2012四川遂宁中考数学
- 格式:doc
- 大小:573.50 KB
- 文档页数:10
四川省遂宁市2014年中考数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题4分,共40分,在每个小题给出的四个选项中,只有一个符合题目要求.)=3.(4分)(2014•遂宁)一个几何体的三视图如图所示,这个几何体是()4.(4分)(2014•遂宁)数据:2,5,4,5,3,4,4的众数与中位数分别是()5.(4分)(2014•遂宁)在函数y=中,自变量x的取值范围是()7.(4分)(2014•遂宁)若⊙O1的半径为6,⊙O2与⊙O1外切,圆心距O1O2=10,则⊙O2的半径8.(4分)(2014•遂宁)不等式组的解集是()9.(4分)(2014•遂宁)如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC长是()×10.(4分)(2014•遂宁)如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕点C顺时针旋转至△A′B′C,使得点A′恰好落在AB上,则旋转角度为()二、填空题(本大题共5个小题,每小题4分,共20分)11.(4分)(2014•遂宁)正多边形一个外角的度数是60°,则该正多边形的边数是6.12.(4分)(2014•遂宁)四川省第十二届运动会将于2014年8月16日在我市举行,我市约3810000人民热烈欢迎来自全省的运动健儿.请把数据3810000用科学记数法表示为 3.81×106.13.(4分)(2014•遂宁)已知圆锥的底面半径是4,母线长是5,则该圆锥的侧面积是20π(结果保留π).×14.(4分)(2014•遂宁)我市射击队为了从甲、乙两名运动员中选出一名运动员参加省运动会比赛,则应选择甲运动员参加省运动会比赛.解:甲的平均数是:([[15.(4分)(2014•遂宁)已知:如图,在△ABC中,点A1,B1,C1分别是BC、AC、AB的中点,A2,B2,C2分别是B1C1,A1C1,A1B1的中点,依此类推….若△ABC的周长为1,则△A n B n C n的周长为.且相似比为的相似比为,且相似比为的相似比为的周长为故答案为三、计算题(本大题共3个小题,每小题7分,共21分)16.(7分)(2014•遂宁)计算:(﹣2)2﹣+2sin45°+|﹣|+2×++17.(7分)(2014•遂宁)解方程:x2+2x﹣3=0.18.(7分)(2014•遂宁)先化简,再求值:(+)÷,其中x=﹣1.••,﹣.四、(本大题共3个小题,每小题9分,共27分)19.(9分)(2014•遂宁)我市某超市举行店庆活动,对甲、乙两种商品实行打折销售.打折前,购买3件甲商品和1件乙商品需用190元;购买2间甲商品和3件乙商品需用220元.而店庆期间,购买10件甲商品和10件乙商品仅需735元,这比不打折前少花多少钱?由题意得:,20.(9分)(2014•遂宁)已知:如图,在矩形ABCD中,对角线AC、BD相交于点O,E是CD中点,连结OE.过点C作CF∥BD交线段OE的延长线于点F,连结DF.求证:(1)△ODE≌△FCE;(2)四边形ODFC是菱形.21.(9分)(2014•遂宁)同时抛掷两枚材质均匀的正方体骰子,(1)通过画树状图或列表,列举出所有向上点数之和的等可能结果;(2)求向上点数之和为8的概率P1;(3)求向上点数之和不超过5的概率P2.;=.五、(本大题共2个小题,每小题10分,共20分)22.(10分)(2014•遂宁)如图,根据图中数据完成填空,再按要求答题:sin2A1+sin2B1=1;sin2A2+sin2B2=1;sin2A3+sin2B3=1.(1)观察上述等式,猜想:在Rt△ABC中,∠C=90°,都有sin2A+sin2B=1.(2)如图④,在Rt△ABC中,∠C=90°,∠A、∠B、∠C的对边分别是a、b、c,利用三角函数的定义和勾股定理,证明你的猜想.(3)已知:∠A+∠B=90°,且sinA=,求sinB.sinA=sinB=,进行求解.,,sinA==.23.(10分)(2014•遂宁)已知:如图,反比例函数y=的图象与一次函数y=x+b的图象交于点A(1,4)、点B(﹣4,n).(1)求一次函数和反比例函数的解析式;(2)求△OAB的面积;(3)直接写出一次函数值大于反比例函数值的自变量x的取值范围.,一次函数,;六、(本大题共2个小题,第24题10分,第25题12分,共22分)24.(10分)(2014•遂宁)已知:如图,⊙O的直径AB垂直于弦CD,过点C的切线与直径AB的延长线相交于点P,连结PD.(1)求证:PD是⊙O的切线.(2)求证:PD2=PB•PA.(3)若PD=4,tan∠CDB=,求直径AB的长.BDC==,==25.(12分)(2014•遂宁)已知:直线l:y=﹣2,抛物线y=ax2+bx+c的对称轴是y轴,且经过点(0,﹣1),(2,0).(1)求该抛物线的解析式;(2)如图①,点P是抛物线上任意一点,过点P作直线l的垂线,垂足为Q,求证:PO=PQ.(3)请你参考(2)中结论解决下列问题:(i)如图②,过原点作任意直线AB,交抛物线y=ax2+bx+c于点A、B,分别过A、B两点作直线l的垂线,垂足分别是点M、N,连结ON、OM,求证:ON⊥OM.(ii)已知:如图③,点D(1,1),试探究在该抛物线上是否存在点F,使得FD+FO取得最小值?若存在,求出点F的坐标;若不存在,请说明理由.轴,就可以得出﹣=0,a PE=aQP=PO=。
准考证号:遂宁市2013年初中毕业暨高中阶段学校招生考试数学试卷【说明】全卷分为第Ⅰ卷和第Ⅱ卷,第Ⅰ卷1-2页,第Ⅱ卷3-10页,考试时间120分种,满分150分。
考试结束后,第Ⅱ卷和答题卡按规定装袋上交。
第Ⅰ卷(选择题 共40分)注意事项:1.答第Ⅰ卷前,考生务必将自已的学校、姓名、准考证号、考试科目填涂在答题卡上。
2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案,不能答在试卷上。
3.考试结束后,本试卷由考场统一收回,集中管理。
一、选择题:本大题共10个小题,每小题4分,共40分,在每个小题给出的四个选项中,只有一个符合题目要求 1.-3的相反数是A .3B .-3C .3±D .132.下列计算错误..的是 A .-|-2|=-2 B .(a 2)3=a 5C .2x 2+3x 2=5x 2D .=3.左图所示的是三通管的立体图,则这个几何体的俯视图是A . B. C. D. 4.以下问题,不适合用全面调查的是A .了解全班同学每周体育锻炼的时间B .旅客上飞机前的安检C .学校招聘教师,对应聘人员面试D .了解全市中小学生每天的零花钱 5.已知反比例函数y =kx的图象经过点(2,-2),则k 的值为主视方向A. 4 B.-12C.-4D.-26.下列图案由正多边形拼成,其中既是轴对称图形又是中心对称图形的是A. B. C. D.7.将点A(3,2)沿x轴向左平移4个单位长度得到点A′,点A′关于y轴对称的点的坐标是A.(-3,2) B.(-1,2) C.(1,2) D. (1,-2)8.用半径为3cm,圆心角是1200的扇形围城一个圆锥的侧面,则这个圆锥的底面半径为A. 2πcmB.1.5cmC.πcmD.1cm9.一个不透明的口袋里有4张形状完全相同的卡片,分别写有数字1,2,3,4,口袋外有两张卡片,分别写有数字2,3,现随机从口袋里取出一张卡片,求这张卡片与口袋外的两张卡片上的数作为三角形三边的长,能构成三角形的概率是A.14B.12C.34D.110.如图,在△ABC中,∠C=900,∠B=300,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN21的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法中正确的个数是①AD是∠BAC的平分线;②∠ADC=600 ;③点D在AB的中垂线上;④S△DAC∶S△ABC=1∶3A.1 B.2 C.3 D.4遂宁市2013年初中毕业暨高中阶段学校招生考试数学试卷第Ⅱ卷(非选择题 共110分)注意事项:1.第Ⅱ卷共8页,用钢笔或中性笔直接答在试卷上。
2024年中考数学真题汇编专题二 有理数及其运算+答案详解(试题部分)一、单选题1.(2024·河南·中考真题)如图,数轴上点P 表示的数是( )A .1−B .0C .1D .22.(2024·四川遂宁·中考真题)中国某汽车公司坚持“技术为王,创新为本”的发展理念,凭借研发实力和创新的发展模式在电池、电子、乘用车、商用车和轨道交通等多个领域发挥着举足轻重的作用.2024年第一季度,该公司以62万辆的销售成绩稳居新能源汽车销量榜榜首,市场占有率高达19.4%.将销售数据用科学记数法表示为( )A .60.6210⨯B .66.210⨯C .56.210´D .56210⨯3.(2024·湖南·中考真题)据《光明日报》2024年3月14日报道:截至2023年末,我国境内有效发明专利量达到401.5万件,高价值发明专利占比超过四成,成为世界上首个境内有效发明专利数量突破400万件的国家,将4015000用科学记数法表示应为( )A .70.401510⨯B .64.01510⨯C .540.1510⨯D .34.01510⨯4.(2024·河南·中考真题)据统计,2023年我国人工智能核心产业规模达5784亿元,数据“5784亿”用科学记数法表示为( )A .8578410⨯B .105.78410⨯C .115.78410⨯D .120.578410⨯ 5.(2024·河南·中考真题)计算3···a a a a ⎛⎫ ⎪ ⎪⎝⎭个的结果是( ) A .5a B .6a C .3a a + D .3a a6.(2024·天津·中考真题)据2024年4月18日《天津日报》报道,天津市组织开展了第43届“爱鸟周”大型主题宣传活动.据统计,今春过境我市候鸟总数已超过800000只.将数据800000用科学记数法表示应为( )A .70.0810⨯B .60.810⨯C .5810⨯D .48010⨯7.(2024·四川乐山·中考真题)2023年,乐山市在餐饮、文旅、体育等服务消费表现亮眼,网络零售额突破400亿元,居全省地级市第一.将40000000000用科学记数法表示为( )A .8410⨯B .9410⨯C .10410⨯D .11410⨯8.(2024·广西·中考真题)广西壮族自治区统计局发布的数据显示,2023年全区累计接待国内游客8.49亿人次.将849000000用科学记数法表示为( )A .90.84910⨯B .88.4910⨯C .784.910⨯D .684910⨯ 9.(2024·黑龙江绥化·中考真题)实数12025−的相反数是( ) A .2025 B .2025− C .12025− D .1202510.(2024·甘肃临夏·中考真题)据央视财经《经济信息联播》消息:甘肃天水凭借一碗香喷喷的麻辣烫成为最“热辣滚烫”的顶流.2024年3月份,天水市累计接待游客464万人次,旅游综合收入27亿元.将数据“27亿”用科学记数法表示为( )A .82.710⨯B .100.2710⨯C .92.710⨯D .82710⨯11.(2024·吉林·中考真题)长白山天池系由火山口积水成湖,天池湖水碧蓝,水平如镜,群峰倒映,风景秀丽,总蓄水量约达32040000000m ,数据2040000000用科学记数法表示为( )A .102.0410⨯B .92.0410⨯C .820.410⨯D .100.20410⨯12.(2024·四川达州·中考真题)有理数2024的相反数是( )A .2024B .2024−C .12024D .12024− 13.(2024·重庆·中考真题)下列各数中最小的数是( )A .1−B .0C .1D .214.(2024·广东·中考真题)2024年6月6日,嫦娥六号在距离地球约384000千米外上演“太空牵手”,完成月球轨道的交会对接.数据384000用科学记数法表示为( )A .43.8410⨯B .53.8410⨯C .63.8410⨯D .538.410⨯15.(2024·重庆·中考真题)下列四个数中,最小的数是( )A .2−B .0C .3D .12− 16.(2024·四川德阳·中考真题)下列四个数中,比2−小的数是( )A .0B .1−C .12−D .3−17.(2024·四川广安·中考真题)下列各数最大的是( )A .2−B .12−C .0D .118.(2024·云南·中考真题)中国是最早使用正负数表示具有相反意义的量的国家.若向北运动100米记作100+米,则向南运动100米可记作( )A .100米B .100−米C .200米D .200−米19.(2024·四川广元·中考真题)将1−在数轴上对应的点向右平移2个单位,则此时该点对应的数是( )A .1−B .1C .3−D .320.(2024·四川凉山·中考真题)下列各数中:553025.827−−−+,,,,,,负数有( ) A .1个 B .2个 C .3个 D .4个21.(2024·江苏苏州·中考真题)用数轴上的点表示下列各数,其中与原点距离最近的是( )A .3−B .1C .2D .322.(2024·湖北·中考真题)在生产生活中,正数和负数都有现实意义.例如收入20元记作20+元,则支出10元记作( )A .10+元B .10−元C .20+元D .20−元23.(2024·湖南·中考真题)在日常生活中,若收入300元记作300+元,则支出180元应记作( )A .180+元B .300+元C .180−元D .480−元24.(2024·河北·中考真题)如图显示了某地连续5天的日最低气温,则能表示这5天日最低气温变化情况的是( )A .B .C .D . 25.(2024·广东广州·中考真题)四个数10−,1−,0,10中,最小的数是( )A .10−B .1−C .0D .1026.(2024·贵州·中考真题)下列有理数中最小的数是( )A .2−B .0C .2D .427.(2024·浙江·中考真题)以下四个城市中某天中午12时气温最低的城市是( )A .北京B .济南C .太原D .郑州 28.(2024·四川内江·中考真题)2023年我国汽车出口491万辆,首次超越日本,成为全球第一大汽车出口国,其中491万用科学记数法表示为( )A .44.9110⨯B .54.9110⨯C .64.9110⨯D .74.9110⨯29.(2024·广西·中考真题)下列选项记录了我国四个直辖市某年一月份的平均气温,其中气温最低的是( )A .B .C .D .30.(2024·福建·中考真题)据《人民日报》3月12日电,世界知识产权组织近日公布数据显示,2023年,全球PCT (《专利合作条约》)国际专利申请总量为27.26万件,中国申请量为69610件,是申请量最大的来源国.数据69610用科学记数法表示为( )A .696110⨯B .2696.110⨯C .46.96110⨯D .50.696110⨯31.(2024·北京·中考真题)为助力数字经济发展,北京积极推进多个公共算力中心的建设.北京数字经济算力中心日前已部署上架和调试的设备的算力为17410⨯Flops (Flops 是计算机系统算力的一种度量单位),整体投产后,累计实现的算力将是日前已部署上架和调试的设备的算力的5倍,达到m Flops ,则m 的值为( )A .16810⨯B .17210⨯C .17510⨯D .18210⨯32.(2024·湖北武汉·中考真题)国家统计局2024年4月16日发布数据,今年第一季度国内生产总值接近300000亿元,同比增长5.3%,国家高质量发展取得新成效.将数据300000用科学记数法表示是( )A .50.310⨯B .60.310⨯C .5310⨯D .6310⨯33.(2024·浙江·中考真题)2024年浙江经济一季度GDP 为201370000万元,其中201370000用科学记数法表示为( )A .920.13710⨯B .80.2013710⨯C .92.013710⨯D .82.013710⨯34.(2024·吉林·中考真题)若()3−⨯的运算结果为正数,则W 内的数字可以为( )A .2B .1C .0D .1−35.(2024·内蒙古赤峰·中考真题)央视新闻2024年5月31日报道,世界最大清洁能源走廊今年一季度累计发电超52000000000度,为我国经济社会绿色发展提供了强劲动能.将数据52000000000用科学记数法表示为( )A .95.210⨯B .110.5210⨯C .95210⨯D .105.210⨯36.(2024·内蒙古包头·中考真题)若,m n 互为倒数,且满足3m mn +=,则n 的值为( )A .14B .12C .2D .437.(2024·四川内江·中考真题)下列四个数中,最大数是( )A .2−B .0C .1−D .338.(2024·甘肃·中考真题)下列各数中,比2−小的数是( )A .1−B .4−C .4D .139.(2024·山东威海·中考真题)一批食品,标准质量为每袋454g .现随机抽取4个样品进行检测,把超过标准质量的克数用正数表示,不足的克数用负数表示.那么,最接近标准质量的是( )A .7+B .5−C .3−D .1040.(2024·内蒙古赤峰·中考真题)如图,数轴上点A ,M ,B 分别表示数a a b b +,,,若AM BM >,则下列运算结果一定是正数的是( )A .a b +B .a b −C .abD .a b −二、填空题41.(2024·黑龙江大兴安岭地·中考真题)国家统计局公布数据显示,2023年我国粮食总产量是13908亿斤,将13908亿用科学记数法表示为 .42.(2024·江苏连云港·中考真题)如果公元前121年记作121−年,那么公元后2024年应记作 年. 43.(2024·湖北·中考真题)写一个比1−大的数 .44.(2024·湖南·中考真题)计算:()2024−−= .45.(2024·湖北武汉·中考真题)中国是世界上最早使用负数的国家.负数广泛应用到生产和生活中,例如,若零上3℃记作3+℃,则零下2记作 ℃.46.(2024·陕西·中考真题)小华探究“幻方”时,提出了一个问题:如图,将0,2−,1−,1,2这五个数分别填在五个小正方形内,使横向三个数之和与纵向三个数之和相等,则填入中间位置的小正方形内的数可以是 .(写出一个符合题意的数即可)47.(2024·黑龙江齐齐哈尔·中考真题)共青团中央发布数据显示:截至2023年12月底,全国共有共青团员7416.7万名.将7416.7万用科学记数法表示为 .48.(2024·上海·中考真题)科学家研发了一种新的蓝光唱片,一张蓝光唱片的容量约为5210⨯GB ,一张普通唱片的容量约为25GB ,则蓝光唱片的容量是普通唱片的 倍.(用科学记数法表示) 49.(2024·四川广元·中考真题)2023年10月诺贝尔物理学奖授予三位“追光”科学家,以表彰他们“为研究物质中的电子动力学而产生阿秒光脉冲的实验方法”.什么是阿秒?1阿秒是1810−秒,也就是十亿分之一秒的十亿分之一.目前世界上最短的单个阿秒光学脉冲是43阿秒.将43阿秒用科学记数法表示为秒.50.(2024·北京·中考真题)联欢会有A,B,C,D四个节目需要彩排.所有演员到场后节目彩排开始。
