2012达州中考数学试题及答案
- 格式:pdf
- 大小:977.71 KB
- 文档页数:17
2012四川达州中考数学模拟试题及答案(考试时间:120分钟;满分:120分)友情提示:Hi ,展示自己的时候到啦,你可要冷静思考、沉着答卷啊!祝你成功!1、请务必在指定位置填写座号,并将密封线内的项目填写清楚.2、本试题共有 22 道题:其中 1—6 题为选择题, 请将所选答案的标号填写在本题后面给出表格的相应位置上;7—12 题为填空题,请将做出的答案填写在本题后面给出表格的相应位置上; 13—22 题,请在试题上给出的本题位置上做答.一、选择题(本题满分 18 分,共有 6 道小题,每小题 3 分)下列每小题都给出标号为 A 、B 、C 、D 的四个结论,其中只有一个是正确的.每小题 选对得分;不选、选错或选出的标号超过一个的不得分.请将1—6各小题所选答案的标号填写在第6小题后面表格的相应位置上.1、直径为6和10的两个圆相内切,则其圆心距 d 为( ) A .2 B .4 C .8D .162、甲、乙两袋均有红、黄色球各一个,分别从两袋中任意取出一球,那么所取出的两球是同色球的概率为( )A .B .C .D .3、小明将一个小玻璃球不慎从楼上掉落下来,下面的各图象中可以大致刻画出小玻璃球下落过程中(即落地前)的速度与时间的变化情况的是( )4、如图,扇形OAB 是圆锥的侧面展开图,若小正方形方格的边长均为1厘米,则这个圆锥的底面半径为( )厘米. A . B .C .D .25、根据如图所示的程序,若输入的 x 值为 - ,则输出的结果为( )A .B .C .D .6、若一个图形绕着一个定点旋转一个角α(0°<α≤180°)能够与原来的图形重合, 那么这个图形叫做旋转对称图形.例如:正三角形绕着它的中心旋转120°(如图1),能够与原来的正三角形重合,因而正三角形是旋转对称图形.图2是一个五叶风车的示意图,它也是旋转对称图形(α=72°).显然,中心对称图形都是旋转对称图形,但旋转对称图形不一定是中心对称图形.下面四个图形中,是旋转对称图形的有( )B O 时间(t )C O 时间(t ) DO 时间(t )A O 时间(t )图1 图2OAB二、填空题(本题满分18 分,共有 6 道小题,每小题3分)请将7—12各小题的答案填写在12小题后面表格的相应位置上.7、化简:= _________________.8、在某一电路中,当电压保持不变时,电流I(安培)是电阻R(欧姆)的反比例函数,当电阻R=5 欧姆时,电流I = 2 安培.(1)列出电流I 与电阻R之间的函数关系式:(2)当电流I = 0.5 安培时,电阻R的值是_________9、如图,在太阳光下小明直立于旗杆影子的顶端处,此时小明影长为1.40 米,旗杆的影长为7 米,若小明的身高为1.60米,则旗杆高为_________________米.10、如图是某城市三月份1到10日的最低气温随时间变化的统计图:根据条形统计图可知这10天中最低气温的众数是_______℃,最低气温的中位数是_______℃.11、为了估计池塘里有多少条鱼,从池塘里捕捞了1000条鱼做上标记,然后放回池塘里,经过一段时间,等有标记的鱼完全混合于鱼群中以后,再捕捞200条,若其中有标记的鱼有10条,则估计池塘里有鱼______________条.12、观察下列各式:3 = 22-12 5 = 32-227 = 42-329 = 52-42 11 = 62-5213 = 72-62想一想,任意奇数(1除外)等于哪两个数的平方差?设n 为大于 1 的奇数,用关于n 的等式表示这个规律为:n = _________________.三、作图题(本题满分6分)用圆规、直尺作图,不写作法,但要保留作图痕迹.13、为迎接2008年奥运会,青岛市政府欲在一新建广场上修建一个圆形大花坛,并在大花坛内M 点处建一个亭子,如果要经过亭子修一条穿越大花坛的小路.(1)如何设计小路才能使亭子M 位于小路的中点处(在图中画出表示小路的线段即可);(2)若大花坛的直径为30米,花坛中心 O 到亭子M 的距离为10米,则小路大约有多长?