X :y x ;z 而当沪心心 .:Rx0,y0,z0=0,该积分趋于o 的阶高于3.因此*式右端阶 /-s L 、 '.x: y高于左端,从而当r 很小,则"Rd b> 出 [即 c R ^ + idvD<cx cz J这与(*)式矛盾. ------------------------- 10 分因此在任何点X 0,y °,z 都有R X 0,y °, z 0 1=0 ,故R x, y,z =0.带入(*)式得^^dv=0< 'V 'Vl 、Q $重复前面的证明可知 :P 心心。
胡.由冷』0,勺得任意性知 —=0. 点X CX------------------ 4 分斯公式得编辑者注:可以说这道题证明点细微,用到反证法这一重要思想,通过比较阶次的高低来比较大小,这应该是我们平常不是很注意到的,在这道题中恰恰得到了很好的体现。
细致推理,拿10分左右不是问题,满分也未尝不可•总:从本届试题看出,填空题没有啥大变动之处,解答题新增了空间几何问题,题都不是很难,对于曾经参加过全国高中数学联赛的学生来说,这些题相应于一个认识阶段来看,不是很难。
考察基础,但却能体现厚重基础,思维清晰的良好素养•估计起码参加这个决赛的起码获得70分左右,也考虑到大学学生事情繁杂,没有多大精力在这一枯燥的学科之上,毕竟不是学数学的•分数不重要,喜欢数学就足够了,并能用于生活就行.与君共享,喜欢数学的都是不错的!2016年6月于西安学生编辑。