**中考数学试卷(解析版)**一、选择题;1.﹣2的倒数为()A.B.C.﹣2 D.2【分析】乘积是1的两数互为倒数.【解答】解:﹣2的倒数是﹣.故选:B.【点评】本题主要考查的是倒数的定义,熟练掌握倒数的定义是解题的关键.2.下列运算正确的是()A.a•a4=a4B.(a2)3=a6C.(a2b3)2=a4b5D.a6÷a2=a3(a≠0)【分析】先根据同底数幂的乘法和除法,幂的乘方和积的乘方,分别求出每个式子的值,再判断即可.【解答】解:A、a•a4=a5,故本选项错误;B、(a2)3=a6,故本选项正确;C、(a2b3)2=a4b6,故本选项错误;D、a6÷a2=a4(a≠0),故本选项错误;故选B.【点评】本题考查了同底数幂的乘法和除法,幂的乘方和积的乘方等知识点,能正确求出每个式子的值是解此题的关键.3.我市某地区发现了H7N9禽流感病毒.政府十分重视,积极开展病毒防御工作,使H7N9禽流感病毒得到了很好的控制.病毒H7N9的直径为30纳米(1纳米=10﹣9米).将30纳米用科学记数法表示为()米.A.30×10﹣9B.3×10﹣9C.0.3×10﹣7D.3×10﹣8【分析】绝对值小于1的负数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:禽流感病毒H7N9的直径约为30纳米,即0.00000003米,用科学记数法表示该数为3×10﹣8.故选:D.【点评】此题主要考查了用科学记数法表示较小的数,一般形式为a ×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4.点A(a,b)关于x轴对称的点A′的坐标为()A.(a,﹣b)B.(﹣a,b)C.(﹣a,﹣b)D.(b,a)【分析】根据关于x轴的对称点的坐标特点即可求解.【解答】解:点A(a,b)关于x轴对称的点A′的坐标为(a,﹣b).故选A.【点评】本题考查了关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数.5.如图是某几何体的三视图,该几何体是()A.三棱柱B.三棱锥C.圆锥D.圆柱【分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.【解答】解:主视图和左视图都是等腰三角形,那么此几何体为锥体,由俯视图为圆,可得此几何体为圆锥.故选C【点评】此题考查三视图问题,主视图和左视图的大致轮廓为长方形的几何体为锥体.6.若点A(﹣6,y1),B(﹣2,y2),C(3,y3)在反比例函数y=(a为常数)的图象上,则y1,y2,y3大小关系为()A.y1>y2>y3B.y2>y3>y1 C.y3>y2>y1 D.y3>y1>y2【分析】先判断出反比例函数图象在第一三象限,再根据反比例函数的性质,在每一个象限内,y随x的增大而减小判断.【解答】解:∵a2≥0,∴a2+1≥1,∴反比例函数y=(a为常数)的图象位于第一三象限,∵﹣6<﹣2,∴0>y1>y2,∵3>0,∴y3>0,∴y3>y1>y2.故选D.【点评】本题考查了反比例函数图象上点的坐标特征,熟记反比例函数的增减性是解题的关键.7.顺次连接矩形四边中点所形成的四边形是()A.矩形B.菱形C.正方形D.梯形【分析】因为题中给出的条件是中点,所以可利用三角形中位线性质,以及矩形对角线相等去证明四条边都相等,从而说明是一个菱形.【解答】解:连接AC、BD,在△ABD中,∵AH=HD,AE=EB,∴EH=BD,同理FG=BD,HG=AC,EF=AC,又∵在矩形ABCD中,AC=BD,∴EH=HG=GF=FE,∴四边形EFGH为菱形.故选B.【点评】本题考查了菱形的判定,菱形的判别方法是说明一个四边形为菱形的理论依据,常用三种方法:①定义,②四边相等,③对角线互相垂直平分.8.关于x的一元二次方程(a﹣1)x2+2x+1=0有两个实数根,则a的取值范围为()A.a≤2 B.a<2 C.a≤2且a≠1 D.a<2且a≠1【分析】根据二次项系数非零及根的判别式△≥0,即可得出关于x 的一元一次不等式组,解之即可得出结论.【解答】解:∵关于x的一元二次方程(a﹣1)x2+2x+1=0有两个实数根,∴,解得:a≤2且a≠1.故选C.【点评】本题考查了根的判别式以及一元二次方程的定义,牢记“当△≥0时,方程有两个实数根”是解题的关键.9.如图,⊙O的半径为6,△ABC是⊙O的内接三角形,连接OB、OC,若∠BAC与∠BOC互补,则线段BC的长为()A.B.3 C.D.6【分析】作弦心距OD,先根据已知求出∠BOC=120°,由等腰三角形三线合一的性质得:∠DOC=∠BOC=60°,利用30°角所对的直角边是斜边的一半可求得OD的长,根据勾股定理得DC的长,最后利用垂径定理得出结论.【解答】解:∵∠BAC与∠BOC互补,∴∠BAC+∠BOC=180°,∵∠BAC=∠BOC,∴∠BOC=120°,过O作OD⊥BC,垂足为D,∴BD=CD,∵OB=OC,∴OB平分∠BOC,∴∠DOC=∠BOC=60°,∴∠OCD=90°﹣60°=30°,在Rt△DOC中,OC=6,∴OD=3,∴DC=3,∴BC=2DC=6,故选:C.【点评】本题考查三角形的外接圆与外心、锐角三角函数、垂径定理等知识,解题的关键是学会添加常用辅助线,还在直角三角形解决问题,属于中考常考题型.10.函数y=x2+bx+c与函数y=x的图象如图所示,有以下结论:①b2﹣4c>0;②b+c=0;③b<0;④方程组的解为,;⑤当1<x<3时,x2+(b﹣1)x+c>0.其中正确的是()A.①②③B.②③④C.③④⑤D.②③⑤【分析】由函数y=x2+bx+c与x轴无交点,可得b2﹣4c<0;当x=1时,y=1+b+c=1;当x=3时,y=9+3b+c=3;当1<x<3时,二次函数值小于一次函数值,可得x2+bx+c<x,继而可求得答案.【解答】解:∵函数y=x2+bx+c与x轴无交点,∴b2﹣4ac<0;故①错误;当x=1时,y=1+b+c=1,则b+c=0,故②正确;对称轴在y轴的右侧,a、b异号,则b<0,故③正确;根据抛物线与直线y=x的交点知:方程组的解为,.故④正确;∵当1<x<3时,二次函数值小于一次函数值,∴x2+bx+c<x,∴x2+(b﹣1)x+c<0.故⑤错误.故选:B.【点评】主要考查图象与二次函数系数之间的关系.此题难度适中,注意掌握数形结合思想的应用.二、填空题11.函数中,自变量x的取值范围是x≠1.【分析】根据分式有意义的条件是分母不为0;分析原函数式可得关系式x﹣1≠0,解可得答案.【解答】解:根据题意可得x﹣1≠0;解得x≠1;故答案为:x≠1.【点评】本题主要考查函数自变量的取值范围,当函数表达式是分式时,要注意考虑分式的分母不能为0.12.在一个不透明的盒子中装有5个红球,2个黄球,3个绿球,这些球除颜色外没有任何其他区别,现从这个盒子中随机摸出一个球,摸到红球的概率为.【分析】用红球的个数除以总球的个数,即可得出答案.【解答】解:∵有5个红球,2个黄球,3个绿球,共10个,∴摸到红球的概率为=; 故答案为:. 【点评】此题考查概率的求法:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=.13.已知x 1,x 2是方程x 2﹣3x ﹣1=0的两根,则= ﹣3 .【分析】根据根与系数的关系可得出x 1+x 2=3、x 1•x 2=﹣1,将其代入+=中即可求出结论.【解答】解:∵x 1,x 2是方程x 2﹣3x ﹣1=0的两根,∴x 1+x 2=3,x 1•x 2=﹣1,∴+===﹣3.故答案为:﹣3.【点评】本题考查了根与系数的关系,牢记“两根之和等于﹣、两根之积等于”是解题的关键.14.如图,直线y=x +1与x 轴,y 轴分别交于A 、B 两点,△BOC 与△B′O′C′是以点A 为位似中心的位似图形,且相似比为1:2,则点B′的坐标为 (3,2)或(﹣9,﹣2) .【分析】首先根据直线y=x+1与x轴,y轴分别交于A、B两点,解得点A和点B的坐标,再利用位似图形的性质可得点B′的坐标.【解答】解:∵y=x+1与x轴,y轴分别交于A、B两点,令x=0可得y=1;令y=0可得x=﹣3,∴点A和点B的坐标分别为(﹣3,0);(0,1),∵△BOC与△B′O′C′是以点A为位似中心的位似图形,且相似比为1:2,∴==,∴O′B′=2,AO′=6,∴当点B'在第一象限时,B′的坐标为(3,2);当点B'在第三象限时,B′的坐标为(﹣9,﹣2).∴B′的坐标为(﹣9,﹣2)或(3,2).故答案为:(﹣9,﹣2)或(3,2).【点评】本题主要考查了一次函数的图象与性质,位似图形的性质的运用,掌握位似的概念是解决问题的关键.15.如图,正方形ABCD的边长为4,点E、F分别从点A、点D以相同速度同时出发,点E从点A向点D运动,点F从点D向点C运动,点E运动到D点时,E、F停止运动.连接BE、AF相交于点G,连接CG.有下列结论:①AF⊥BE;②点G随着点E、F的运动而运动,且点G的运动路径的长度为π;③线段DG的最小值为2﹣2;④当线段DG最小时,△BCG的面积S=8+.其中正确的命题有①②③.(填序号)【分析】判断出△BAE≌△ADF即可判断出①正确;进而判断出∠AGB=90°,从而得到点G是以AB为直径的圆弧上一点,再判断出此圆弧所对的圆心角,即可判断出②正确,再用圆外一点到圆上的最小距离的确定方法判断出此圆弧上一点到点D的距离最小,再用勾股定理即可判断出③正确,再判断出△DMG∽△DAP求出GM,进而求出△BCG的高GN,利用三角形的面积公式得出△BCG的面积,进而判断出④错误.【解答】解:∵点E、F分别同时从A、D出发以相同的速度运动,∴AE=DF,∵四边形ABCD是正方形,∴AB=DA,∠BAE=∠D=90°,在△BAE和△ADF中,,∴△BAE≌△ADF(SAS),∴∠ABE=∠DAF,∵∠DAF+∠BAG=90°,∴∠ABE+∠BAG=90°,即∠AGB=90°,∴AF⊥BE.故①正确;∵∠AGB=90°,∴点G的运动路径是以AB为直径的圆所在的圆弧的一部分,由运动知,点E运动到点D时停止,同时点F运动到点C,∴点G的运动路径是以AB为直径的圆所在的圆弧所对的圆心角为90°,∴长度为=π,故命题②正确;如图,设AB的中点为点P,连接PD,∵点G是以点P为圆心AB为直径的圆弧上一点,∴当点G在PD上时,DG有最小值,在Rt△ADP中,AP=AB=2,AD=4,根据勾股定理得,PD=2,∴DG的最小值为2﹣2,故③正确;过点G作BC的垂线与AD相交于点M,与BC相交于N,∴GM∥PA,∴△DMG∽△DAP,∴,∴GM=,∴△BCG的高GN=4﹣GM=,∴S△BCG=×4×=4+,故④错误,∴正确的有①②③,故答案为:①②③【点评】此题是四边形综合题,主要考查了正方形的性质,全等三角形的判定和性质,勾股定理,三角形的面积公式,圆的性质,解题的关键是灵活运用所学知识解决问题.三、计算题16.(7分)计算: +(﹣)﹣1﹣2cos60°﹣(π﹣2017)0+|1﹣|.【分析】直接利用立方根的定义以及负指数幂的性质和零指数幂的性质、绝对值的性质分别化简得出答案.【解答】解:原式=2﹣2﹣2×﹣1+2﹣1=﹣1.【点评】此题主要考查了实数运算,正确化简各数是解题关键.17.(7分)有这样一道题“求的值,其中a=2017”,“小马虎”不小心把a=2017错抄成a=2007,但他的计算结果却是正确的,请说明原因.【分析】首先化简的,然后判断出算式的值与a 无关即可.【解答】解:=﹣=1∴算式的值与a无关即可,∴“小马虎”不小心把a=2017错抄成a=2007,但他的计算结果却是正确的.【点评】此题主要考查了分式的化简求值问题,要熟练掌握,注意先把分式化简后,再把分式中未知数对应的值代入求出分式的值.18.(7分)解方程:.【分析】去分母化为整式方程即可解决问题.【解答】解:两边乘x﹣2得到,1+3(x﹣2)=x﹣1,1+3x﹣6=x﹣1,x=2,∵x=2时,x﹣2=0,∴x=2是分式方程分增根,原方程无解.【点评】本题考查分式方程的解,解题的关键是掌握解分式方程的步骤,注意解分式方程必须检验.四、解答题(共69分)19.(9分)如图,在平行四边形ABCD中,BD为对角线,AE⊥BD,CF⊥BD,垂足分别为E、F,连接AF、CE.求证:AF=CE.【分析】首先证明AE∥CF,△ABE≌△CDF,再根据全等三角形的性质可得AE=CF,然后再根据一组对边平行且相等的四边形是平行四边形可得四边形AECF是平行四边形,根据平行四边形的性质可得AF=CE.【解答】证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠ABE=∠CDF.又∵AE⊥BD,CF⊥BD,∴∠AEB=∠CFD=90°,AE∥CF,在△ABE和△CDF中,,∴△ABE≌△CDF(AAS).∴AE=CF,∵AE∥CF,∴四边形AECF是平行四边形,∴AF=CE.【点评】此题主要考查了平行四边形的性质和判定,关键是掌握平行四边形对边平行且相等.20.(9分)在一次社会调查活动中,小李收集到某“健步走运动”团队20名成员一天行走的步数,记录如下:对这20个数据按组距1000进行分组,并统计整理,绘制了如下不完整的统计图表,步数分布统计图.根据以上信息解答下列问题:(1)填空:m=2,n=3;(2)请补全条形统计图;(3)这20名“健步走运动”团队成员一天行走的步数的中位数落在B 组;(4)若该团队共有200人,请估计其中一天行走步数少于8500步的人数.【分析】(1)根据表格确定出m与n的值即可;(2)补全条形统计图即可;(3)确定出20名“健步走运动”团队成员一天行走的步数的中位数的范围即可;(4)根据样本中的步数少于8500步的百分比,乘以200即可得到结果.【解答】解:(1)根据表格得:5500≤x<6500的有:5640与6430,即m=2,8500≤x<9500的有:8648,8753,9450,即n=3;故答案为:2;3;(2)补全条形统计图,如图所示:(3)这20名“健步走运动”团队成员一天行走的步数的中位数落在B 组;故答案为:B;(4)根据题意得:200×=160(人),则估计一天行走的步数少于8500步的人数约为160人.【点评】此题考查了条形统计图,用样本估计总体,以及用样本估计总体,弄清题意是解本题的关键.21.(9分)2017年遂宁市吹响了全国文明城市创建决胜“集结号”.为了加快创建步伐,某运输公司承担了某标段的土方运输任务,公司已派出大小两种型号的渣土运输车运输土方.已知一辆大型渣土运输车和一辆小型渣土运输车每次共运15吨;3辆大型渣土运输车和8辆小型渣土运输车每次共运70吨.(1)一辆大型渣土运输车和一辆小型渣土运输车每次各运土方多少吨?(2)该渣土运输公司决定派出大小两种型号渣土运输车共20辆参与运输土方,若每次运输土方总量不小于148吨,且小型渣土运输车至少派出7辆,问该渣土运输公司有几种派出方案?(3)在(2)的条件下,已知一辆大型渣土运输车运输话费500元/次,一辆小型渣土运输车运输花费300元/次,为了节约开支,该公司应选择哪种方案划算?【分析】(1)设一辆大型渣土运输车每次运土方x吨,一辆小型渣土运输车每次运土方y吨,根据“一辆大型渣土运输车和一辆小型渣土运输车每次共运15吨;3辆大型渣土运输车和8辆小型渣土运输车每次共运70吨”,列方程组求解可得;(2)设派出大型渣土运输车a辆,则派出小型运输车(20﹣a)辆,根据“每次运输土方总量不小于148吨,且小型渣土运输车至少派出7辆”列不等式组求解可得;(3)设运输总花费为W,根据“总费用=大渣土车总费用+小渣土车总费用”列出W关于a的函数解析式,根据一次函数性质结合a的范围求解可得.【解答】解:(1)设一辆大型渣土运输车每次运土方x吨,一辆小型渣土运输车每次运土方y吨,根据题意,可得:,解得:,答:一辆大型渣土运输车每次运土方10吨,一辆小型渣土运输车每次运土方5吨;(2)设派出大型渣土运输车a辆,则派出小型运输车(20﹣a)辆,根据题意,可得:,解得:9.6≤a≤13,∵a为整数,∴a=10、11、12、13,则渣土运输公司有4种派出方案,如下:方案一:派出大型渣土运输车10辆、小型渣土运输车10辆;方案二:派出大型渣土运输车11辆、小型渣土运输车9辆;方案三:派出大型渣土运输车12辆、小型渣土运输车8辆;方案四:派出大型渣土运输车13辆、小型渣土运输车7辆;(3)设运输总花费为W,则W=500a+300(20﹣a)=200a+6000,∵200>0,∴W随a的增大而增大,∵9.6≤a≤13,且a为整数,∴当a=10时,W取得最小值,最小值W=200×10+6000=8000,故该公司选择方案一最省钱.【点评】本题主要考查二元一次方程组、一元一次不等式组及一次函数的应用,解题的关键是理解题意找到题目中蕴含的相等关系或不等式关系列出方程组、不等式组及一次函数解析式是解题的关键.22.(10分)关于三角函数有如下公式:sin(α+β)=sinαcosβ+cosαsinβ,sin(α﹣β)=sinαcosβ﹣cosαsinβcos(α+β)=cosαcosβ﹣sinαsinβ,cos(α﹣β)=cosαcosβ+sinαsinβtan(α+β)=(1﹣tanαtanβ≠0)tan(α﹣β)=(1+tanαtanβ≠0)利用这些公式可以将一些不是特殊角的三角函数转化为特殊角的三角函数来求值.如:tan105°=tan(45°+60°)=根据上面的知识,你可以选择适当的公式解决下面问题:如图,两座建筑物AB和DC的水平距离BC为24米,从点A测得点D的俯角α=15°,测得点C的俯角β=75°,求建筑物CD的高度.【分析】根据题意得到tan75°=2+,tan15°=2﹣,如图,延长CD交BC的延长线AE于E,解直角三角形即可得到结论.