(精确到0.1 米)四、解答题(本题满分78分,共有9道小题)14、(本小题满分6分)2003年底,我国研制出一种抗“非典”新药,成年人按规定剂量服用后,每毫升血液中含药量 y(微克)(1微克 = 10 -3毫克)与时间 x ( 小时)的关系满足:y = -x 2 + 4x .问:服药几小时,才能使每毫升血液中含药量达到 6微克? [解]:·· M O [解]:(2)(1)答:15、(本小题满分6分)小明和小亮一起测量底部可以到达的一棵大树AB的高度,按如下步骤进行:①在测点D处安置测倾器,测得大树顶部的仰角∠ACE = α;②量出测点D到大树底部B的水平距离BD = l ;③量出测倾器的高度DC = a;他们测得了三组数据后,制成了测点到大树的距离l,测倾器的高a 的数据的条形统计图(如图1)和仰角α数据的折线统计图(如图2).请你根据两个统计图提供的信息,完成以下任务:(1)把统计图中的相关数据填入相应的表格中;(2)根据得到的样本平均数计算出树高AB(精确到0.1 m).[解]:(2)第三次图第三次图2αDCAEB16、(本小题满分6分)小刚和小明用如图的两个转盘进行“配紫色”游戏,规则如下:分别旋转两个转盘,若其中一个转盘转出了红色,另一个转出了蓝色,则可配成紫色,此时小刚得1分,否则小明得1分.这个游戏对双方公平吗?请说明理由.若你认为 不公平,如何修改规则才能使该游戏对双方公平?[解]:17、(本小题满分8分)阅读下面内容:“如图1,以三角形ABC 三个顶点为圆心,以1为半径的三个圆(两两不相交)与三角形相交,则图中阴影部分的面积之和是多少?”我们可以用如下方法解决这个问题: 设以A、B、C 为圆心的三个扇形的圆心角的度数分别是 n 1、n 2、n 3 ,面积分别是S 1、S 2、S 3 ,由扇形面积公式可知 :S 阴影部分 = S1 + S2+ S 3,∵在△ABC 中,∠A +∠B +∠C = 180° 即:n 1 + n 2 + n 3 = 180∴S 阴影部分 = S 1 + S 2 + S 3根据以上推理过程,回答下列问题: 红蓝 红蓝黄密 封 线(1)以五边形ABCDE的顶点为圆心,以1为半径的五个圆(两两不相交,如图2)与五边形相交,则图中阴影部分的面积之和是多少?请说明理由.[解]:(2)试猜想,以n 边形的n 个顶点为圆心,以1 为半径的n 个圆(两两不相交)与n 边形相S = ________________.18、(本小题满分8分)某印刷厂计划购买5台印刷机,现有胶印机、一体机两种不同设备,其中每台的价格、日印刷量如下表:经预算,该厂购买设备的资金不高于22万元.(1)该厂有几种购买方案?(2)若该厂每天的工作量为印刷17万张,为节约资金,应选择哪种购买方案?[解]:(1)AB C图1ABC图2DE学校_________________姓名_________________考试号_________________密封线(2)19、(本小题满分10分) 如图,以△ABC 的三边为边,在BC 的同一侧分别作三个等边三角形:△ABD 、△BCE 和△ACF .(1)四边形ADEF 是什么四边形?写出你的猜想并说明理由.(2)当△ABC 满足什么条件时,四边形ADEF 是矩形?(写出猜想即可,不要求证明) (3)当△ABC 满足什么条件时,四边形ADEF 为菱形?(写出猜想即可,不要求证明)[解]:(1)EFCBDA(2) (3)20、(本小题满分10分)某瓜果基地市场部为指导该基地某种蔬菜的生产和销售,对往年的市场行情和生产情况进行了调查,提供了如下两个信息图,如甲、乙两图.注:甲、乙两图中的A 、B 、C 、D 、E 、F 、G 、H 所对应的纵坐标分别指相应月份每千克该种蔬菜的售价和成本(生产成本6月份最低,甲图的图象是线段,乙图的图象是抛物线的一部分).请你根据图象提供的信息说明:(1)在3月份出售这种蔬菜,每千克的收益是多少元?(收益 = 售价-成本) (2)哪个月出售这种蔬菜,每千克的收益最大?