【解答】解:∵tan75°=tan(30°+45°)===2+,tan15°=tan(30°﹣45°)==2﹣,如图,延长CD交BC的延长线AE于E,在Rt△AEC中,AE=BC=24cm,∠CAE=75°,∴tan75°=,∴CE=AE•tan75°=(48+24)cm,在Rt△AED中,tan∠DAE=tan15°=,∴DE=AE•tan15°=48﹣24,∴CD=CE﹣DE=48cm.答:建筑物CD的高度是48cm.【点评】本题考查的是解直角三角形的应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键.23.(10分)如图,直线y1=mx+n(m≠0)与双曲线y2=(k≠0)相交于A(﹣1,2)和B(2,b)两点,与y轴交于点C,与x轴交于点D.(1)求m,n的值;(2)在y轴上是否存在一点P,使△BCP与△OCD相似?若存在求出点P的坐标;若不存在,请说明理由.【分析】(1)把点A、B的坐标分别代入反比例函数解析式求得k、b的值,然后将点A、B的坐标分别代入一次函数解析式,利用方程组求得它们的值;(2)需要分类讨论:△PCB∽△OCD,△BCP′~△OCD,由坐标与图形的性质以及等腰直角三角形的性质进行解答.【解答】解:(1)∵A(﹣1,2)和B(2,b)在双曲线y2=(k≠0)上,∴k=﹣1×2=2b,解得b=﹣1.∴B(2,﹣1).∵A(﹣1,2)和B(2,﹣1)在直线y1=mx+n(m≠0)上,∴,解得,∴m,n的值分别是﹣1、1;(2)在y轴上存在这样的点P,理由如下:①如图,过点B作BP∥x交y轴于点P,∴△PCB∽△OCD,∵B(2,﹣1),∴P(0,﹣1),②过点B作BP′⊥AB交y轴于点P,∴△BCP′~△OCD,由(1)知,y1=﹣x+1,∴C(0,1),D(1,0),∴OC=OD,∴△OCD是等腰直角三角形,∴△BCP′是等腰直角三角形,∴CP′=PP′=2,∴P′(0,﹣3),∴这样的点P有2个.即(0,﹣1)和(0,﹣3).【点评】本题考查了反比例函数综合题.需要掌握一次函数图象上点的坐标特征,反比例函数图象上点的坐标特征,相似三角形的判定与性质,等腰直角三角形的判定与性质.难度不大,但是综合性比较强,解题时,需要分类讨论,以防漏解.24.(10分)如图,CD是⊙O的直径,点B在⊙O上,连接BC、BD,直线AB与CD的延长线相交于点A,AB2=AD•AC,OE∥BD交直线AB 于点E,OE与BC相交于点F.(1)求证:直线AE是⊙O的切线;(2)若⊙O的半径为3,cosA=,求OF的长.【分析】(1)连接OB根据已知条件得到△ABD∽△ACB,根据相似三角形的性质得到∠ABD=∠ACB,由等腰三角形的性质得到∠OBC=∠ACB,等量代换得到∠OBC=∠ABD,于是得到结论;(2)设AB=4x,OA=5x,根据勾股定理得到AB=4,OA=5,求得AD=2,根据平行线分相等成比例定理得到BE=6,由勾股定理得到OE==3,根据三角形的面积公式得到BF=,根据三角函数的定义即可得到结论.【解答】解:(1)连接OB,∵AB2=AD•AC,∴,∵∠A=∠A,∴△ABD∽△ACB,∴∠ABD=∠ACB,∵OB=OC,∴∠OBC=∠ACB,∴∠OBC=∠ABD,∵CD是⊙O的直径,∴∠CBD=90°,∴∠OBC+∠OBD=90°,∠OBD+ABD=90°,即∠OBA=90°,∴直线AE是⊙O的切线;(2)∵OB=3,cosA=,设AB=4x,OA=5x,∵OA2=AB2+OB2,∴(5x)2=(4x)2+32,∴x=1,∴AB=4,OA=5,∴AD=2,∵OE∥BD,∴,∴BE=6,∴OE==3,∵∠CBD=90°,BD∥OE,∴∠EFB=90°,∵s△OBE=OB•BE=OE•BF,∴OB•BE=OE•BF,∴BF=,∵tan∠E=,∴E=,∴OF=OE﹣EF=.【点评】本题考查了相似三角形的判定和性质,解直角三角形,切线的判定,三角形的面积公式,正确的作出辅助线是解题的关键.25.(12分)如图,抛物线y=ax2+bx+c(a≠0),经过点A(﹣1,0),B(3,0),C(0,3)三点.(1)求抛物线的解析式及顶点M的坐标;(2)连接AC、BC,N为抛物线上的点且在第四象限,当S△NBC=S△ABC 时,求N点的坐标;(3)在(2)问的条件下,过点C作直线l∥x轴,动点P(m,3)在直线l上,动点Q(m,0)在x轴上,连接PM、PQ、NQ,当m 为何值时,PM+PQ+QN的和最小,并求出PM+PQ+QN和的最小值.【分析】(1)将点A、B、C坐标代入解析式,解关于a、b、c的方程组可得函数解析式,配方成顶点式即可得点M坐标;(2)设N(t,﹣t2+2t+3)(t>0),根据点N、C坐标用含t的代数式表示出直线CN解析式,求得CN与x轴的交点D坐标,即可表示BD的长,根据S△NBC=S△ABC,即S△CDB+S△BDN=AB•OC建立关于t的方程,解之可得;(3)将顶点M(1,4)向下平移3个单位得到点M′(1,1),连接M′N交x轴于点Q,连接PQ,此时M′、Q、N三点共线时,PM+PQ+QN=M′Q+PQ+QN取最小值,由点M′、N坐标求得直线M′N 的解析式,即可求得点Q的坐标,据此知m的值,过点N作NE∥x轴交MM′延长线于点E,可得M′E=6、NE=3、M′N==3,即M′Q+QN=3,据此知m=时,PM+PQ+QN的最小值为3+3.【解答】解:(1)∵抛物线y=ax2+bx+c(a≠0)经过点A(﹣1,0),B(3,0),C(0,3),∴,解得:,∴y=﹣x2+2x+3=﹣(x﹣1)2+4,则抛物线的顶点M坐标为(1,4);(2)∵N是抛物线上第四象限的点,∴设N(t,﹣t2+2t+3)(t>0),又点C(0,3),设直线NC的解析式为y=k1x+b1,则,解得:,∴直线NC的解析式为y=(﹣t+2)x+3,设直线CN与x轴交于点D,当y=0时,x=,∴D(,0),BD=3﹣,∵S△NBC=S△ABC,∴S△CDB+S△BDN=AB•OC,即BD•|y C﹣y N|= [3﹣(﹣1)]×3,即×(3﹣)[3﹣(﹣t2+2t+3)]=6,整理,得:t2﹣3t﹣4=0,解得:t1=4,t2=﹣1(舍去),当t=4时,﹣t2+2t+3=﹣5,∴N(4,﹣5);(3)将顶点M(1,4)向下平移3个单位得到点M′(1,1),连接M′N交x轴于点Q,连接PQ,则MM′=3,∵P(m,3)、Q(m,0),∴PQ⊥x轴,且PQ=OC=3,∴PQ∥MM′,且PQ=MM′,∴四边形MM′QP是平行四边形,∴PM=QM′,由作图知当M′、Q、N三点共线时,PM+PQ+QN=M′Q+PQ+QN取最小值,设直线M′N的解析式为y=k2x+b2(k2≠0),将点M′(1,1)、N(4,﹣5)代入,得:,解得:,∴直线M′N的解析式为y=﹣2x+3,当y=0时,x=,∴Q(,0),即m=,此时过点N作NE∥x轴交MM′延长线于点E,在Rt△M′EN中,∵M′E=1﹣(﹣5)=6,NE=4﹣1=3,∴M′N==3,∴M′Q+QN=3,∴当m=时,PM+PQ+QN的最小值为3+3.【点评】本题主要考查二次函数的综合问题,解题的关键是熟练掌握待定系数法求函数解析式、平行四边形的判定与性质、勾股定理及根据两点间线段最短得到点P、Q的位置.。
2009-2017年最新四川省遂宁市中考数学真题试卷集注:主要包含了遂宁市2009年到2017年的中考真题试卷及答案解析,共有9套真题试卷,对参加中考的考生有很大的指导作用,帮助考生找准命题方向,取得优异成绩。
目录一、2009年四川省遂宁市中考数学真题试卷及解析二、2010年四川省遂宁市中考数学真题试卷三、2011年四川省遂宁市中考数学真题试卷及解析四、2012年四川省遂宁市中考数学真题试卷及解析五、2013年四川省遂宁市中考数学真题试卷及解析六、2014年四川省遂宁市中考数学真题试卷及解析七、2015年四川省遂宁市中考数学真题试卷及解析八、2016年四川省遂宁市中考数学真题试卷及解析九、2017年四川省遂宁市中考数学真题试卷及解析遂宁市2009年初中毕业生学业考试数学试卷说明:1.本试卷分第Ⅰ卷和第Ⅱ卷.第Ⅰ卷1—2页为选择题,第Ⅱ卷3—8页为非选择题.请将第Ⅰ卷的正确选项填在第Ⅱ卷前面的第Ⅰ卷答题表内;第Ⅱ卷用蓝、黑色的钢笔或圆珠笔直接解答在试卷上,其中的解答题都应按要求写出必要的解答过程.2.本试卷满分150分,答题时间为120分钟.第Ⅰ卷(选择题,共36分)一、选择题(本大题共12个小题,每小题3分,共36分)在每小题给出的四个选项中,有且仅有一项是符合题目要求的1.5的相反数是 A. 51 B.5 C.-5 D. 51 2.做重复实验:抛掷同一枚啤酒瓶盖1000次.经过统计得“凸面向上”的频率约为0.44,则可以由此估计抛掷这枚啤酒瓶盖出现“凹面向上”的概率约为A.0.22B.0.44C.0.50D.0.563.下列计算正确的是A.2x+x=x 3B.(3x)2=6x 2C.(x-2)2=x 2-4D.x 3÷x=x 24.如图,已知∠1=∠2,∠3=80O ,则∠4=A.80OB. 70OC. 60OD. 50O5.数据0.000207用科学记数法表示为A.2.07×10-3B. 2.07×10-4C. 2.07×10-5D. 2.07×10-66.如图,已知⊙O 的两条弦AC ,BD 相交于点E ,∠A=70o ,∠c=50o ,那么sin ∠AEB 的值为 A. 21 B. 33 C.22 D. 23 7.把二次函数3412+--=x x y 用配方法化成()k h x a y +-=2的形式 A.()22412+--=x y B. ()42412+-=x y C.()42412++-=x y D. 321212+⎪⎭⎫ ⎝⎛-=x y 8.一个正方体的表面展开图如图所示,每个面内都标注了字母,如果从正方体的右面看是面D ,面C 在后面,则正方体的上面是A.面EB.面FC.面AD.面B9.一组数据2,3,2,3,5的方差是A.6B.3C.1.2D.210.如图,把⊙O1向右平移8个单位长度得⊙O 2,两圆相交于A、B,且O1A⊥O2A,则图中阴影部分的面积是A.4π-8B. 8π-16C.16π-16D. 16π-3211.如图,在梯形ABCD中,AB//DC,∠D=90o,AD=DC=4,A.2B.4C.8D.112.已知整数x满足-5≤x≤5,y1=x+1,y2=-2x+4,对任意一个x,m 都取y1,y2中的较小值,则m的最大值是A.1B.2C.24D.-9遂宁市2009年初中毕业生学业考试数学试卷第Ⅱ卷(非选择题,共114分)第Ⅰ卷答题表二、填空题(本大题共5个小题,每小题4分,共20分)把答案直接填在题目中的横线上.13.把不等式组的解集表示在数轴上,如图所示,那么这个不等式组的解集是 .14.分解因式:x3-4x= . 15.如图,已知△ABC 中,AB=5cm ,BC=12cm ,AC=13cm ,那么AC 边上的中线BD 的长为 cm.16.把只有颜色不同的1个红球和2个白球装入一个不透明的口袋里搅匀,从中随机地一次摸出2个球,得1红球1白球的概率为 .17.已知△ABC 中,AB=BC ≠AC ,作与△ABC 只有一条公共边,且与△ABC 全等的三角形,这样的三角形一共能作出 个.三、解答题(本大题共4个小题,每小题10分,共40分)18.计算:()3208160cot 33+--o -19.某校初三年级共有学生540人,张老师对该年级学生的升学志愿进行了一次抽样调查,他对随机抽取的一个样本进行了数据整理,绘制了两幅不完整的统计图(图甲和图乙)如下.请根据图中提供的信息解答下列问题:⑴求张老师抽取的样本容量;⑵把图甲和图乙都补充绘制完整;⑶请估计全年级填报就读职高的学生人数.20.如图,已知矩形ABCD中,AB=4cm,AD=10cm,点P在边BC上移动,点E、F、G、H分别是AB、AP、DP、DC的中点.⑴求证:EF+GH=5cm;EF的值.⑵求当∠APD=90o时,GH21.在A、B两个盒子中都装着分别写有1~4的4张卡片,小明分别从A、B两个盒子中各取出一张卡片,并用A盒中卡片上的数字作为十位数,B盒中的卡片上的数字作为个位数.请画出树状图,求小明抽取一次所得两位数能被3整除的概率.四、解答题(本大题共2小题,每小题12分,共24分)22.如图,已知直线y=ax+b经过点A(0,-3),与x轴交于点C,且与双曲线相交于点B(-4,-a),D.⑴求直线和双曲线的函数关系式;⑵求△CDO(其中O为原点)的面积.23.某校原有600张旧课桌急需维修,经过A、B、C三个工程队的竞标得知,A、B的工作效率相同,且都为C队的2倍,若由一个工程队单独完成,C队比A 队要多用10天.学校决定由三个工程队一齐施工,要求至多6天完成维修任务.三个工程队都按原来的工作效率施工2天时,学校又清理出需要维修的课桌360张,为了不超过6天时限,工程队决定从第3天开始,各自都提高工作效率,A、B队提高的工作效率仍然都是C队提高的2倍.这样他们至少还需要3天才能成整个维修任务.⑴求工程队A原来平均每天维修课桌的张数;⑵求工程队A提高工作效率后平均每天多维修课桌张数的取值范围.五、解答题(本大题2小题,每小题15分,共30分)24.如图,以BC为直径的⊙O交△CFB的边CF于点A,BM平分∠ABC交AC于点M,AD⊥BC于点D,AD交BM于点N,ME⊥BC于点E,3,AD=12.AB2=AF·AC,cos∠ABD=5⑴求证:△ANM≌△ENM;⑵求证:FB是⊙O的切线;⑶证明四边形AMEN是菱形,并求该菱形的面积S.7),且顶点C的横坐标25.如图,二次函数的图象经过点D(0,39为4,该图象在x 轴上截得的线段AB的长为6.⑴求二次函数的解析式;⑵在该抛物线的对称轴上找一点P,使PA+PD最小,求出点P的坐标;⑶在抛物线上是否存在点Q,使△QAB与△ABC相似?如果存在,求出点Q的坐标;如果不存在,请说明理由.遂宁市2009年初中毕业生学业考试数学参考答案一、选择题(每小题3分,共36分)二、填空题(每小题4分,共20分)13.x >1 14.x(x+2)(x-2) 15. 213 16. 32 17.7三、解答题(每小题10分,共40分)18.1 19.⑴60;⑵略;⑶225(人).20.⑴∵矩形ABCD ,AD=10cm ,∴BC=AD=10cm∵E 、F 、G 、H 分别是AB 、AP 、DP 、DO 的中点,∴EF+GH=21BP+21PC=21BC ,∴EF+GH=5cm .⑵∵矩形ABCD ,∴∠B=∠C=90o ,又∵∠APD=90o ,∴由勾股定理得AD 2=AP 2+DP 2=AB 2+BP 2+PC 2+DC 2=BP 2+(BC-BP)2+2AB 2=BP 2+(10-BP)2+32,即100=2BP 2-20BP+100+32解得BP=2或8(cm)当BP=2时,PC=8,EF=1,GH=4,这时41GH EF当BP=8时,PC=2,EF=4,GH=1,这时4=GH EF∴GH EF 的值为41或4. 21.树状图略,P (能被3整除的两位数)=165 四、解答题(每小题12分,共24分)22.⑴由已知得⎩⎨⎧+-=-=-ba ab 43解之得:⎩⎨⎧-=-=31b a ∴直线的函数关系式为:y=-x-3 设双曲线的函数关系式为:xk y = 且41-=k ,∴k=-4 ∴双曲线的函数关系式为x y 4-=. ⑵解方程组⎪⎩⎪⎨⎧-=--=x y x y 43 得⎩⎨⎧=-=1411y x ,⎩⎨⎧-==4122y x ∴D(1,-4) 在 y=-x-3中令y=0,解得x=-3∴OC=3∴△CDO 的面积为64321=⨯⨯. 23.⑴设C 队原来平均每天维修课桌x 张, 根据题意得:102600600=-xx 解这个方程得:x=30经检验x=30是原方程的根且符合题意,2x=60答:A 队原来平均每天维修课桌60张.⑵设C 队提高工效后平均每天多维修课桌x 张,施工2天时,已维修(60+60+30)×2=300(张),从第3天起还需维修的张数应为(300+360)=600(张)根据题意得:3(2x+2x+x+150)≤660≤4(2x+2x+x+150)解这个不等式组得::3≤x ≤14∴6≤2x ≤28答:A 队提高工效后平均每天多维修的课桌张数的取值范围是:6≤2x ≤28五、解答题(每小题15分,共30分)24.⑴证明:∵BC 是⊙O 的直径∴∠BAC=90o又∵EM ⊥BC ,BM 平分∠ABC ,∴AM=ME ,∠AMN=EMN又∵MN=MN ,∴△ANM ≌△ENM⑵∵AB 2=AF ·AC ∴AB AFAC AB又∵∠BAC=∠FAB=90o∴△ABF ∽△ACB∴∠ABF=∠C又∵∠FBC=∠ABC+∠FBA=90o∴FB 是⊙O 的切线⑶由⑴得AN=EN ,AM=EM ,∠AMN=EMN ,又∵AN ∥ME ,∴∠ANM=∠EMN ,∴∠AMN=∠ANM ,∴AN=AM ,∴AM=ME=EN=AN∴四边形AMEN 是菱形∵cos ∠ABD=53,∠ADB=90o ∴53=AB BD 设BD=3x ,则AB=5x ,,由勾股定理()()x x -x AD 43522==而AD=12,∴x=3∴BD=9,AB=15∵MB 平分∠AME ,∴BE=AB=15∴DE=BE-BD=6∵ND ∥ME ,∴∠BND=∠BME ,又∵∠NBD=∠MBE∴△BND ∽△BME ,则BE BD ME ND = 设ME=x ,则ND=12-x ,15912=-x x ,解得x=215 ∴S=ME ·DE=215×6=45 25.⑴设二次函数的解析式为:y=a(x-h)2+k∵顶点C 的横坐标为4,且过点(0,397) ∴y=a(x-4)2+k k a +=16397………………①又∵对称轴为直线x=4,图象在x 轴上截得的线段长为6∴A(1,0),B(7,0)∴0=9a+k ………………②由①②解得a=93,k=3- ∴二次函数的解析式为:y=93(x-4)2-3⑵∵点A 、B 关于直线x=4对称∴PA=PB∴PA+PD=PB+PD ≥DB∴当点P 在线段DB 上时PA+PD 取得最小值∴DB 与对称轴的交点即为所求点P设直线x=4与x 轴交于点M∵PM ∥OD ,∴∠BPM=∠BDO ,又∠PBM=∠DBO∴△BPM ∽△BDO ∴BO BM DO PM = ∴3373397=⨯=PM∴点P 的坐标为(4,33) ⑶由⑴知点C(4,3-),又∵AM=3,∴在Rt △AMC 中,cot ∠ACM=33, ∴∠ACM=60o ,∵AC=BC ,∴∠ACB=120o①当点Q 在x 轴上方时,过Q 作QN ⊥x 轴于N如果AB=BQ ,由△ABC ∽△ABQ 有BQ=6,∠ABQ=120o ,则∠QBN=60o∴QN=33,BN=3,ON=10,此时点Q(10,33),如果AB=AQ ,由对称性知Q(-2,33)②当点Q 在x 轴下方时,△QAB 就是△ACB ,此时点Q 的坐标是(4,3-),经检验,点(10,33)与(-2,33)都在抛物线上综上所述,存在这样的点Q,使△QAB∽△ABC点Q的坐标为(10,3).3)或(-2,33)或(4,3遂宁市2010年初中毕业生学业考试数学试卷一、选择题:本大题共10个小题,每小题3分,共30分1.计算(-2)×3的结果是()A.-6 B.6 C.-5 D.5 2.下列图形中,是轴对称图形的是()A.B. C.D.3.函数x=2中,自变量x的取值范围是()y-A.x>2 B.x≠2 C.x≤2 D.x≠04.下列不等式变形正确的是()A.由a>b,得a-2<b-2 B.由a>b得-2a<-2b C.由a>b得|a|>|b| D.由a>b得a2>b2 5.某厂生产上海世博会吉祥物“海宝”纪念章10万个,质检部门为检测这批纪念章质量的合格情况,从中随机抽查500个,合格499个。
2024年四川省遂宁市中考数学试卷(附答案)一、选择题(本大题共10个小题,每小题4分,共40分.在每个小题给出的四个选项中,只有一项是符合题目要求的)1.(4分)下列各数中,无理数是()A.﹣2B.C.D.0【分析】分别根据无理数的定义即可判定选择项.【解答】解:﹣2,,0是有理数,是无理数,故选:C.【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.2.(4分)古代中国诸多技艺均领先世界.榫卯结构就是其中之一,榫卯是在两个木构件上所采用的一种凹凸结合的连接方式.凸出部分叫榫(或榫头),凹进部分叫卯(或榫眼、榫槽),榫和卯咬合,起到连接作用.如图是某个部件“榫”的实物图,它的主视图是()A.B.C.D.【分析】从正面看到的平面图形是主视图,根据主视图的含义可得答案.【解答】解:如图所示的几何体的主视图如下:.故选:A.【点评】此题主要考查了简单组合体的三视图;用到的知识点为:主视图,左视图,俯视图分别是从物体的正面,左面,上面看得到的图形.3.(4分)中国某汽车公司坚持“技术为王,创新为本”的发展理念,凭借研发实力和创新的发展模式在电池、电子、乘用车、商用车和轨道交通等多个领域发挥着举足轻重的作用.2024年第一季度,该公司以62万辆的销售成绩稳居新能源汽车销量榜榜首,市场占有率高达19.4%.将销售数据用科学记数法表示为()A.0.62×106B.6.2×106C.6.2×105D.62×105【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n是负整数.【解答】解:62万=620000=6.2×105.故选:C.【点评】本题主要考查了科学记数法—表示较大的数,熟练掌握科学记数法的表示方法是解题的关键.4.(4分)下列运算结果正确的是()A.3a﹣2a=1B.a2•a3=a6C.(﹣a)4=﹣a4D.(a+3)(a﹣3)=a2﹣9【分析】根据公式化简代数式即可.【解答】解:3a﹣2a=a,故A选项错误;a2•a3=a5,故B选项错误;(﹣a)4=a4,故C选项错误;(a+3)(a﹣3)=a2﹣9,故D选项正确;故选:D.【点评】本题考查了代数式的化简,关键是要掌握平方差公式,同底数幂的乘法.5.(4分)不等式组的解集在数轴上表示为()A.B.C.D.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:由3x﹣2<2x+1,得x<3,所以不等式组的解集在数轴上表示为:.故选:B.【点评】本题考查不等式组的解法和在数轴上的表示法,如果是表示大于或小于号的点要用空心,如果是表示大于等于或小于等于号的点用实心.6.(4分)佩佩在“黄娥古镇”研学时学习扎染技术,得到一个内角和为1080°的正多边形图案,这个正多边形的每个外角为()A.36°B.40°C.45°D.60°【分析】设这个正多边形的边数为n,利用多边形的内角和公式求得n的值,再利用多边形的外角和列式计算即可.【解答】解:设这个正多边形的边数为n,由题意得:(n﹣2)•180°=1080°,解得:n=8,则360°÷8=45°,即这个正多边形的每个外角为45°,故选:C.【点评】本题考查多边形的内角和及外角和,结合已知条件求得正多边形的边数是解题的关键.7.(4分)分式方程=1﹣的解为正数,则m的取值范围()A.m>﹣3B.m>﹣3且m≠﹣2C.m<3D.m<3且m≠﹣2【分析】分式方程去分母化为整式方程,表示出方程的解,由分式方程的解为正数求出m的范围即可.【解答】解:去分母得:2=x﹣1﹣m,解得:x=m+3,由方程的解为正数,得到m+3>0,且m+3≠1,则m的范围为m>﹣3且m≠﹣2.故选:B.【点评】本题考查了根据分式方程的解,求参数的取值范围,找出x的取值范围是本题的关键.8.(4分)工人师傅在检查排污管道时发现淤泥堆积.如图所示,排污管道的横截面是直径为2米的圆,为预估淤泥量,测得淤泥横截面(图中阴影部分)宽AB 为1米,请计算出淤泥横截面的面积()A .B .C .D .【分析】证明△OAB 是等边三角形,根据S 阴=S 扇形OAB ﹣S △OAB ,求解即可.【解答】解:如图,由题意OA =OB =1,AB =1,∴OA =OB =AB ,∴△OAB 是等边三角形,∴S 阴=S 扇形OAB ﹣S △OAB =﹣×12=﹣.故选:A .【点评】本题考查扇形的面积,等边三角形的判定等知识,解题的关键是理解题意,灵活运用所学知识解决问题.9.(4分)如图1,△ABC 与△A 1B 1C 1满足∠A =∠A 1,AC =A 1C 1,BC =B 1C 1,∠C ≠∠C 1,我们称这样的两个三角形为“伪全等三角形”如图2,在△ABC 中,AB =AC ,点D ,E 在线段BC 上,且BE =CD ,则图中共有“伪全等三角形”()A .1对B .2对C .3对D .4对【分析】根据所给“伪全等三角形”的定义,找出图2中的“伪全等三角形”即可.【解答】解:∵AB=AC,∴∠B=∠C.在△ABE和△ACD中,,∴△ABE≌△ACD(SAS),∴AD=AE.∵AB=AB,∠B=∠B,AD=AE,∠BAD≠∠BAE,∴△ABD和△ABE是一对“伪全等三角形”.同理可得,△ABD和△ACD是一对“伪全等三角形”.△ACD和△ACE是一对“伪全等三角形”.△ABE和△ACE是一对“伪全等三角形”.所以图中的“伪全等三角形”共有4对.故选:D.【点评】本题考查全等三角形的判定、全等三角形的性质及等腰三角形的性质,熟知三角形全等的判定与性质及理解“伪全等三角形”的定义是解题的关键.10.(4分)如图,已知抛物线y=ax2+bx+c(a、b、c为常数,且a≠0)的对称轴为直线x=﹣1,且该抛物线与x轴交于点A(1,0),与y轴的交点B在(0,﹣2),(0,﹣3)之间(不含端点),则下列结论正确的有多少个()①abc>0;②9a﹣3b+c>0;③<a<1;④若方程ax2+bx+c=x+1两根为m,n(m<n),则﹣3<m<1<n.A.1B.2C.3D.4【分析】根据二次函数图象的开口方向、对称轴位置、与x轴的交点坐标、根与系数的关系等知识,逐个判断即可.【解答】解:∵抛物线开口向上,∴a>0,∵对称轴为直线x=﹣1<0,a、b同号,∴b>0,∵与y轴的交点B在(0,﹣2)和(0,﹣3)之间,∴﹣3<c<﹣2<0,∴abc<0,故①不正确;∵对称轴为直线x=﹣1,且该抛物线与x轴交于点A(1,0),∴与x轴交于另一点(﹣3,0),∵x=﹣3,y=9a﹣3b+c=0,故②不正确;由题意可得,方程ax2+bx+c=0的两个根为x1=1,x2=﹣3,又∵x1•x2=,即c=﹣3a,∵﹣3<c<﹣2,∴﹣3<﹣3a<﹣2,因此<a<1,故③正确;若方程ax2+bx+c=x+1两根为m,n(m<n),则直线y=x+1与抛物线的交点的横坐标为m,n,∵直线y=x+1过一、二、三象限,且过点(﹣1,0),∴直线y=x+1与抛物线的交点在第一、第三象限,由图象可知﹣3<m<1<n.故④正确;综上所述,正确的结论有③④,故选:B.【点评】本题考查二次函数的图象与系数的关系,根与系数的关系,抛物线与x轴的交点,掌握二次函数与一元二次方程的关系,是正确判断的前提.二、填空题(本大题共5个小题,每小题4分,共20分)11.(4分)分解因式:ab+4a=a(b+4).【分析】提取a进行化简.【解答】解:ab+4a=a(b+4),故答案为:a(b+4).【点评】本题考查了因式分解,重要的是找到公因式.12.(4分)反比例函数y=的图象在第一、三象限,则点(k,﹣3)在第四象限.【分析】根据所给反比例函数图象在第一、三象限,得出k的取值范围,进而可解决问题.【解答】解:因为反比例函数y=的图象在第一、三象限,所以k﹣1>0,解得k>1,所以点(k,﹣3)在第四象限.故答案为:四.【点评】本题考查反比例函数的性质及反比例函数的图象,熟知反比例函数的图象和性质及每个象限内点的坐标特征是解题的关键.13.(4分)体育老师要在甲和乙两人中选择1人参加篮球投篮大赛,下表是两人5次训练成绩,从稳定的角度考虑,老师应该选甲参加比赛.甲88798乙69799【分析】根据平均数的计算公式算出甲和乙的平均数,再根据方差公式算出甲和乙的方差,然后根据方差的意义即可得出答案.【解答】解:甲的平均数是:=8,甲的方差是:S2=×[3×(8﹣8)2+(7﹣8)2+(9﹣8)2]=0.4,乙的平均数是:=8,乙的方差是:S2=×[3×(9﹣8)2+(7﹣8)2+(6﹣8)2]=1.6,∵S甲2<S乙2,∴老师应该选甲.故答案为:甲.【点评】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.14.(4分)在等边△ABC三边上分别取点D、E、F,使得AD=BE=CF,连结三点得到△DEF,易得△ADF≌△BED≌△CFE,设S△ABC=1,则S△DEF=1﹣3S△ADF.如图①当=时,S△DEF=1﹣3×=;如图②当=时,S△DEF=1﹣3×=;如图③当=时,S△DEF=1﹣3×=;…直接写出,当=时,S△DEF=.【分析】探究规律,利用规律解决问题.【解答】解:如图①当=时,S△DEF=1﹣3×=1﹣3×=;=1﹣3×=1﹣3×=;如图②当=时,S△DEF=1﹣3×=1﹣3×=;如图③当=时,S△DEF…=1﹣3×;当=时,S△DEF=1﹣3×=.故当=时,S△DEF【点评】本题考查全等三角形的判定和性质,等边三角形的性质,规律型﹣图形变化等知识,解题的关键是学会探究规律,利用规律解决问题.15.(4分)如图,在正方形纸片ABCD中,E是AB边的中点,将正方形纸片沿EC折叠,点B落在点P 处,延长CP交AD于点Q,连结AP并延长交CD于点F.给出以下结论:①△AEP为等腰三角形;②F为CD的中点;②AP:PF=2:3;④cos∠DCQ=.其中正确结论是①②③(填序号).【分析】利用翻折的性质,证明EA=EP,即可判断①;利用AAS证明△BEC≌△DFA,即可判断②;过点P作PM⊥BC于点M,过点E作EN⊥AF于点N,设AE=BE=EP=DF=CF=a,然后求出AP,PF,再计算即可判断③;证明出AQ=PQ,再在Rt△CDQ中,利用勾股定理求出AQ,DQ,根据三角函数定义即可判断④.【解答】解:∵E是AB边的中点,∴EA=EB,∵将正方形纸片沿EC折叠,点B落在点P处,∴EB=EP,∴EA=EP,即△AEP为等腰三角形,故①正确;∵EA=EP,∴∠EAP=∠EPA,∵将正方形纸片沿EC折叠,点B落在点P处,∴∠BEC=∠PEC,∵∠BEP=∠EAP+∠EPA,∴∠BEC=∠EAP,∵四边形ABCD是正方形,∴∠CBE=∠ADF,AB∥CD,BC=AD,∴∠EAP=∠DFA,∴∠BEC=∠DFA,∴△BEC≌△DFA(AAS),∴DF=BE,∴DF=AB=CD,即F为CD的中点,故②正确;过点P作PM⊥BC于点M,过点E作EN⊥AF于点N,∵∠BEC=∠EAP,∴EC∥AF,∴EN=PM,设AE=BE=EP=DF=CF=a,则BC=AD=PC=2a,∴EC=AF==a,=EC•PM=PE•PC,∵S△PEC∴PM===,∴EN=,∴PN===,∴AP=2PN=,PF=AF﹣AP==,∴AP:PF=:=2:3,故③正确;∵∠EAP=∠EPA,∠EAD=∠EPQ=90°,∴∠QAP=∠QPA,∴AQ=PQ,∵正方形的边长为2a,∴AD=CD=CP=2a,QD=2a﹣AQ,CQ=2a+PQ=2a+AQ,在Rt△CDQ中,由勾股定理,得CD2+QD2=CQ2,即(2a)2+(2a﹣AQ)2=(2a+AQ)2,解得AQ=a,∴DQ=2a﹣a=a,∴CQ=2a+a=a,∴cos∠DCQ===.故④不正确.故答案为:①②③.【点评】本题考查翻折变换,轴对称的性质,正方形的性质,等腰三角形的判定和性质,勾股定理,全等三角形的判定和性质,三角函数,能够熟练运用相关图形的判定和性质是解题的关键.三、解答题(本大题共10个小题,共90分.解答应写出必要的文字说明、证明过程或演算步骤)16.(7分)计算:sin45°+|﹣1|++()﹣1.【分析】根据实数的运算、负整数指数幂法则、特殊角的三角函数值进行解题即可.【解答】解:原式=+1﹣+2+2021=2024.【点评】本题考查实数的运算、负整数指数幂、特殊角的三角函数值,熟练掌握运算法则是解题的关键.17.(7分)先化简:(1﹣)÷,再从1,2,3中选择一个合适的数作为x的值代入求值.【分析】先化简分式,再将x=3代入求出结果.【解答】解:(1﹣)÷===x﹣1,∵x﹣1≠0,x﹣2≠0,∴x≠1,x≠2,当x=3时,原式=2.【点评】本题考查了分式的化简,要注意分母不为0.18.(8分)康康在学习了矩形定义及判定定理1后,继续探究其它判定定理.(1)实践与操作①任意作两条相交的直线,交点记为O;②以点O为圆心,适当长为半径画弧,在两条直线上分别截取相等的四条线段OA、OB、OC、OD;③顺次连结所得的四点得到四边形ABCD.于是可以直接判定四边形ABCD是平行四边形,则该则定定理是:对角线互相平分的四边形是平行四边形.(2)猜想与证明通过和同伴交流,他们一致认为四边形ABCD是矩形,于是猜想得到了矩形的另外一种判定方法:对角线相等的平行四边形是矩形.并写出了以下已知、求证,请你完成证明过程.已知:如图,四边形ABCD是平行四边形,AC=BD.求证:四边形ABCD是矩形.【分析】(1)由题意可知,OA=OC,OB=OD,故根据“对角线互相平分的四边形是平行四边形”可以判定四边形ABCD是平行四边形;(2)由平行四边形的性质,根据SSS证明△BAD≌△ABC,从而证明∠BAD=∠ABC,根据平行线的性质可以证明∠BAD=∠ABC=90°,进而根据“有一个角是直角的平行四边形是矩形”证明四边形ABCD是矩形.【解答】(1)解:∵OA=OC,OB=OD,∴四边形ABCD的对角线互相平分,∴四边形ABCD是平行四边形(对角线互相平分的四边形是平行四边形).故答案为:对角线互相平分的四边形是平行四边形.(2)证明:∵四边形ABCD是平行四边形,∴AD=BC,∴在△BAD和△ABC中,,∴△BAD≌△ABC(SSS),∴∠BAD=∠ABC,∵AD∥BC,∴∠BAD+∠ABC=180°,∴∠BAD=∠ABC=90°,∴四边形ABCD是矩形(有一个角是直角的平行四边形是矩形).【点评】本题考查平行四边形及矩形的判定,熟练掌握并灵活运用其判定定理是解题的关键.19.(8分)小明的书桌上有一个L型台灯,灯柱AB高40cm,他发现当灯带BC与水平线BM夹角为9°时(图1),灯带的直射宽DE(BD⊥BC,CE⊥BC)为35cm,但此时灯的直射宽度不够,当他把灯带调整到与水平线夹角为30°时(图2),直射宽度刚好合适,求此时台灯最高点C到桌面的距离.(结果保留1位小数)(sin9°≈0.16,cos9°≈0.99,tan9°≈0.16)【分析】如图2中,过点C作CK⊥AE′于点K,交BM于点J.解直角三角形求出CJ,可得结论.【解答】解:如图2中,过点C作CK⊥AE′于点K,交BM于点J.如图1中,∵DB⊥BC,EC⊥BC,∴BD∥EC,∵BM∥DE,∴四边形BDEM是平行四边形,∴BM=DE=35cm,∴BC=BM•cos9°=35×0.99≈34.65(cm),如图2中,∵BM∥AE′,CK⊥AE′,∴CJ⊥BM,∴CJ=BC•sin30°≈17.32(cm),∵AB⊥AE′,∴BA=JK=40cm,∴CK=CJ+JK=17.32+40≈67.3(cm).答:台灯最高点C到桌面的距离约为67.3cm.【点评】本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.20.(9分)某酒店有A、B两种客房,其中A种24间,B种20间.若全部入住,一天营业额为7200元;若A、B两种客房均有10间入住,一天营业额为3200元.(1)求A、B两种客房每间定价分别是多少元?(2)酒店对A种客房调研发现:如果客房不调价,房间可全部住满;如果每个房间定价每增加10元,就会有一个房间空闲;当A种客房每间定价为多少元时,A种客房一天的营业额W最大,最大营业额为多少元?【分析】(1)依据题意,设A种客房每间定价是x元,B种客房每间定价是y元,进而建立方程组,计算即可得解;(2)依据题意,设A种客房每间定价为m元,从而可得W=m(24﹣)=﹣(m﹣220)2+4840,再结合二次函数的性质即可判断得解.【解答】解:(1)设A种客房每间定价是x元,B种客房每间定价是y元,∴.∴.答:A、B两种客房每间定价分别是200元、120元.(2)由题意,设A种客房每间定价为m元,∴W=m(24﹣)=﹣(m﹣220)2+4840.∵﹣<0,∴当m=220时,W取最大值,最大值为4840.答:当A种客房每间定价为220元时,A种客房一天的营业额W最大,最大营业额为4840元.【点评】本题主要考查了二次函数的应用和二元一次方程组的应用,解题时要熟练掌握并能灵活运用二次函数的性质是关键.21.(9分)已知关于x的一元二次方程x2﹣(m+2)x+m﹣1=0.(1)求证:无论m取何值,方程都有两个不相等的实数根;(2)如果方程的两个实数根为x1,x2,且+﹣x1x2=9,求m的值.【分析】(1)先确定a、b、c,再计算根的判别式,利用根的判别式得结论;(2)先利用根与系数的关系求出两根的和与积,再代入已知中得关于m的方程,求解即可.