说明理由. [解]:(1) (2)月月 甲图乙图21、(本小题满分12分)已知:如图1,在△ABC中,AB = AC =5 ,AD为底边BC上的高,且AD = 3.将△ACD 沿箭头所示的方向平移,得到△A'CD'(如图2),A'D' 交AB于E,A'C分别交AB、AD 于G、F,以D'D 为直径作⊙O,设BD'的长为x ,⊙O的面积为y .(1)求y与x 的函数关系式及自变量x的取值范围(不考虑端点);(2)当BD'的长为多少时,⊙O的面积与△ABD的面积相等?(π取3,结果精确到0.1)(3)连结EF,求EF与⊙O 相切时x 的值.[解]:(1)(2)(3)图1 图2 ACB DACB D'DA'GE F←←22、(本小题满分12分)(1)已知:如图1,△ABC 为正三角形,点M 为 BC 边上任意一点,点N 为 CA 边上任意一点,且BM = CN ,BN 与AM 相交于Q 点,试求∠BQM 的度数. [解]:(2)如果将(1)中的正三角形改为正方形ABCD (如图2),点M 为BC 边上任意一点,点N 为CD 边上任意一点,且BM = CN ,BN 与AM 相交于Q 点,那么∠BQM 等于多少度呢?说明理由.[解]:图1AN CBMQ 图2AN CBMDQ(3)如果将(1)中的“正三角形”改为正五边形……正 n 边形,其余条件都不 变,请你根据(1)、(2)的求解思路,将你推断的结论填入下表:(注:正 多边形的各个内角都相等)……CMB AD Q EN NC MB AQE DF CN DMB AX Q 密 封 线亲爱的同学,请认真检查,不要漏题哟! 提示:。
2012年全国中考数学试题分类解析汇编(159套63专题)专题58:开放探究型问题一、选择题二、填空题1. (2012陕西省3分)在同一平面直角坐标系中,若一个反比例函数的图象与一次函数y=2x+6-的图象无.公共点,则这个反比例函数的表达式是 ▲ (只写出符合条件的一个即可). 【答案】5y x=(答案不唯一)。
【考点】开放型问题,反比例函数与一次函数的交点问题,一元二次方程根与系数的关系。
【分析】设反比例函数的解析式为:k y x =, 联立y=2x+6-和k y x=,得k 2x+6x -=,即22x 6x+k 0-= ∵一次函数y=2x+6-与反比例函数k y x= 图象无公共点, ∴△<0,即268k 0<--(),解得k >92。
∴只要选择一个大于92的k 值即可。
如k=5,这个反比例函数的表达式是5y x=(答案不唯一)。
2. (2012广东湛江4分) 请写出一个二元一次方程组 ▲ ,使它的解是x=2y=1⎧⎨-⎩. 【答案】x+y=1x+2y=0⎧⎨⎩(答案不唯一)。
【考点】二元一次方程的解。
【分析】根据二元一次方程解的定义,围绕x=2y=1⎧⎨-⎩列一组等式,例如: 由x +y=2+(-1)=1得方程x +y=1;由x -y=2-(-1)=3得方程x -y=3;由x +2y=2+2(-1)=0得方程x +2y=0;由2x +y=4+(-1)=3得方程2x +y=3;等等,任取两个组成方程组即可,如x+y=1x+2y=0⎧⎨⎩(答案不唯一)。
3. (2012广东梅州3分)春蕾数学兴趣小组用一块正方形木板在阳光做投影实验,这块正方形木板在地面上形成的投影是可能是▲ (写出符合题意的两个图形即可)【答案】正方形、菱形(答案不唯一)。
【考点】平行投影。
【分析】根据平行投影的特点:在同一时刻,平行物体的投影仍旧平行。
所以,在同一时刻,这块正方形木板在地面上形成的投影是平行四边形或特殊的平行四边形,例如,正方形、菱形(答案不唯一)。