【解答】解:(1)x2﹣(m+2)x+m﹣1=0,这里a=1,b=﹣(m+2),c=m﹣1,Δ=b2﹣4ac=[﹣(m+2)]2﹣4×1×(m﹣1)=m2+4m+4﹣4m+4=m2+8.∵m2≥0,∴△>0.∴无论m取何值,方程都有两个不相等的实数根;(2)设方程x2﹣(m+2)x+m﹣1=0的两个实数根为x1,x2,则x1+x2=m+2,x1x2=m﹣1.∵+﹣x1x2=9,即(x1+x2)2﹣3x1x2=9,∴(m+2)2﹣3(m﹣1)=9.整理,得m2+m﹣2=0.∴(m+2)(m﹣1)=0.解得m1=﹣2,m2=1.∴m的值为﹣2或1.【点评】本题考查了一元二次方程,掌握根的判别式、根与系数的关系及完全平方公式的变形等知识点是解决本题的关键.22.(10分)遂宁市作为全国旅游城市,有众多著名景点,为了解“五一”假期同学们的出游情况,某实践探究小组对部分同学假期旅游地做了调查,以下是调查报告的部分呢,请完善报告:××小组关于××学校学生“五一”出游情况调查报告数据收集调查方式抽样调查调查对象××学校学生数据的整理与描述景点A:中国死海B:龙风古镇C:灵泉风景区D:金华山E:未出游F:其他数据分析及运用(1)本次被抽样调查的学生总人数为100,扇形统计图中,m=10,“B:龙风古镇”对应圆心角的度数是72°;(2)请补全条形统计图;(3)该学校总人数为1800人,请你估计该学校学生“五一”假期未出游的人数;(4)未出游中的甲、乙两位同学计划下次假期从A、B、C、D四个景点中任选一个景点旅游,请用树状图或列表的方法求出他们选择同一景点的概率.【分析】(1)将出游景点F的人数除以其所占百分比,即可得到本次被抽样调查的学生总人数;求出出游景点C的人数,再除以总人数,乘以100,即可求出m的值;将出游景点B的人数除以总人数,再乘以360°,即可得到“B:龙风古镇”对应圆心角的度数;(2)求出出游景点C的人数,再补全条形统计图即可;(3)将未出游的人数出游总人数,再乘以1800,即可估计该学校学生“五一”假期未出游的人数;(4)用树状图或列表的方法即可求出他们选择同一景点的概率.【解答】解:(1)∵30÷30%=100(人),∴本次被抽样调查的学生总人数为100人;∵出游C景点的人数为:100﹣(12+20+20+8+30)=10(人),∴m=×100=10;∵×360°=72°,∴“B:龙风古镇”对应圆心角的度数是72°,故答案为:100,10,72°;(2)由(1)知:出游景点C的人数为10人,补全条形统计图如下:(3)×1800=144(人),答:估计该学校学生“五一”假期未出游的有144人;(4)画树状图如下:一共有16种等可能的结果,其中两人选择同一景点有4种可能的结果,∴P(选择同一景点)==.【点评】本题考查条形统计图,扇形统计图,用样本估计总体,用列表法和树状图法求等可能事件的概率,能从统计图种获取数据,掌握用列表法和树状图法求等可能事件的概率的方法是解题的关键.23.(10分)如图,一次函数y1=kx+b(k≠0)的图象与反比例函数y2=(m≠0)的图象相交于A(1,3),B(n,﹣1)两点.(1)求一次函数和反比例函数的表达式;(2)根据图象,直接写出y1>y2时,x的取值范围;(3)过点B作直线OB,交反比例函数图象于点C,连结AC,求△ABC的面积.【分析】(1)先将点A坐标代入反比例函数解析式,求出m,再求出点B坐标,最后用待定系数法求出一次函数解析式即可.(2)利用数形结合的数学思想即可解决问题.(3)连接AO,根据反比例函数与正比例函数的对称性,将△ABC的面积转化为△AOB面积的2倍即可解决问题.【解答】解:(1)将点A坐标代入反比例函数解析式得,m=1×3=3,所以反比例函数解析式为y=.将点B坐标代入反比例函数解析式得,n=﹣3,所以点B的坐标为(﹣3,﹣1).将A,B两点坐标代入一次函数解析式得,,解得,所以一次函数解析式为y=x+2.(2)由函数图象可知,当﹣3<x<0或x>1时,一次函数的图象在反比例函数图象的上方,即y1>y2,所以当y1>y2,x的取值范围是:﹣3<x<0或x>1.(3)连接AO,令直线AB与x轴的交点为M,将y=0代入y=x+2得,x=﹣2,所以点M的坐标为(﹣2,0),=S△AOM+S△BOM=.所以S△AOB因为正比例函数图象与反比例函数图象都是中心对称图形,且坐标原点是对称中心,所以点B和点C关于点O成中心对称,所以BO=CO,=2S△AOB=8.所以S△ABC【点评】本题考查反比例函数与一次函数的交点问题,熟知反比例函数及一次函数的图象和性质是解题的关键.24.(10分)如图,AB是⊙O的直径,AC是一条弦,点D是的中点,DN⊥AB于点E,交AC于点F,连结DB交AC于点G.(1)求证:AF=DF;(2)延长GD至点M,使DM=DG,连结AM.①求证:AM是⊙O的切线;②若DG=6,DF=5,求⊙O的半径.【分析】(1)连接AD,设OD交AC于点I,由OD=OA,得∠ODA=∠OAD,由点D是的中点,得OD⊥AC于点I,可证明∠ODF=∠OAF=90°﹣∠AOD,进而推导出∠FDA=∠FAD,则AF=DF;(2)①先证明AD垂直平分GM,则AM=AG,所以∠MAD=∠CAD=∠B,则∠OAM=∠BAD+∠MAD=∠BAD+∠B=90°,即可证明AM是⊙O的切线;②可证明∠FDG=∠FGD,则GF=DF=AF=5,所以AG=2AF=10,求得AD==8,==cos∠DAG,求得AI==,则DI=,由勾股定理得(OA﹣)2+()2=OA2,求得OA=,则⊙O的半径长为.【解答】(1)证明:连接AD,设OD交AC于点I,∵OD=OA,∴∠ODA=∠OAD,∵点D是的中点,∴OD⊥AC于点I,∵DN⊥AB于点E,∴∠OED=∠OIA=90°,∴∠ODF=∠OAF=90°﹣∠AOD,∴∠ODA﹣∠ODF=∠OAD﹣∠OAF,∴∠FDA=∠FAD,∴AF=DF.(2)①证明:∵AB是⊙O的直径,DM=DG,∴∠ADB=90°,∴AD垂直平分GM,∴AM=AG,∴∠MAD=∠CAD,∵=,∴∠B=∠CAD,∴∠MAD=∠B,∴∠OAM=∠BAD+∠MAD=∠BAD+∠B=90°,∵OA是⊙O的半径,且AM⊥OA,∴AM是⊙O的切线.②解:∵∠FDG+∠FDA=90°,∠FGD+∠FAD=90°,且∠FDA=∠FAD,∴∠FDG=∠FGD,∴GF=DF=AF=5,∴AG=2AF=10,∵DG=6,∴AD===8,∵∠AID=∠ADG=90°,∴==cos∠DAG,∴AI===,∴DI===,∵∠OIA=90°,OI=OD﹣=OA﹣,∴OI2+AI2=OA2,∴(OA﹣)2+()2=OA2,解得OA=,∴⊙O的半径长为.【点评】此题重点考查等腰三角形的性质、垂径定理、圆周角定理、切线的判定定理、勾股定理、锐角三角函数与解直角三角形等知识,正确地作出辅助线是解题的关键.25.(12分)二次函数y=ax2+bx+c(a≠0)的图象与x轴分别交于点A(﹣1,0),B(3,0),与y轴交于点C(0,﹣3),P、Q为抛物线上的两点.(1)求二次函数的表达式;(2)当P、C两点关于抛物线对称轴对称,△OPQ是以点P为直角顶点的直角三角形时,求点Q的坐标;(3)设P的横坐标为m,Q的横坐标为m+1,试探究:△OPQ的面积S是否存在最小值,若存在,请求出最小值,若不存在,请说明理由.【分析】(1)由待定系数法即可求解;(2)△OPQ是以点P为直角顶点的直角三角形时,则点P、C关于抛物线对称轴对称,设Q(m,m2﹣2m﹣3),运用勾股定理代入可列式子,解出即可求解;﹣S△OHQ=OH×(y Q﹣y P),即可求解.(3)由S=S△OHP【解答】解:(1)由题意得:y=a(x+1)(x﹣3)=a(x2﹣2x﹣3),则﹣3a=﹣3,则抛物线的表达式为:y=x2﹣2x﹣3;(2)△OPQ是以点P为直角顶点的直角三角形时,抛物线的对称轴为直线x=1,则点P、C关于抛物线对称轴对称,则点P(2,﹣3),设Q(m,m2﹣2m﹣3),∵∠OPQ=90°,∴OP2+PQ2=OQ2,∴[(0﹣2)2+(0+3)2]+[(2﹣m)2+(﹣3﹣m2+2m+3)2]=[m2+(m2﹣2m﹣3)2]整理得:3m2﹣8m+4=0,解得:m1=,m2=2(舍去),∴m=,∴Q(,﹣);(3)存在,理由:设点P(m,m2﹣2m﹣3),则点Q(m+1,(m+1)2﹣2(m+1)﹣3),设直线PQ交x轴于点H,由点P、Q的坐标得,直线PQ的表达式为:y=(2m﹣1)(x﹣m)+m2﹣2m﹣3,令y=0,则x=+m,则OH=+m,﹣S△OHQ=OH×(y Q﹣y P)=×(+m)[(m+1)2﹣2(m+1)﹣3﹣m2+2m+3]则S=S△OHP=(m2+m+3)=(m+)2+≥,即S存在最小值为.。
四川省遂宁市射洪县香山镇初级中学2012届九年级上学期期中考试数学试题(无答案)( 试卷总分:150分 考试时间:120分钟 )题 号 一 二 三 四 五 总 分 得 分一、选择题:(每小题4分,共60分)1、要使二次根式x 21-有意义,字母的取值范围是( )。
(A)x ≥21 (B)x ≤21 (C) x>21 (D)x<212、下列二次根式中,最简二次根式是( )。
(A)22x (B)5.0 (C)22y x + (D)x13、若032=++-b a ,则2009)(b a +的值是( )。
(A)0 (B)1 (C)2009 (D)-1 4、下列方程是关于x 的一元二次方程的是( )。
A 、20ax bx c ++= B 、220a x bx c ++=C 、20aX bx c ++=D 、22(1)0a x bx c +++=5、方程013)2(4)3(=-+-+-mx xm m m 是关于x 的一元二次方程,则m =( )(A)1 (B)1或2 (C)2 (D) -2或1 6、方程x x 22=的根是( )。
(A)x =2 (B) x =0 (C) x =0或x =2 (D) x =0或x =-2 7、如右图1,每个大正方形均由边长为1的A BED F CGABCP ·小正方形组成,则下列图中的三角形 (阴影部分)与△ABC 相似的是( )。
图11234(A) 1 (B) 2 (C) 3 (D)48、已知关于x 的方程04222=--mx x 的两根为x 1、x 2,且21121=+x x , 那么实数m 的值等于( )。
(A) 4 (B) -4 (C) 8 (D) -8 9、如图2,P 是Rt △ABC 斜边AB 上任意 一点(A 、B 两点除外),过点P 作一直线, 使截得的三角形与Rt △ABC 相似,这样的直线可以作( )。
图2(A) 1条 (B) 2条 (C) 3条 (D) 4条10、用配方法解方程04312=--x x ,配方后得( )。
四川省遂宁市xx年中考数学真题试题一、选择题〔每题只有一个正确选项,此题共10小题,每题4分,共40分〕1.〔4.00分〕﹣2×〔﹣5〕的值是〔〕A.﹣7 B.7 C.﹣10 D.102.〔4.00分〕以下等式成立的是〔〕A.x2+3x2=3x4×10﹣3C.〔a3b2〕3=a9b6D.〔﹣a+b〕〔﹣a﹣b〕=b2﹣a23.〔4.00分〕二元一次方程组的解是〔〕A.B.C.D.4.〔4.00分〕以下说法正确的选项是〔〕A.有两条边和一个角对应相等的两个三角形全等B.正方形既是轴对称图形又是中心对称图形C.矩形的对角线互相垂直平分D.六边形的内角和是540°5.〔4.00分〕如图,5个完全一样的小正方体组成了一个几何体,那么这个几何体的主视图是〔〕A.B.C.D.6.〔4.00分〕圆锥的母线长为6,将其侧面沿着一条母线展开后所得扇形的圆心角为120°,那么该扇形的面积是〔〕A.4πB.8πC.12π D.16π7.〔4.00分〕一次函数y1=kx+b〔k≠0〕与反比例函数y2=〔m≠0〕的图象如下列图,那么当y1>y2时,自变量x满足的条件是〔〕A.1<x<3 B.1≤x≤3 C.x>1 D.x<38.〔4.00分〕如图,在⊙O中,AE是直径,半径OC垂直于弦AB于D,连接BE,假设AB=2,CD=1,那么BE的长是〔〕A.5 B.6 C.7 D.89.〔4.00分〕二次函数y=ax2+bx+c〔a≠0〕的图象如下列图,那么以下结论同时成立的是〔〕A.B.C.D.10.〔4.00分〕如图,在正方形ABCD中,AD=4,E,F分别是CD,BC上的一点,且∠EAF=45°,EC=1,将△ADE绕点A沿顺时针方向旋转90°后与△ABG重合,连接EF,过点B作BM∥AG,交AF于点M,那么以下结论:①DE+BF=EF,②BF=,③AF=,④S△MBF=中正确的选项是〔〕A.①②③B.②③④C.①③④D.①②④二、细心填一填〔本大题共5小题,每题4分,总分值20分,请把答案填在答題卷相应题号的横线上〕11.〔4.00分〕分解因式3a2﹣3b2= .12.〔4.00分〕一组数据:12,10,8,15,6,8.那么这组数据的中位数是.13.〔4.00分〕反比例函数y=〔k≠0〕的图象过点〔﹣1,2〕,那么当x>0时,y随x的增大而.14.〔4.00分〕A,B两市相距200千米,甲车从A市到B市,乙车从B市到A市,两车同时出发,甲车速度比乙车速度快15千米/小时,且甲车比乙车早半小时到达目的地.假设设乙车的速度是x千米/小时,那么根据题意,可列方程.15.〔4.00分〕如图,抛物线y=ax2﹣4x+c〔a≠0〕与反比例函数y=的图象相交于点B,且B点的横坐标为3,抛物线与y轴交于点C〔0,6〕,A是抛物线y=ax2﹣4x+c的顶点,P 点是x轴上一动点,当PA+PB最小时,P点的坐标为.三、计算题〔本大题共15分,请认真读题〕16.〔7.00分〕计算:〔〕﹣1+〔﹣1〕0+2sin45°+|﹣2|.17.〔8.00分〕先化简,再求值•+.〔其中x=1,y=2〕四、解答题〔此题共75分,请认真读题〕18.〔8.00分〕如图,在▱ABCD中,E,F分别是AD,BC上的点,且DE=BF,AC⊥EF.求证:四边形AECF是菱形.19.〔8.00分〕关于x的一元二次方程x2﹣2x+a=0的两实数根x1,x2满足x1x2+x1+x2>0,求a的取值范围.20.〔9.00分〕如下列图,在平面直角坐标系中,一次函数y=kx+b〔k≠0〕与反比例函数y=〔m≠0〕的图象交于第二、四象限A、B两点,过点A作AD⊥x轴于D,AD=4,sin∠AOD=,且点B的坐标为〔n,﹣2〕.〔1〕求一次函数与反比例函效的解析式;〔2〕E是y轴上一点,且△AOE是等腰三角形,请直接写出所有符合条件的E点坐标.21.〔10.00分〕如图,过⊙O外一点P作⊙O的切线PA切⊙O于点A,连接PO并延长,与⊙O交于C、D两点,M是半圆CD的中点,连接AM交CD于点N,连接AC、CM.〔1〕求证:CM2=MN•MA;〔2〕假设∠P=30°,PC=2,求CM的长.22.〔8.00分〕请阅读以下材料:向量=〔x1,x2〕,=〔x2,y2〕满足以下条件:①||=,=②⊗=||×||cosα〔角α的取值范围是0°<α<90°〕;③⊗=x1x2+y1y2利用上述所给条件解答问题:如:=〔1,〕,=〔﹣,3〕,求角α的大小;解:∵||===2,====2∴⊗=||×||cosα=2×2cosα=4cosα又∵⊗=x1x2+y1y2=l×〔﹣〕+×3=2∴4cosα=2∴cosα=,∴α=60°∴角α的值为60°.请仿照以上解答过程,完成以下问题:=〔1,0〕,=〔1,﹣1〕,求角α的大小.23.〔10.00分〕学习习近平总书记关于生态文明建立重要井话,结实树立“绿水青山就是金山银山〞的科学观,让环保理念深入到学校,某校张教师为了了解本班学生3月植树成活情况,对本班全体学生进展了调查,并将调查结果分为了三类:A好,B:中,C:差.请根据图中信息,解答以下问题:〔1〕求全班学生总人数;〔2〕将上面的条形统计图与扇形统计图补充完整;〔3〕张教师在班上随机抽取了4名学生,其中A类1人,B类2人,C类1人,假设再从这4人中随加抽取2人,请用画对状图或列表法求出全是B类学生的概率.0分〕如图,某测量小组为了测量山BC的高度,在地面A处测得山顶B的仰角45°,然后沿着坡度为=1:的坡面AD走了200米到达D处,此时在D处测得山顶B的仰角为60°,求山高BC〔结果保存根号〕.25.〔12.00分〕如图,抛物线y=ax2+x+4的对称轴是直线x=3,且与x轴相交于A,B两点〔B点在A点右侧〕与y轴交于C点.〔1〕求抛物线的解折式和A、B两点的坐标;〔2〕假设点P是抛物线上B、C两点之间的一个动点〔不与B、C重合〕,那么是否存在一点P,使△PBC的面积最大.假设存在,请求出△PBC的最大面积;假设不存在,试说明理由;〔3〕假设M是抛物线上任意一点,过点M作y轴的平行线,交直线BC于点N,当MN=3时,求M点的坐标.参考答案与试题解析一、选择题〔每题只有一个正确选项,此题共10小题,每题4分,共40分〕1.〔4.00分〕﹣2×〔﹣5〕的值是〔〕A.﹣7 B.7 C.﹣10 D.10【解答】解:〔﹣2〕×〔﹣5〕=+2×5=10,应选:D.2.〔4.00分〕以下等式成立的是〔〕A.x2+3x2=3x4×10﹣3C.〔a3b2〕3=a9b6D.〔﹣a+b〕〔﹣a﹣b〕=b2﹣a2【解答】解:A、x2+3x2=3x2,故此选项错误;×10﹣4,故此选项错误;C、〔a3b2〕3=a9b6,正确;D、〔﹣a+b〕〔﹣a﹣b〕=a2﹣b2,故此选项错误;应选:C.3.〔4.00分〕二元一次方程组的解是〔〕A.B.C.D.【解答】解:,①+②得:3x=6,解得:x=2,把x=2代入①得:y=0,那么方程组的解为,应选:B.4.〔4.00分〕以下说法正确的选项是〔〕A.有两条边和一个角对应相等的两个三角形全等B.正方形既是轴对称图形又是中心对称图形C.矩形的对角线互相垂直平分D.六边形的内角和是540°【解答】解:A、有两条边和一个角对应相等的两个三角形全等,错误,必须是两边及其夹角分别对应相等的两个三角形全等;B、正方形既是轴对称图形又是中心对称图形,正确;C、矩形的对角线相等且互相平分,故此选项错误;D、六边形的内角和是720°,故此选项错误.应选:B.5.〔4.00分〕如图,5个完全一样的小正方体组成了一个几何体,那么这个几何体的主视图是〔〕A.B.C.D.【解答】解:从正面看第一层是三个小正方形,第二层中间一个小正方形,.应选:D.6.〔4.00分〕圆锥的母线长为6,将其侧面沿着一条母线展开后所得扇形的圆心角为120°,那么该扇形的面积是〔〕A.4πB.8πC.12π D.16π【解答】解:该扇形的面积==12π.应选:C.7.〔4.00分〕一次函数y1=kx+b〔k≠0〕与反比例函数y2=〔m≠0〕的图象如下列图,那么当y1>y2时,自变量x满足的条件是〔〕A.1<x<3 B.1≤x≤3 C.x>1 D.x<3【解答】解:当1<x<3时,y1>y2.应选:A.8.〔4.00分〕如图,在⊙O中,AE是直径,半径OC垂直于弦AB于D,连接BE,假设AB=2,CD=1,那么BE的长是〔〕A.5 B.6 C.7 D.8【解答】解:∵半径OC垂直于弦AB,∴AD=DB=AB=,在Rt△AOD中,OA2=〔OC﹣CD〕2+AD2,即OA2=〔OA﹣1〕2+〔〕2,解得,OA=4∴OD=OC﹣CD=3,∵AO=OE,AD=DB,∴BE=2OD=6,应选:B.9.〔4.00分〕二次函数y=ax2+bx+c〔a≠0〕的图象如下列图,那么以下结论同时成立的是〔〕A.B.C.D.【解答】解:∵抛物线开口向上,∴a>0,∵抛物线的对称轴在直线x=1的右侧,∴x=﹣>1,∴b<0,b<﹣2a,即b+2a<0,∵抛物线与y轴交点在x轴下方,∴c<0,∴abc>0,∵抛物线与x轴有2个交点,∴△=b2﹣4ac>0,∵x=1时,y<0,∴a+b+c<0.应选:C.10.〔4.00分〕如图,在正方形ABCD中,AD=4,E,F分别是CD,BC上的一点,且∠EAF=45°,EC=1,将△ADE绕点A沿顺时针方向旋转90°后与△ABG重合,连接EF,过点B作BM∥AG,交AF于点M,那么以下结论:①DE+BF=EF,②BF=,③AF=,④S△MBF=中正确的选项是〔〕A.①②③B.②③④C.①③④D.①②④【解答】解:∵AG=AE,∠FAE=∠FAG=45°,AF=AF,∴△AFE≌△AFG,∴EF=FG,∵DE=BG,∴EF=FG=BG+FB=DE+BF,故①正确,∵BC=CD=AD=4,EC=1,∴DE=3,设BF=x,那么EF=x+3,CF=4﹣x,在Rt△ECF中,〔x+3〕2=〔4﹣x〕2+12,解得x=,∴BF=,AF==,故②正确,③错误,∵BM∥AG,∴△FBM∽△FGA,∴=〔〕2,∴S△FBM=,故④正确,应选:D.二、细心填一填〔本大题共5小题,每题4分,总分值20分,请把答案填在答題卷相应题号的横线上〕11.〔4.00分〕分解因式3a2﹣3b2= 3〔a+b〕〔a﹣b〕.【解答】解:3a2﹣3b2=3〔a2﹣b2〕=3〔a+b〕〔a﹣b〕.故答案是:3〔a+b〕〔a﹣b〕.12.〔4.00分〕一组数据:12,10,8,15,6,8.那么这组数据的中位数是9 .【解答】解:将数据从小到大重新排列为:6、8、8、10、12、15,所以这组数据的中位数为=9,故答案为:9.13.〔4.00分〕反比例函数y=〔k≠0〕的图象过点〔﹣1,2〕,那么当x>0时,y随x的增大而增大.【解答】解:把〔﹣1,2〕代入解析式y=,可得:k=﹣2,因为k=﹣2<0,所以当x>0时,y随x的增大而增大,故答案为:增大14.〔4.00分〕A,B两市相距200千米,甲车从A市到B市,乙车从B市到A市,两车同时出发,甲车速度比乙车速度快15千米/小时,且甲车比乙车早半小时到达目的地.假设设乙车的速度是x千米/小时,那么根据题意,可列方程﹣=.【解答】解:设乙车的速度是x千米/小时,那么根据题意,可列方程:﹣=.故答案为:﹣=.15.〔4.00分〕如图,抛物线y=ax2﹣4x+c〔a≠0〕与反比例函数y=的图象相交于点B,且B点的横坐标为3,抛物线与y轴交于点C〔0,6〕,A是抛物线y=ax2﹣4x+c的顶点,P 点是x轴上一动点,当P A+PB最小时,P点的坐标为〔,0〕.【解答】解:作点A关于x轴的对称点A′,连接A′B,那么A′B与x轴的交点即为所求,∵抛物线y=ax2﹣4x+c〔a≠0〕与反比例函数y=的图象相交于点B,且B点的横坐标为3,抛物线与y轴交于点C〔0,6〕,∴点B〔3,3〕,∴,解得,,∴y=x2﹣4x+6=〔x﹣2〕2+2,∴点A的坐标为〔2,2〕,∴点A′的坐标为〔2,﹣2〕,设过点A′〔2,﹣2〕和点B〔3,3〕的直线解析式为y=mx+n,,得,∴直线A′B的函数解析式为y=5x﹣12,令y=0,那么0=5x﹣12得x=,故答案为:〔,0〕.三、计算题〔本大题共15分,请认真读题〕16.〔7.00分〕计算:〔〕﹣1+〔﹣1〕0+2sin45°+|﹣2|.【解答】解:原式=3+1+2×+2﹣=4++2﹣=6.17.〔8.00分〕先化简,再求值•+.〔其中x=1,y=2〕【解答】解:当x=1,y=2时,原式=•+=+==﹣3四、解答题〔此题共75分,请认真读题〕18.〔8.00分〕如图,在▱ABCD中,E,F分别是AD,BC上的点,且DE=BF,AC⊥EF.求证:四边形AECF是菱形.【解答】证明:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∵DE=BF,∴AE=CF,∵AE∥CF,∴四边形AECF是平行四边形,∵AC⊥EF,∴四边形AECF是菱形.19.〔8.00分〕关于x的一元二次方程x2﹣2x+a=0的两实数根x1,x2满足x1x2+x1+x2>0,求a的取值范围.【解答】解:∵该一元二次方程有两个实数根,∴△=〔﹣2〕2﹣4×1×a=4﹣4a≥0,解得:a≤1,由韦达定理可得x1x2=a,x1+x2=2,∵x1x2+x1+x2>0,∴a+2>0,解得:a>﹣2,∴﹣2<a≤1.20.〔9.00分〕如下列图,在平面直角坐标系中,一次函数y=kx+b〔k≠0〕与反比例函数y=〔m≠0〕的图象交于第二、四象限A、B两点,过点A作AD⊥x轴于D,AD=4,sin∠AOD=,且点B的坐标为〔n,﹣2〕.〔1〕求一次函数与反比例函效的解析式;〔2〕E是y轴上一点,且△AOE是等腰三角形,请直接写出所有符合条件的E点坐标.【解答】解:〔1〕∵一次函数y=kx+b与反比例函数y=图象交于A与B,且AD⊥x轴,∴∠ADO=90°,在Rt△ADO中,AD=4,sin∠AOD=,∴=,即AO=5,根据勾股定理得:DO==3,∴A〔﹣3,4〕,代入反比例解析式得:m=﹣12,即y=﹣,把B坐标代入得:n=6,即B〔6,﹣2〕,代入一次函数解析式得:,解得:,即y=﹣x+2;〔2〕当OE3=OE2=AO=5,即E2〔0,﹣5〕,E3〔0,5〕;当OA=AE1=5时,得到OE1=2AD=8,即E1〔0,8〕;当AE4=OE4时,由A〔﹣3,4〕,O〔0,0〕,得到直线AO解析式为y=﹣x,中点坐标为〔﹣1.5,2〕,∴AO垂直平分线方程为y﹣2=〔x+〕,令x=0,得到y=,即E4〔0,〕,综上,当点E〔0,8〕或〔0,5〕或〔0,﹣5〕或〔0,〕时,△AOE是等腰三角形.21.〔10.00分〕如图,过⊙O外一点P作⊙O的切线PA切⊙O于点A,连接PO并延长,与⊙O交于C、D两点,M是半圆CD的中点,连接AM交CD于点N,连接AC、CM.〔1〕求证:CM2=MN•MA;〔2〕假设∠P=30°,PC=2,求CM的长.【解答】解:〔1〕∵⊙O中,M点是半圆CD的中点,∴=,∴∠CAM=∠DCM,又∵∠CMA=∠NMC,∴△AMC∽△CMN,∴=,即CM2=MN•MA;〔2〕连接OA、DM,∵PA是⊙O的切线,∴∠PAO=90°,又∵∠P=30°,∴OA=PO=〔PC+CO〕,设⊙O的半径为r,∵PC=2,∴r=〔2+r〕,解得:r=2,又∵CD是直径,∴∠CMD=90°,∵CM=DM,∴△CMD是等腰直角三角形,∴在Rt△CMD中,由勾股定理得CM2+DM2=CD2,即2CM2=〔2r〕2=16,那么CM2=8,∴CM=2.22.〔8.00分〕请阅读以下材料:向量=〔x1,x2〕,=〔x2,y2〕满足以下条件:①||=,=②⊗=||×||cosα〔角α的取值范围是0°<α<90°〕;③⊗=x1x2+y1y2利用上述所给条件解答问题:如:=〔1,〕,=〔﹣,3〕,求角α的大小;解:∵||===2,====2∴⊗=||×||cosα=2×2cosα=4cosα又∵⊗=x1x2+y1y2=l×〔﹣〕+×3=2∴4cosα=2∴cosα=,∴α=60°∴角α的值为60°.请仿照以上解答过程,完成以下问题:=〔1,0〕,=〔1,﹣1〕,求角α的大小.【解答】解:∵||===1,===,∴⊗=||×||cosα=cosα又∵⊗=x1x2+y1y2=l×1+0×〔﹣1〕=1∴cosα=1∴cosα=,∴α=45°23.〔10.00分〕学习习近平总书记关于生态文明建立重要井话,结实树立“绿水青山就是金山银山〞的科学观,让环保理念深入到学校,某校张教师为了了解本班学生3月植树成活情况,对本班全体学生进展了调查,并将调查结果分为了三类:A好,B:中,C:差.请根据图中信息,解答以下问题:〔1〕求全班学生总人数;〔2〕将上面的条形统计图与扇形统计图补充完整;〔3〕张教师在班上随机抽取了4名学生,其中A类1人,B类2人,C类1人,假设再从这4人中随加抽取2人,请用画对状图或列表法求出全是B类学生的概率.【解答】解:〔1〕全班学生总人数为10÷25%=40〔人〕;〔2〕∵C类人数为40﹣〔10+24〕=6,∴C类所占百分比为×100%=15%,B类百分比为×100%=60%,补全图形如下:〔3〕列表如下:A B B CA BA BA CAB AB BB CBB AB BB CBC AC BC BC由表可知,共有12种等可能结果,其中全是B类的有2种情况,所以全是B类学生的概率为=.24.〔10.00分〕如图,某测量小组为了测量山BC的高度,在地面A处测得山顶B的仰角45°,然后沿着坡度为=1:的坡面AD走了200米到达D处,此时在D处测得山顶B的仰角为60°,求山高BC〔结果保存根号〕.【解答】解:作DF⊥AC于F.∵DF:AF=1:,AD=200米,∴tan∠DAF=,∴∠D AF=30°,∴DF=AD=×200=100,∵∠DEC=∠BCA=∠DFC=90°,∴四边形DECF是矩形,∴EC=BF=100〔米〕,∵∠BAC=45°,BC⊥AC,∴∠ABC=45°,∵∠BDE=60°,DE⊥BC,∴∠DBE=90°﹣∠BDE=90°﹣60°=30°,∴∠ABD=∠ABC﹣∠DBE=45°﹣30°=15°,∠BAD=∠BAC﹣∠1=45°﹣30°=15°,∴∠ABD=∠BAD,∴AD=BD=200米,在Rt△BDE中,sin∠BDE=,∴BE=BD•sin∠BDE=200×=100,∴BC=BE+EC=100+100〔米〕.25.〔12.00分〕如图,抛物线y=ax2+x+4的对称轴是直线x=3,且与x轴相交于A,B两点〔B点在A点右侧〕与y轴交于C点.〔1〕求抛物线的解折式和A、B两点的坐标;〔2〕假设点P是抛物线上B、C两点之间的一个动点〔不与B、C重合〕,那么是否存在一点P,使△PBC的面积最大.假设存在,请求出△PBC的最大面积;假设不存在,试说明理由;〔3〕假设M是抛物线上任意一点,过点M作y轴的平行线,交直线BC于点N,当MN=3时,求M点的坐标.【解答】解:〔1〕∵抛物线y=ax2+x+4的对称轴是直线x=3,∴﹣=3,解得:a=﹣,∴抛物线的解析式为y=﹣x2+x+4.当y=0时,﹣x2+x+4=0,解得:x1=﹣2,x2=8,∴点A的坐标为〔﹣2,0〕,点B的坐标为〔8,0〕.〔2〕当x=0时,y=﹣x2+x+4=4,∴点C的坐标为〔0,4〕.设直线BC的解析式为y=kx+b〔k≠0〕.将B〔8,0〕、C〔0,4〕代入y=kx+b,,解得:,∴直线BC的解析式为y=﹣x+4.假设存在,设点P的坐标为〔x,﹣x2+x+4〕,过点P作PD∥y轴,交直线BC于点D,那么点D的坐标为〔x,﹣x+4〕,如下列图.∴PD=﹣x2+x+4﹣〔﹣x+4〕=﹣x2+2x,∴S△PBC=PD•OB=×8•〔﹣x2+2x〕=﹣x2+8x=﹣〔x﹣4〕2+16.∵﹣1<0,∴当x=4时,△PBC的面积最大,最大面积是16.∵0<x<8,∴存在点P,使△PBC的面积最大,最大面积是16.〔3〕设点M的坐标为〔m,﹣m2+m+4〕,那么点N的坐标为〔m,﹣m+4〕,∴MN=|﹣m2+m+4﹣〔﹣m+4〕|=|﹣m2+2m|.又∵MN=3,∴|﹣m2+2m|=3.当0<m<8时,有﹣m2+2m﹣3=0,解得:m1=2,m2=6,∴点P的坐标为〔2,6〕或〔6,4〕;当m<0或m>8时,有﹣m2+2m+3=0,解得:m3=4﹣2,m4=4+2,∴点P的坐标为〔4﹣2,﹣1〕或〔4+2,﹣﹣1〕.综上所述:M点的坐标为〔4﹣2,﹣1〕、〔2,6〕、〔6,4〕或〔4+2,﹣﹣1〕.如有侵权请联系告知删除,感谢你们的配合!。
A B D C 资阳市2012年高中阶段教育学校招生考试数 学全卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至8页.全卷满分120分,考试时间共120分钟.答题前,请考生务必在答题卡上正确填涂自己的姓名、考号和考试科目,并将试卷密封线内的项目填写清楚;考试结束,将试卷和答题卡一并交回.第Ⅰ卷(选择题 共30分)注意事项:每小题选出的答案不能答在试卷上,须用2B 铅笔在答题卡上把对应题目....的答案标号涂黑.如需改动,用橡皮擦擦净后,再选涂其它答案.一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项符合题意.1.2-的相反数是 A .2B .12-C .2-D .122.下列事件为必然事件的是A .小王参加本次数学考试,成绩是150分B .某射击运动员射靶一次,正中靶心C .打开电视机,CCTV 第一套节目正在播放新闻D .口袋中装有2个红球和1个白球,从中摸出2个球,其中必有红球 3.如图是一个正方体被截去一角后得到的几何体,它的俯视图是4.下列图形:①平行四边形;②菱形;③圆;④梯形;⑤等腰三角形;⑥直角三角形;⑦国旗上的五角星.这些图形中既是轴对称图形又是中心对称图形的有A .1种B .2种C .3种D .4种5.下列计算或化简正确的是 A .235a a a +=B 11453833=C 93=±D .1111x x -=-+- 6.小华所在的九年级一班共有50名学生,一次体检测量了全班学生错误..的是 (第3题图)A .B .班上比小华高的学生人数不会超过25人C .这组身高数据的中位数不一定是D .这组身高数据的众数不一定是7.如图所示的球形容器上连接着两根导管,容器中盛满了不溶于水的比空气重的某种气体,现在要用向容器中注水的方法来排净里面的气体.水从左导管匀速地注入,气体从右导管排出,那么,容器内剩余气体的体积与注水时间的函数关系的大致图象是8.如图,△ABC 是等腰三角形,点D 是底边BC 上异于BC 中点的一个点,∠ADE =∠DAC ,DE =AC .运用这个图(不添加辅助线)可以说明下列哪一个命题是假命题?A .一组对边平行,另一组对边相等的四边形是平行四边形B .有一组对边平行的四边形是梯形C .一组对边相等,一组对角相等的四边形是平行四边形D .对角线相等的四边形是矩形9.如图是二次函数2y ax bx c =++的部分图象,由图象可知 不等式20ax bx c ++<的解集是A .15x -<<B .5x >C .15x x <->且D .15x x <->或 10.如图,在△ABC 中,∠C =90°,将△ABC 沿直线MN 翻折后,顶点C 恰好落在AB 边上的点D 处,已知MN ∥AB , MC =6,NC =23,则四边形MABN 的面积是A .63B .123C .183D .243E DCBA (第8题图) (第9题图)yx(第10题图)NMD ACBA B D C 体积时间体积时间体积时间体积时间(第7题图)气体资阳市2012年高中阶段教育学校招生考试数 学第Ⅱ卷(非选择题 共90分)题号 二三 总 分总分人171819202122232425得分注意事项:本卷共6页,用黑色或蓝色钢笔或圆珠笔直接答在试卷上.二、填空题:本大题共6个小题,每小题3分,共18分.把答案直接填在题中横线上. 11.为了保护人类居住环境,我国的火电企业积极做好节能环保工作.2011年,我国火电企业的平均煤耗继续降低,仅为330000毫克/千瓦时,用科学记数法表示并保留三个有效数字为 毫克/千瓦时.12.直角三角形的两边长分别为16和12,则此三角形的外接圆半径是 .13.关于x 的一元二次方程210kx x -+=有两个不相等的实数根,则k 的取值范围是 .14.某果园有苹果树100棵,为了估计该果园的苹果总产量,小王先按长势把苹果树分成了A 、B 、C 三个级别,其中A 级30棵, B 级60棵, C 级10棵,然后从A 、B 、C 三个级别的苹果树中分别随机抽取了3棵、6棵、1棵,测出其产量,制成了如下的统计表.小李看了这个统计表后马上正确估计出了该果园的苹果总产量,那么小李的估计值是 千克. 苹果树长势 A 级B 级C 级随机抽取棵数(棵)所抽取果树的平均产量(千克)15.如图,O 为矩形ABCD 的中心,M 为BC 边上一点,N 为DC 边上一点,ON ⊥OM ,若AB =6,AD =4,设OM =x ,ON =y ,则y 与x 的函数关系式为 .16.观察分析下列方程:①32=+x x ,②56=+x x ,③712=+xx ;请利用它们所蕴含的规律,求关于x 的方程2243n nx n x ++=+-(n 为正整数)的根,你的答案是: . (第15题图)MN OD C三、解答题:本大题共9个小题,共72分.解答应写出必要的文字说明,证明过程或演算步骤.17.(本小题满分7分)先化简,再求值:2221111a a a a a --⎛⎫÷-- ⎪-+⎝⎭,其中a 是方程62=-x x 的根. 18.(本小题满分7分)为了决定谁将获得仅有的一张科普报告入场券,甲和乙设计了如下的一个游戏:口袋中有编号分别为1、2、3的红球三个和编号为4的白球一个,四个球除了颜色或编号不同外,没有任何别的区别,摸球之前将小球搅匀,摸球的人都蒙上眼睛.先甲摸两次,每次摸出一个球;把甲摸出的两个球放回口袋后,乙再摸,乙只摸一个球.如果甲摸出的两个球都是红色,甲得1分,否则,甲得0分;如果乙摸出的球是白色,乙得1分,否则,乙得0分 ;得分高的获得入场券,如果得分相同,游戏重来.(1)(4分)运用列表或画树状图求甲得1分的概率; (2)(3分)这个游戏是否公平?请说明理由.19.(本小题满分8分) 已知:一次函数23-=x y 的图象与某反比例函数的图象的一个公共点的横坐标为1.(1)(3分)求该反比例函数的解析式;(2)(3分)将一次函数23-=x y 的图象向上平移4个单位,求平移后的图象与反比例函数图象的交点坐标;(3)(2分)请直接写出一个同时满足如下条件的函数解析式:①函数的图象能由一次函数23-=x y 的图象绕点)2,0(-旋转一定角度得到; ②函数的图象与反比例函数的图象没有公共点.20.