勾股定理基础练习题1.(2009·达州中考)如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形A 、B 、C 、D 的边长分别是3、5、2、3,则最大正方形E 的面积是( ) A .13 B .26 C .47 D .94 如图,在55⨯的正方形网格中,以AB 为边画直角△ABC , 使点C 在格点上,满足这样条件的点C 共 ▲ 个.答案:8.2、(2009·滨州中考)如图,已知△ABC 中,AB =17,AC =10,BC 边上的高AD =8, 则边BC 的长为( )A .21B .15C .6D .以上答案都不对答案:选A4、(2009·湖州中考)如图,已知在Rt ABC △中,Rt ACB ∠=∠,4AB =,分别以AC ,BC 为直径作半圆,面积分别记为1S ,2S ,则1S +2S 的值等于 .1.(2010·眉山中考)如图,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,则∠ABC 的度数为( C )A .90°B .60°C .45°D .30°3、(2009·恩施中考) 如图,长方体的长为15,宽为10,高为20,点B 离点C 的距离为5,一只蚂蚁如果要沿着长方体的表面从点A 爬到点B ,需要爬行的最短距离是( B )A .521B .25C .1055+D .354、(2009·滨州中考)某楼梯的侧面视图如图所示,其中4AB =米,30BAC ∠=°,90C ∠=°,因某种活动要求铺设红色地毯,则在AB 段楼梯所铺地毯的长度应为 .5. (2011贵州贵阳,7,3分)如图,△ABC 中,∠C =90°,AC =3,∠B =30°,点P 是BC 边上的动点,则AP 长不可能是C BA52015 10CAB(A )3.5 (B )4.2 (C )5.8 (D )7 【答案】D1. (2011山东德州13,4分)下列命题中,其逆.命题成立的是______________.(只填写序号) ①同旁内角互补,两直线平行;②如果两个角是直角,那么它们相等;③如果两个实数相等,那么它们的平方相等;④如果三角形的三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形. 【答案】① ④4. (2011四川凉山州,15,4分)把命题“如果直角三角形的两直角边长分别为a 、b ,斜边长为c ,那么222a b c +=”的逆命题改写成“如果……,那么……”的形式:。
中考试题专题之6-一元一次方程和二元一次方程组试题及答案一、选择1、(四川省内江市)若关于x ,y 的方程组⎩⎨⎧=+=-n my x m y x 2的解是⎩⎨⎧==12y x ,则n m -为( )A .1B .3C .5D .22、(桂林市、百色市)已知是二元一次方程组的解,则的值为( ).A .1B .-1C . 2D .33、(淄博市)家电下乡是我国应对当前国际金融危机,惠农强农,带动工业生产,促进消费,拉动内需的一项重要举措.国家规定,农民购买家电下乡产品将得到销售价格13%的补贴资金.今年5月1日,甲商场向农民销售某种家电下乡手机20部.已知从甲商场售出的这20部手机国家共发放了2340元的补贴,若设该手机的销售价格为x 元,以下方程正确的是( )A .2013%2340x ⋅=B .20234013%x =⨯C .20(113%)2340x -=D .13%2340x ⋅=4、(齐齐哈尔市)一宾馆有二人间、三人间、四人间三种客房供游客租住,某旅行团20人准备同时租用这三种客房共7间,如果每个房间都住满,租房方案有( )A .4种B .3种C .2种D .1种5、(吉林省)A 种饮料B 种饮料单价少1元,小峰买了2瓶A 种饮料和3瓶B 种饮料,一共花了13元,如果设B 种饮料单价为x 元/瓶,那么下面所列方程正确的是( )A .2(1)313x x -+=B .2(1)313x x ++=C .23(1)13x x ++=D .23(1)13x x +-=6、(深圳市)班长去文具店买毕业留言卡50张,每张标价2元,店老板说可以按标价九折优惠,则班长应付( )A .45元B .90元C .10元D .100元7、(桂林百色)已知是二元一次方程组的解,则的值为( ). 21x y =⎧⎨=⎩71ax by ax by +=⎧⎨-=⎩a b -21x y =⎧⎨=⎩71ax by ax by +=⎧⎨-=⎩a b -A .1B .-1C . 