(本小题满分8分) 小强在教学楼的点P 处观察对面的办公大楼.为了测量点P 到对面办公大楼上部AD 的距离,小强测得办公大楼顶部点A 的仰角为45°,测得办公大楼底部点B 的俯角为60°,已知办公大楼高46米,CD =10米.求点P 到AD 的距离(用含根号的式子表示).21.(本小题满分8分) 已知a 、b 是正实数,那么,2a bab +≥是恒成立的. (1)(3分)由20a b (-)≥恒成立,说明2a b ab +≥恒成立; (2)(3分)填空:已知a 、b 、c 是正实数,由2a b ab +≥恒成立,猜测:3a b c ++ ≥也恒成立;(3)(2分)如图,已知AB 是直径,点P 是弧上异于点A 和点B 的一点,PC ⊥AB ,垂足为C ,AC =a ,BC =b ,由此图说明2a bab +≥ 22.(本小题满分8分)为了解决农民工子女就近入学问题,我市第一小学计划2012年秋季学期扩大办学规模.学校决定开支八万元全部用于购买课桌凳、办公桌椅和电脑,要求购买的课桌凳与办公桌椅的数量比为20:1,购买电脑的资金不低于16000元,但不超过24000元.已知一套办公桌椅比一套课桌凳贵80元,用2000元恰好可以买到10套课桌凳和4套办公桌椅.(课桌凳和办公桌椅均成套购进)BOPC A(第21题图)(第20题图) MPDCB A(1)(3分)一套课桌凳和一套办公桌椅的价格分别为多少元? (2)(5分)求出课桌凳和办公桌椅的购买方案.23.(本小题满分8分)(1)(3分)如图(1),正方形AEGH 的顶点E 、H 在正方形ABCD 的边上,直接写出HD ∶GC ∶EB 的结果(不必写计算过程);(2)(3分)将图(1)中的正方形AEGH 绕点A 旋转一定角度,如图(2),求HD ∶GC ∶EB ; (3)(2分)把图(2)中的正方形都换成矩形,如图(3),且已知DA ∶AB =HA ∶AE =m :n ,此时HD ∶GC ∶EB 的值与(2)小题的结果相比有变化吗?如果有变化,直接写出变化后的结果(不必写计算过程). 24.(本小题满分9分)如图,在△ABC 中,AB =AC ,∠A =30°,以AB 为直径的⊙O 交B C于点D ,交AC 于点E ,连结DE ,过点B 作BP 平行于DE ,交⊙O 于点P ,连结EP 、CP 、OP . (1)(3分)BD =DC 吗?说明理由; (2)(3分)求∠BOP 的度数; (3)(3分)求证:CP 是⊙O 的切线;如果你解答这个问题有困难,可以参考如下信息: 为了解答这个问题,小明和小强做了认真的探究,然后分别用不同的思路完成了这个题目.在进行小组交流的时候,小明说:“设OP 交AC 于点G ,证△AOG ∽△CPG ”;小强说:“过点C 作CH ⊥AB 于点H ,证四边形CHOP 是矩形”.(第24题图)A B C D EPO GH E DC B A (1) A BC DE GH (3) (2) D CB A G HE(第23题图)25.(本小题满分9分)抛物线214y x x m =++的顶点在直线3y x =+上,过点F (2,2)-的直线交该抛物线于点M 、N 两点(点M 在点N 的左边),MA ⊥x轴于点A ,NB ⊥x 轴于点B .(1)(3分)先通过配方求抛物线的顶点坐标(坐标可用含m 的代数式表示),再求m 的值;(2)(3分)设点N 的横坐标为a ,试用含a 的代数式表示点N 的纵坐标,并说明NF =NB ;(3)(3分)若射线NM 交x 轴于点P ,且P A ×PB =1009,求点M 的坐标.资阳市2012年高中阶段学校招生统一考试数学试题参考答案及评分意见说 明:1. 解答题中各步骤所标记分数为考生解答到这一步应得的累计分数.2. 参考答案一般只给出该题的一种解法,如果考生的解法和参考答案所给解法不同,请参照本答案及评分意见给分.3. 考生的解答可以根据具体问题合理省略非关键步骤.4. 评卷时要坚持每题评阅到底,当考生的解答在某一步出现错误、影响了后继部分时,如果该步以后的解答未改变问题的内容和难度,可视影响程度决定后面部分的给分,但不得超过后继部分应给分数的一半;如果这一步后面的解答有较严重的错误,就不给分;若是几个相对独立的得分点,其中一处错误不影响其他得分点的得分.5. 给分和扣分都以1分为基本单位.6. 正式阅卷前应进行试评,在试评中须认真研究参考答案和评分意见,不能随意拔高或降低给分标准,统一标准后须对全部试评的试卷予以复查,以免阅卷前后期评分标准宽严不同.一、选择题(每小题3分,共10个小题,满分30分) 1-5.ADABD ;6-10.BCCDC .二、填空题(每小题3分,共6个小题,满分18分)11.53.3010⨯;12.10或8(填正确一个答案得2分,填两个正确答案得3分);13.14k <且0k ≠;14.7600;15.23yx ;16.3x n =+或4x n =+(填正确一个答案得2分,填两个正确答案得3分).(第25题图)三、解答题(共9个小题,满分72分)17.原式=22(1)(1)(21)11a a a a a a -+---÷-+………………………………………………………1分=222211a a a a a --÷-+…………………………………………………………………………………2分 =21(1)(1)(2)a a a a a a -+⨯+--…………………………………………………………………………4分=21a a-……………………………………………………………………………………………5分 ∵a 是方程62=-x x 的根,∴62=-a a ………………………………………………6分∴原式=61………………………………………………………………………………………7分18. (1)列表或树状图如下:…………………………………………………………………3分P (甲得1分)=61122=……………………………………………………………………………4分(2)不公平.……………………………………………………………………………………5分∵P (乙得1分)=14……………………………………………………………………………6分∴P (甲得1分)≠P (乙得1分),∴不公平.………………………………………………7分19.(1)把1x =代入32y x =-,得1y =……………………………………………………1分设反比例函数的解析式为k y x =,把1x =,1y =代入得,1k = …………………………2分∴该反比例函数的解析式为1y x=…………………………………………………………3分 (2)平移后的图象对应的解析式为32y x =+…………………………………………………4分解方程组 ,得 或 …………………………………………………………5分 ∴平移后的图象与反比例函数图象的交点坐标为(13,3)和(-1, -1) …………………6分 (3)22y x =--…………………………………………………8分 (结论开放,常数项为-2,一次项系数小于-1的一次函数均可)20.连结P A 、PB ,过点P 作PM ⊥AD 于点M ;延长BC ,交PM 于点N则∠APM =45°,∠BPM =60°,NM =10米……………………………1分 设PM =x 米12341 1分 1分 0分2 1分1分0分 3 1分 1分 0分40分0分0分第2 次得分第 1次 ABCDPN M在Rt △PMA 中,AM =PM ×tan ∠APM =x tan 45°=x (米)……3分在Rt △PNB 中,BN =PN ×tan ∠BPM =(x -10)tan 60°=(x -10)3(米)………5分 由AM +BN =46米,得x +(x -10)3 =46………………………6分 解得,4610313x +=+ ,∴点P 到AD 的距离为4610313++米.(结果分母有理化为()1838-米也可)………………………8分21.(1)由20a b (-)≥得,20a ab b -+≥………1分 于是 2a b ab +≥………………………………2分∴2a bab +≥……………………………………3分 (2)3abc ……………………………………6分(3)连结OP ,∵AB 是直径,∴∠APB =90°,又∵PC ⊥AB ,∴Rt △APC ∽Rt △PBC ,∴PC CB AC PC=,2PC AC CB ab =⨯=,PC ab =……………………………………………………………7分又∵2a b PO +=,由垂线段最短,得PO PC ≥,∴2a b ab +≥…………………………8分22.(1)设一套课桌凳和一套办公桌椅的价格分别为x 元、y 元,得…………………………………………………………………………………2分 解得∴一套课桌凳和一套办公桌椅的价格分别为120元、200元………………………………3分 (2)设购买办公桌椅m 套,则购买课桌凳20m 套,由题意有16000800001202020024000m m ≤-⨯-⨯≤ ……………………………………………………5分解得,7821241313m ≤≤ ………………………………………………………………………………6分 ∵m 为整数,∴m =22、23、24,有三种购买方案:………………………………………7分方案一 方案二 方案三 课桌凳(套)440 460 480 办公桌椅(套)22 23 24 ……………………………………………………………………………………………………………8分23.(1)HD :GC :EB=1:2 :1……………………………3分(2)连结AG 、AC ,∵△ADC 和{801042000y x x y =++=(1) ABC D EH G (3)H GEDC BA(2)D C BAGH EBP△AHG 都是等腰直角三角形,∴AD :AC =AH :AG =1:2∠DAC =∠HAG =45°,∴∠DAH =∠CAG …………………………………………………………4分∴△DAH ∽△CAG ,∴HD :GC =AD :AC =1:2 ……………………………………………5分 ∵∠DAB =∠HAE =90°,∴∠DAH =∠BAE ,又∵AD =AB ,AH =AE ,∴△DAH ≌△BAE ,∴HD =EB ∴HD :GC :EB =1:2 :1………………………………………………………………………6分 (3)有变化,HD :GC :EB =22::m m n n +……………………………………………………8分 24.(1)BD =DC ……………………………………1分 连结AD ,∵AB 是直径,∴∠ADB =90°……………………………………………2分 ∵AB =AC ,∴BD =DC ……………………………………………………………3分(2)∵AD 是等腰三角形ABC 底边上的中线 ∴∠BAD =∠CAD ∴弧BD 与弧DE 是等弧, ∴BD =DE ……………4分 ∴BD =DE =DC ,∴∠DEC =∠DCE ∵△AB C 中,AB =AC ,∠A =30° ∴∠DCE =∠ABC =12(180°-30°)=75°,∴∠DEC =75° ∴∠EDC =180°-75°-75°=30° ∵BP ∥DE ,∴∠PBC =∠EDC =30°……………………………5分 ∴∠ABP =∠ABC -∠PBC =75°-30°=45° ∵OB =OP ,∴∠OBP =∠OPB =45°,∴∠BOP =90° …………6分 (3)证法一:设OP 交AC 于点G ,则∠AOG =∠BOP =90°在Rt △AOG 中,∵∠OAG =30°,∴12OG AG =………………7分 又∵12OP OP AC AB ==,∴OP OG AC AG =,∴OG GP AG GC = 又∵∠AGO =∠CGP∴△AOG ∽△CPG …………………………………8分 ∴∠GPC =∠AOG =90°∴CP 是⊙O 的切线………………………9分 证法二:过点C 作CH ⊥AB 于点H ,则∠BOP =∠BHC =90°,∴PO ∥CH在Rt △AHC 中,∵∠HAC =30°,∴12CH AC =………………7分又∵1122PO AB AC ==,∴PO =CH ,∴四边形CHOP 是平行四边形∴四边形CHOP 是矩形……………………………8分∴∠OPC =90°,∴CP 是⊙O 的切线………………………9分25.(1)2211(2)(1)44y x x m x m =++=++-…1分 ∴顶点坐标为(-2 , 1m -)…………………2分 ∵顶点在直线3y x =+上,∴-2+3=1m -,得m =2…………………3分(2)∵点N 在抛物线上,GOP ED CBA HABCDEPO∴点N 的纵坐标为2124a a ++…………………………4分 即点N (a ,2124a a ++) 过点F 作FC ⊥NB 于点C ,在Rt △FCN 中,FC =a +2,NC =NB -CB =214a a +,∴2NF =22NC FC +=2221()(2)4a a a +++=2221()(4)44a a a a ++++………………………………………………5分 而2NB =221(2)4a a ++=2221()(4)44a a a a ++++∴2NF =2NB ,NF =NB ………………………………………………………………………6分(3)连结AF 、BF由NF =NB ,得∠NFB =∠NBF ,由(2)的结论知,MF =MA ,∴∠MAF =∠MF A ,∵MA ⊥x 轴,NB ⊥x 轴,∴MA ∥NB ,∴∠AMF +∠BNF =180°∵△MAF 和△NFB 的内角总和为360°,∴2∠MAF +2∠NBF =180°,∠MAF +∠NBF =90°, ∵∠MAB +∠NBA =180°,∴∠FBA +∠F AB =90°又∵∠F AB +∠MAF =90° ∴∠FBA =∠MAF =∠MF A又∵∠FP A =∠BPF ,∴△PF A ∽△PBF ,∴PF PB PA PF =,2PF PA PB =⨯=1009……………7分过点F 作FG ⊥x 轴于点G ,在Rt △PFG 中,PG 83,∴PO =PG +GO =143, ∴P (-143, 0) 设直线PF :y kx b =+,把点F (-2 , 2)、点P (-143, 0)代入y kx b =+解得k =34,b =72,∴直线PF :3742y x =+……………………………………………………8分 解方程21372442x x x ++=+,得x =-3或x =2(不合题意,舍去)当x =-3时,y =54,∴M (-3 ,54)……………………………9分。
2024年四川省遂宁市中考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列各数中,无理数是()C D.0A.2-B.122.古代中国诸多技艺均领先世界.榫卯结构就是其中之一,榫卯是在两个木构件上所采用的一种凹凸结合的连接方式.凸出部分叫榫(或榫头),凹进部分叫卯(或榫眼、榫槽),榫和卯咬合,起到连接作用,右图是某个部件“榫”的实物图,它的主视图是()A.B.C.D.【答案】A【分析】本题考查了三视图,根据从正面看到的图形即可求解,掌握三视图的画法是解题的关键.【详解】解:由实物图可知,从从正面看到的图形是,故选:A .3.中国某汽车公司坚持“技术为王,创新为本”的发展理念,凭借研发实力和创新的发展模式在电池、电子、乘用车、商用车和轨道交通等多个领域发挥着举足轻重的作用.2024年第一季度,该公司以62万辆的销售成绩稳居新能源汽车销量榜榜首,市场占有率高达19.4%.将销售数据用科学记数法表示为( )A .60.6210⨯B .66.210⨯C .56.210´D .56210⨯4.下列运算结果正确的是( )A .321a a -=B .236a a a ⋅=C .()44a a -=-D .()()2339a a a +-=-【答案】D【分析】本题考查了整式的运算,根据合并同类项法则、同底数幂的乘法、积的乘方运算、平方差公式分别运算即可判断求解,掌握整式的运算法则是解题的关键.【详解】解:A 、32a a a -=,该选项错误,不合题意;B 、235a a a ⋅=,该选项错误,不合题意;C 、()44a a -=,该选项错误,不合题意;D 、()()2339a a a +-=-,该选项正确,符合题意;故选:D .5.不等式组32212x x x -<+⎧⎨≥⎩的解集在数轴上表示为( )A .B .C .D .【答案】B【分析】本题考查了在数轴上表示不等式组的解集,先求出不等式组的解集,再根据解集在数轴上表示出来即可判断求解,正确求出一元一次不等式组的解集是解题的关键.【详解】解:32212x x x -<+⎧⎨≥⎩①②,由①得,3x <,由②得,2x ≥,∴不等式组的解集为23x ≤<,∴不等式组的解集在数轴上表示为,故选:B .6.佩佩在“黄娥古镇”研学时学习扎染技术,得到了一个内角和为1080︒的正多边形图案,这个正多边形的每个外角为( )A .36︒B .40︒C .45︒D .60︒【答案】C【分析】本题考查了正多边形的外角,设这个正多边形的边数为n ,先根据内角和求出正多边形的边数,再用外角和360︒除以边数即可求解,掌握正多边形的性质是解题的关键.【详解】解:设这个正多边形的边数为n ,则()21801080n -⨯︒=︒,∴8n =,∴这个正多边形的每个外角为360845︒÷=︒,故选:C .7.分式方程2111m x x =---的解为正数,则m 的取值范围( )A .3m >-B .3m >-且2m ≠-C .3m <D .3m <且2m ≠-8.工人师傅在检查排污管道时发现淤泥堆积.如图所示,排污管道的横截面是直径为2米的圆,为预估淤泥量,测得淤泥横截面(图中阴影部分)宽AB 为1米,请计算出淤泥横截面的面积( )A .1π6B .1π6C .2π3D .11π64-9.如图1,ABC 与111A B C △满足1A A ∠=∠,11AC A C =,11BC B C =,1C C ∠≠∠,我们称这样的两个三角形为“伪全等三角形”如图2,在ABC 中,AB AC =,点,D E 在线段BC 上,且BE CD =,则图中共有“伪全等三角形”( )A .1对B .2对C .3对D .4对【答案】D【分析】本题考查了新定义,等边对等角,根据“伪全等三角形”的定义可得两个三角形的两边相等,一个角相等,且这个角不是夹角,据此分析判断,即可求解.