2D .38、(江西)方程组233x y x y -=⎧⎨+=⎩,的解是( )A .12x y =⎧⎨=⎩,. B .21x y =⎧⎨=⎩,. C .11x y =⎧⎨=⎩,. D .23x y =⎧⎨=⎩,. 9、(日照)若关于x ,y 的二元一次方程组⎩⎨⎧=-=+k y x ,k y x 95的解也是二元一次方程632=+y x 的解,则k 的值为 A.43-B.43C.34D.34-10、(福州)二元一次方程组2,0x y x y +=⎧⎨-=⎩的解是( ) A .0,2.x y =⎧⎨=⎩ B .2,0.x y =⎧⎨=⎩ C .1,1.x y =⎧⎨=⎩ D .1,1.x y =-⎧⎨=-⎩11、(长沙)已知三角形的两边长分别为3cm 和8cm ,则此三角形的第三边的长可能是( )A .4cmB .5cmC .6cmD .13cm12、(台湾)已知有10包相同数量的饼干,若将其中1包饼干平分给23名学生,最少剩3片。
湖北省潜江市、仙桃市、天门市、江汉油田2012年中考数学试题(解析版)一、选择题(共10个小题,每小题3分,满分30分)在下列各小题中,均给出四个答案,其中有且只有一个正确答案,请将正确答案的字母代号在答题卡上涂黑,涂错或不涂均为零分1.2012的绝对值是()A.2012 B.﹣2012 C.D.﹣考点:绝对值。
专题:计算题。
分析:根据绝对值的性质直接解答即可.解答:解:∵2012是正数,∴|2012|=2012,故选A.点评:本题考查了绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.某种零件模型如图所示,该几何体(空心圆柱)的俯视图是()A.B.C.D.考点:简单组合体的三视图。
分析:找到从上面看所得到的图形即可.解答:解:空心圆柱由上向下看,看到的是一个圆环.故选C.点评:本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.解答此题时要有一定的生活经验.3.吸烟有害健康.据中央电视台2012年5月30日报道,全世界每因吸烟引起的疾病致死的人数A.0.6×107B.6×106C.60×105D.6×105考点:科学记数法—表示较大的数。
分析:首先把600万化为6000000,再用科学记数法表示,科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:600万=6000000=6×106,故选:B.点评:此题主要考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.不等式组的解集在数轴上表示正确的是()A.B.C.D.考点:在数轴上表示不等式的解集;解一元一次不等式组。
2012年全国各地中考数学阅读理解型问题试题(附答案)2012年全国各地中考数学解析汇编39 阅读理解型问题21.(2012四川达州,21,8分)(8分)问题背景若矩形的周长为1,则可求出该矩形面积的值.我们可以设矩形的一边长为,面积为,则与的函数关系式为:﹥0),利用函数的图象或通过配方均可求得该函数的值.提出新问题若矩形的面积为1,则该矩形的周长有无值或最小值?若有,(小)值是多少?分析问题若设该矩形的一边长为,周长为,则与的函数关系式为:(﹥0),问题就转化为研究该函数的(小)值了.解决问题借鉴我们已有的研究函数的经验,探索函数(﹥0)的(小)值.(1)实践操作:填写下表,并用描点法画出函数(﹥0)的图象:(2)观察猜想:观察该函数的图象,猜想当= 时,函数(﹥0)有最值(填“大”或“小”),是 .(3)推理论证:问题背景中提到,通过配方可求二次函数﹥0)的最大值,请你尝试通过配方求函数(﹥0)的(小)值,以证明你的猜想. 〔提示:当>0时,〕解析:对于(1)按照画函数图象的列表、描点、连线三步骤进行即可;对于(2),由结合图表可知有最小值为4;对于(3),可按照提示,用配方法来求出。
答案:(1)…………………………………………..(1分)………………………………………….(3分)(2)1、小、4………………………………………………………………………..(5分)(3)证明:………………………………………………(7分)当时,的最小值是4即 =1时,的最小值是4………………………………………………………..(8分)点评:本题以阅读理解型的形式,考查学生画函数图象的基本步骤及结合图表求函数最值的观察力,考察了学生的模仿能力、配方思想和类比的能力。
28.(2012江苏省淮安市,28,12分)阅读理解如题28-1图,△ABC中,沿∠BAC的平分线AB1折叠,剪掉重叠部分;将余下部分沿∠B1A1C的平分线A1B2折叠,剪掉重叠部分;将余下部分沿∠BnAnC的平分线AnBn+1折叠,点Bn与点C重合.无论折叠多少次,只要最后一次恰好重合,我们就称∠BAC是△ABC的好角.小丽展示了确定∠BAC是△ABC的好角的两种情形.情形一:如题28-2图,沿等腰三角形ABC顶角∠BAC的平分线AB1折叠,点B 与点C重合;情形二:如题28-3图,沿△ABC的∠BAC的平分线AB1折叠,剪掉重叠部分;将余下的部分沿∠B1A1C的平分线 A1B2折叠,此时点B1与点C重合.探究发现(1)△ABC中,∠B=2∠C,经过两次折叠,∠BAC是不是△ABC的好角? .(填:“是”或“不是”).(2)小丽经过三次折叠发现了∠BAC是△ABC的好角,请探究∠B与∠C(不妨设∠B>∠C)之间的等量关系.根据以上内容猜想:若经过n次折叠∠BAC是△ABC的好角,则∠B与∠C(不妨设∠B>∠C)之问的等量关系为.应用提升(3)小丽找到一个三角形,三个角分别为15 ,60 ,l05 ,发现60 和l05 的两个角都是此三角形的好角.请你完成,如果一个三角形的最小角是4 ,试求出三角形另外两个角的度数,使该三角形的三个角均是此三角形的好角.【解析】(1)利用三角形外角的性质和折叠对称性即可解决;(2)根据第(1)问的结论继续探索;(3)利用“好角”的定义和三角形内角和列出方程解之.具体过程见以下解答.【答案】解: (1) 由折叠的性质知,∠B=∠AA1B1.因为∠AA1B1=∠A1B1C+∠C,而∠B=2∠C,所以∠A1B1C=∠C,就是说第二次折叠后∠A1B1C与∠C重合,因此∠BAC是△ABC的好角.(2)因为经过三次折叠∠BAC是△ABC的好角,所以第三次折叠的∠A2B2C=∠C.如图12-4所示.图12-4因为∠ABB1=∠AA1B1,∠AA1B1=∠A1B1C+∠C,又∠A1B1C=∠A1A2B2,∠A1A2B2=∠A2B2C+∠C,所以∠ABB1=∠A1B1C+∠C=∠A2B2C+∠C+∠C=3∠C.由上面的探索发现,若∠BAC是△ABC的好角,折叠一次重合,有∠B=∠C;折叠二次重合,有∠B=2∠C;折叠三次重合,有∠B=3∠C;…;由此可猜想若经过n 次折叠∠BAC是△ABC的好角,则∠B=n∠C.(3)因为最小角是4 是△ABC的好角,根据好角定义,则可设另两角分别为4m ,4mn (其中m、n都是正整数).由题意,得4m+4mn+4=180,所以m(n+1)=44.因为m、n都是正整数,所以m与n+1是44的整数因子,因此有:m=1,n+1=44;m=2,n+1=22;m=4,n+1=11;m=11,n+1=4;m=22,n+1=2.所以m=1,n=43;m=2,n=21;m=4,n=10;m=11,n=3;m=22,n=1.所以4m=4,4mn=172;4m=8,4mn=168;4m=16,4mn=160;4m=44,4mn=132;4m=88,4mn=88.所以该三角形的另外两个角的度数分别为:4 ,172 ;8 ,168 ;16 ,160 ;44 ,132 ;88 ,88 .【点评】本题主要考查轴对称图形、等腰三角形、三角形形的内角和定理及因式分解等知识点的理解和掌握,本题是阅读理解题,解决本题的关键是读懂题意,理清题目中数字和字母的对应关系和运算规则,然后套用题目提供的对应关系解决问题,具有一定的区分度.23.(2012湖北咸宁,23,10分)如图1,矩形MNPQ中,点E,F,G,H分别在NP,PQ,QM,MN上,若,则称四边形EFGH为矩形MNPQ的反射四边形.图2,图3,图4中,四边形ABCD为矩形,且,.