【详解】解:∵AB AC =,∴B C ∠=∠,在ABD △和ABE 中,,,B B AB AB AD AE ∠=∠==,在,ACE ACD △△中,,,C C AC AC AE AD ∠=∠==,在,ABD ACD △△中,,,B C AB AC AD AD ∠=∠==,在,ACE ABE 中,,,B C AE AE AC AB ∠=∠==综上所述,共有4对“伪全等三角形”,故选:D .10.如图,已知抛物线2y ax bx c =++(a 、b 、c 为常数,且0a ≠)的对称轴为直线=1x -,且该抛物线与x 轴交于点()1,0A ,与y 轴的交点B 在()0,2-,()0,3-之间(不含端点),则下列结论正确的有多少个( )①0abc >;②930a b c -+≥;③213a <<;④若方程21ax bx c x +=++两根为(),m n m n <,则31m n -<<<.A .1B .2C .3D .4【答案】B【分析】本题主要考查二次函数和一次函数的性质,根据题干可得0a >,20b a =>,32c -<<-,即可判断①错误;根据对称轴和一个交点求得另一个交点为()3,0-,即可判断②错误;将c 和b 用a 表示,即可得到332a -<-<-,即可判断③正确;结合抛物线方程21+两根为m+=+ax bx c x故选:B.二、填空题11.分解因式:4ab a += .【答案】()4a b +【分析】本题主要考查了提公因式分解因式,提公因式a 即可解答.【详解】解:()44ab a a b +=+故答案为:()4a b +三、单选题12.反比例函数1k y x-=的图象在第一、三象限,则点()3k -,在第 象限.四、填空题13.体育老师要在甲和乙两人中选择1人参加篮球投篮大赛,下表是两人5次训练成绩,从稳定的角度考虑,老师应该选 参加比赛.甲88798乙69799【答案】甲【分析】本题考查了方差,分别求出甲乙的方差即可判断求解,掌握方差计算公式是解题的关键.14.在等边ABC 三边上分别取点D E F 、、,使得AD BE CF ==,连结三点得到DEF ,易得ADF BED CFE ≌≌,设1ABC S =△,则13A EF D D FS S =-△△如图①当12AD AB =时,111344DEF S =-⨯=△如图②当13AD AB =时,211393DEF S =-⨯=△如图③当AD 1AB 4=时,37131616DEF S =-⨯=△……直接写出,当110AD AB =时,DEF S =△ .15.如图,在正方形纸片ABCD 中,E 是AB 边的中点,将正方形纸片沿EC 折叠,点B 落在点P 处,延长CP 交AD 于点Q ,连结AP 并延长交CD 于点F .给出以下结论:①AEP △为等腰三角形;②F 为CD 的中点;③:2:3AP PF =;④3cos 4DCQ ∠=.其中正确结论是 .(填序号)∵E 为AB 的中点,∴AE EB=设正方形的边长为2a ,则AE EB a==∵90QAE ∠=︒,QPE ∠=又EQ EQ=∴AEQ PEQ≌∴AQ PQ=又∵EA EP=五、解答题16.计算:11sin4512021-⎛⎫︒ ⎪⎝⎭.17.先化简:2121121x x x x -⎛⎫-÷ ⎪--+⎝⎭,再从1,2,3中选择一个合适的数作为x 的值代入求值.18.康康在学习了矩形定义及判定定理1后,继续探究其它判定定理.(1)实践与操作①任意作两条相交的直线,交点记为O ;②以点O 为圆心,适当长为半径画弧,在两条直线上分别截取相等的四条线段OA OB OC OD 、、、;③顺次连结所得的四点得到四边形ABCD .于是可以直接判定四边形ABCD 是平行四边形,则该判定定理是:______.(2)猜想与证明通过和同伴交流,他们一致认为四边形ABCD 是矩形,于是猜想得到了矩形的另外一种判定方法:对角线相等的平行四边形是矩形.并写出了以下已知、求证,请你完成证明过程.已知:如图,四边形ABCD 是平行四边形,AC BD =.求证:四边形ABCD 是矩形.【答案】(1)对角线互相平分的四边形是平行四边形(2)证明见解析【分析】(1)由作图结合对角线互相平分的四边形是平行四边形可得答案;(2)先证明180ABC BCD ∠+∠=︒,再证明ABC DCB △≌△,可得90ABC DCB ∠=∠=︒,从而可得结论.【详解】(1)解:由作图可得:OA OC =,OB OD =,∴四边形ABCD 是平行四边形,该判定定理是:对角线互相平分的四边形是平行四边形;(2)∵四边形ABCD 是平行四边形,∴AB CD ∥,AB CD =,∴180ABC BCD ∠+∠=︒,∵AC BD =,BC CB =,∴ABC DCB △≌△,∴90ABC DCB ∠=∠=︒,∴四边形ABCD 是矩形.【点睛】本题考查的是平行四边形的判定与性质,矩形的判定,全等三角形的判定与性质,掌握平行四边形与矩形的判定方法是关键.19.小明的书桌上有一个L 型台灯,灯柱AB 高40cm ,他发现当灯带BC 与水平线BM 夹角为9︒时(图1),灯带的直射宽(),DE BD BC CE BC ⊥⊥为35cm ,但此时灯的直射宽度不够,当他把灯带调整到与水平线夹角为30︒时(图2),直射宽度刚好合适,求此时台灯最高点C 到桌面的距离.(结果保留1位小数)(sin90.16,cos90.99,tan90.16≈≈≈︒︒︒)在图1中,DE BM∥∵,BD BC CE BC⊥⊥∴BD CE∥∴四边形BDEM 是平行四边形,∴35BM DE ==在Rt BMC △中,cos9BC BM =⋅︒答:此时台灯最高点C到桌面的距离为57.3cm.20.某酒店有A B、两种客房、其中A种24间,B种20间.若全部入住,一天营业额为7200、两种客房均有10间入住,一天营业额为3200元.元;若A B(1)求A B、两种客房每间定价分别是多少元?(2)酒店对A种客房调研发现:如果客房不调价,房间可全部住满;如果每个房间定价每增加10元,就会有一个房间空闲;当A种客房每间定价为多少元时,A种客房一天的营业额W 最大,最大营业额为多少元?21.已知关于x 的一元二次方程()2210x m x m -++-=.(1)求证:无论m 取何值,方程都有两个不相等的实数根;(2)如果方程的两个实数根为12,x x ,且2212129x x x x +-=,求m 的值.【答案】(1)证明见解析;(2)11m =或22m =-.【分析】本题主要考查了一元二次方程根的判别式,根与系数的关系,解一元二次方程,掌握一元二次方程根的判别式是解题的关键.(1)根据根的判别式证明0∆>恒成立即可;(2)由题意可得,122x x m +=+,121⋅=-x x m ,进行变形后代入即可求解.【详解】(1)证明:()()22Δ24118m m m ⎡⎤=-+-⨯⨯-=+⎣⎦,∵无论m 取何值,280m +>,恒成立,∴无论m 取何值,方程都有两个不相等的实数根.(2)解:∵12,x x 是方程()2210x m x m -++-=的两个实数根,∴122x x m +=+,121⋅=-x x m ,∴()()()22221212121232319x x x x x x x x m m +-=+-=+--=,解得:11m =或22m =-.22.遂宁市作为全国旅游城市,有众多著名景点,为了解“五一”假期同学们的出游情况,某实践探究小组对部分同学假期旅游地做了调查,以下是调查报告的部分内容,请完善报告:xx 小组关于xx 学校学生“五一”出游情况调查报告数据收集调查方式抽样调查调查对象xx 学校学生数据的整理与描述景点A :中国死海B :龙凤古镇C :灵泉风景区D :金华山E :未出游F :其他数据分析及运用(1)本次被抽样调查的学生总人数为______,扇形统计图中,m=______,“B:龙凤古镇”对应圆心角的度数是______;(2)请补全条形统计图;(3)该学校总人数为1800人,请你估计该学校学生“五一”假期未出游的人数;(4)未出游中的甲、乙两位同学计划下次假期从A、B、C、D四个景点中任选一个景点旅游,请用树状图或列表的方法求出他们选择同一景点的概率.(3)解:81800144100⨯=答:请你估计该学校学生“五一”假期未出游的人数为(4)列表如下,AB C D AAA AB AC AD 23.如图,一次函数()10y kx b k =+≠的图象与反比例函数()20m y m x=≠的图象相交于()()1,3,1A B n -,两点.(1)求一次函数和反比例函数的表达式;(2)根据图象直接写出12y y >时,x 的取值范围;的面积.(3)过点B作直线OB,交反比例函数图象于点C,连结AC,求ABC∵点B C 、关于原点对称,∴()3,1C ,∴312MN =-=,1CN =,ON ∴ABC BOD ADOM S S S S =++ 梯形梯形()(11124.如图,AB 是O 的直径,AC 是一条弦,点D 是 AC 的中点,DN AB ⊥于点E ,交AC 于点F ,连结DB 交AC 于点G .(1)求证:AF DF =;(2)延长GD 至点M ,使DM DG =,连接AM .①求证:AM 是O 的切线;②若6DG =,5DF =,求O 的半径.∵点D 是 AC 的中点,∴ AD CD=,∴ABD CAD ∠=∠,∵DN AB ⊥,AB 为O ∴ AN AD =,25.二次函数()20y ax bx c a =++≠的图象与x 轴分别交于点()()1,03,0A B -,,与y 轴交于点()0,3C -,P Q ,为抛物线上的两点.(1)求二次函数的表达式;(2)当P C ,两点关于抛物线对轴对称,OPQ △是以点P 为直角顶点的直角三角形时,求点Q 的坐标;(3)设P 的横坐标为m ,Q 的横坐标为1m +,试探究:OPQ △的面积S 是否存在最小值,若存在,请求出最小值,若不存在,请说明理由.把P x m =代入2=23y x x --得223P y m m =--,把1Q x m =+代入2=23y x x --得24Q y m =-,∵()()23231OEGF S OE OF m m m m m =⋅=---+=-+矩形()23211123222OEP S EP EO m m m m m ⎡⎤=⋅=---=-+⎣⎦ ()()231111142222OFQ S OF FQ m m m ⎡⎤=⋅=+--=--⎣⎦ ()()2211142322QGP S GP QG m m m ⎡⎤=⋅=⨯⨯----=⎣⎦ ∵OPQ OPE OFQ PQG OEGF S S S S S =---△△△△矩形,∴3232135322OPQ S m m m m m m ⎛⎫⎛=-+++--++-- ⎪ ⎝⎭⎝。
2012年四川省遂宁市毕业生学业考试题数 学(满分150分,考试时间120分钟)第一部分(选择题 共40分)一、选择题(本大题共10小题,每小题4分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1. (2012四川遂宁,1,4分)-3的绝对值是( )A .13 B .13- C . 3 D .—3【答案】C2. (2012四川遂宁,2,4分)下面计算正确的是( )A .223412x x x =B .3515x x x =C .43x x x ÷=D .527()x x = 【答案】C3. (2012四川遂宁,3,4分)某车间5名工人日加工零件数分别为6,10,4,5,4,则这组数据的中位数和众数分别是( )A .4,5B .5,4C .6,4D .10,6【答案】B4. (2012四川遂宁,4,4分)在△ABC 中,∠C =90°,BC =4,AB =5,则cos B 的值是( )A .45B .35 C .34 D .43【答案】A5. (2012四川遂宁,5,4分)如图,等腰梯形ABCD 中,AD ∥BC , ∠B =60°,AD =2,BC =8,此等腰梯形的周长是( ) DCB AA .19B .20C .21D .22【答案】D6. (2012四川遂宁,6,4分)下列几何体中,正视图是等腰三角形的是( )AB C D【答案】C7. (2012四川遂宁,7,4分)若⊙O 1、⊙O 2的半径分别为4和6,圆心距O 1O 2=8,则⊙O 1与的位置关系⊙O 2的位置关系是( )A .内切B .相交C .外切D .外离【答案】B8. (2012四川遂宁,8,4分)若关于x 、y 的二元一次方程组3133x y a x y +=+⎧⎨+=⎩的解满足x +y <2,则a 的取值范围是( )A .a >2B .a <2C .a >4D .a <4 【答案】D 9. (2012四川遂宁,9,4分)对于反比例函数2y x=,下列说法正确的是( ) A .图像经过点(1,-2) B .图像在二、四象限C .当x >0时,y 随x 的增大而增大D .图像关于原点成中心对称【答案】D10. (2012四川遂宁,10,4分)如图,点G 是△ABC 的重心,BG 、CG 的延长线分别交AC 、AB 边于点E 、D ,则△DEG 中和△CBG 的面积比是( ) CAB DEGA .1:4B .1:2C .1:3D .2:9 【答案】A第二部分(非选择题 共110分)二、填空题(本大题共5小题,每小题4分,满分20分,把答案填在题中的横线上.)11. (2012四川遂宁,11,4分)据中新社北京2011年12月8日电:2011年中国粮食总产量达到546400000吨,用科学计数法表示为 吨.【答案】5.464×10812. (2012四川遂宁,12,4分)平面直角坐标中,点(-3, 4)关于y 轴对称的点的坐标是______.【答案】(3,4)13. (2012四川遂宁,13,4分)甲、乙、丙、丁四位同学都参加了毕业考试前的5次数学模拟测试,每人这5次成绩的平均数都是125分,方差分别是2=0.65S 甲,2=0.55S 乙,2=0.50S 丙,2=0.45S 丁,测试成绩最稳定的是______.【答案】丁14. (2012四川遂宁,14,4分)如图,△ABC 中,AB =AC =6,BC =4.5,分别以A 、B 为圆心,4为半径画弧交于两点,过这两点的直线交AC于点D,连接BD,则△BCD的周长是______.【答案】10.515. (2012四川遂宁,15,4分)如图,这是由边长为1的正六边形摆出的一系列图形,按这种方式摆下去,则第2012个图形的周长是______.【答案】12072三、(本大题共3小题,每小题7分,共21分)16. (2012四川遂宁,16,7112sin45(2)3π-⎛⎫︒+-- ⎪⎝⎭【答案】解:原式=213-·············4分2=·············7分17. (2012四川遂宁,17,7分)先化简,再求值:22(2)442(1)42x x x xxx x-++---+,其中2 x=【答案】解:原式=(2)(2)2(1)(2)(2)2x x xxx x x-+--+-+·············2分=x-2x+2 ·············4分=2-x·············5分当2x=2-x=2-(2·············7分18. (2012四川遂宁,18,7分)解方程:2420x x +-=【答案】解:224441(2)24b ac -=-⨯⨯-= ·············2分2x ∴===- ·············6分即:1222x x =-=- ·············7分四、(本大题共3小题,每小题9分,共27分)19. (2012四川遂宁,19,9分)已知:如图,△ABC 中,AB =AC ,AD ⊥BC 垂足为D 。
将△ADC 绕点D 逆时针旋转90°后,点A 落在BD 上点A 1处,点C 落在DA 延长线上点C 1处,A 1 C 1与AB 交于点E 。
求证:△A 1BE ≌△AC 1E EDA 1C 1B 第19题A【答案】证明:∵△ABC 中,AB =AC ,AD ⊥BC∴∠B =∠C ,BD =CD ············3分∵△A 1D C 1是由△ADC 旋转而得∴ A 1D =AD ,C 1 D= CD ,∠C 1 =∠C∴∠B =∠C 1, ············5分BD= C 1 D则BD -A 1D = C 1 D -AD 即BA 1= C 1 A ············7分在△A 1BE 是由△A C 1E11112B C BA C A ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△A 1BE ≌△AC 1E (AAS) ············9分20. (2012四川遂宁,20,9分)经过建设者三年多艰苦努力地施工,贯通我市的又一条高速公路“遂内高速公路”于2012年5月9日全线通车。
已知原来从遂宁到内江公路长150km ,高速公路路程缩短了30km ,如果一辆小车从遂宁到内江走高速公路的平均速度可以提高到原来的1.5倍,需要的时间可以比原来少用1小时10分钟。
求小汽车原来和走高速公路的平均速度分别是多少?【答案】解:设小汽车原来的平均速度为x 千米/时,走高速公路的平均速度是1.5x 千米/时,根据题意,得 ············1分150********.56x x --= ············5分 解这个方程,得x =60 ············7分经检验x=60是所列方程的解,这时1.5x=1.5×60=90且符合题意········8分答:小汽车原来的平均速度是60千米/时,走高速公路的平均速度是90千米/时.············9分21. (2012四川遂宁,21,9分)小明在数学课中学习了《解直角三角形》的内容后,双休日组织教学兴趣小组的小伙伴进行实地测量。
如图,他们在坡度是i=1:2.5的斜坡DE 的D处,测得楼顶的移动通讯基站铁塔的顶部A和楼顶B的仰角分别是60°、45°,斜坡高EF=2米,CE=13米,CH=2米。
大家根据所学知识很快计算出了铁塔高AM。
亲爱的同学们,相信你也能计算出铁塔AM的高度!请你写出解答过程。
1.41 1.73供选用,结果保留整数)【答案】解:∵斜坡的坡度是12.5EFiFD==∴FD=2.5EF=2.5×2=5 ············2分∴GD=GF+FD=CE+FD=13+5=18 ············3分在Rt△DBG中,∠GDB=45°∴BG=GD=18 ············5分在Rt△DAN中,∠NAD=60°∴ND=NG+GD=CH+GD=2+18=20AN=ND·tan60°=20············7分∴AM=AN-MN=AN-BG18≈17( 米)答:铁塔高AC约17米。