理解与作图:(1)在图2、图3中,点E,F分别在BC,CD边上,试利用正方形网格在图上作出矩形ABCD的反射四边形EFGH.计算与猜想:(2)求图2,图3中反射四边形EFGH的周长,并猜想矩形ABCD的反射四边形的周长是否为定值?启发与证明:(3)如图4,为了证明上述猜想,小华同学尝试延长GF交BC的延长线于M,试利用小华同学给我们的启发证明(2)中的猜想.【解析】(1)根据网格结构,作出相等的角得到反射四边形;(2)图2中,利用勾股定理求出EF=FG=GH=HE的长度,然后可得周长;图3中利用勾股定理求出EF=GH,FG=HE的长度,然后求出周长,得知四边形EFGH 的周长是定值;(3)证法一:延长GH交CB的延长线于点N,再利用“角边角”证明Rt△FCE≌Rt△FCM,根据全等三角形对应边相等可得EF=MF,EC=MC,同理求出NH=EH,NB=EB,从而得到MN=2BC,再证明GM=GN,过点G作GK⊥BC于K,根据等腰三角形三线合一的性质求出MK= MN=8,再利用勾股定理求出GM的长度,然后可求出四边形EFGH的周长;证法二:利用“角边角”证明Rt△FCE≌Rt△FCM,根据全等三角形对应边相等可得EF=MF,EC=MC,再根据角的关系推出∠M=∠HEB,根据同位角相等,两直线平行可得HE∥GF,同理可证GH∥EF,所以四边形EFGH是平行四边形,过点G作GK⊥BC于K,根据边的关系推出MK=BC,再利用勾股定理列式求出GM的长度,然后可求出四边形EFGH的周长.【答案】(1)作图如下: 2分(2)解:在图2中,,∴四边形EFGH的周长为. 3分在图3中,,.∴四边形EFGH的周长为. 4分猜想:矩形ABCD的反射四边形的周长为定值. 5分(3)如图4,证法一:延长GH交CB的延长线于点N.∵ ,,∴ .而,∴Rt△FCE≌Rt△FCM.∴ ,. 6分同理:,.∴ . 7分∵ ,,∴ .∴ . 8分过点G作GK⊥BC于K,则. 9分∴ .∴四边形EFGH的周长为. 10分证法二:∵ ,,∴ .而,∴Rt△FCE≌Rt△FCM.∴ ,. 6分∵ ,,而,∴ .∴HE∥GF.同理:GH∥EF.∴四边形EFGH是平行四边形.∴ .而,∴Rt△FDG≌Rt△HBE.∴ .过点G作GK⊥BC于K,则∴ .∴四边形EFGH的周长为.【点评】本题主要考查了应用与设计作图,全等三角形的判定与性质,勾股定理的应用,矩形的性质,读懂题意理解“反射四边形EFGH”特征是解题的关键.25.(2012贵州黔西南州,25,14分)问题:已知方程x2+x-1=0,求一个一元二次方程,使它的根分别是已知方程根的2倍.解:设所求方程的根为y,则y=2x,所以x=y2.把x=y2代入已知方程,得(y2)2+y2-1=0.化简,得:y2+2y-4=0.故所求方程为y2+2y-4=0.这种利用方程根的代换求新方程的方法,我们称为“换根法”.请用阅读材料提供的“换根法”求新方程(要求:把所求方程化成一般形式):(1)已知方程x2+x-2=0,求一个一元二次方程,使它的根分别是已知方程根的相反数.(2)已知关于x的一元二次方程ax2+bx+c=0(a≠0)有两个不等于零的实数根,求一个一元二次方程,使它的根分别是已知方程根的倒数.【解析】按照题目给出的范例,对于(1)的“根相反”,用“y=-x”作替换;对于(2)的“根是倒数”,用“y=1x”作替换,并且注意有“不等于零的实数根”的限制,要进行讨论.【答案】(1)设所求方程的根为y,则y=-x,所以x=-y.………………(2分) 把x=-y代入已知方程x2+x-2=0,得(-y)2+(-y)-2=0.………………(4分)化简,得:y2-y-2=0.………………(6分)(2)设所求方程的根为y,则y=1x,所以x=1y.………………(8分)把x=1y 代如方程ax2+bx+c=0得.a(1y)2+b 1y+c=0,………………(10分)去分母,得,a+by+cy2=0.……………………(12分)若c=0,有ax2+bx=0,于是方程ax2+bx+c=0有一个根为0,不符合题意.∴c≠0,故所求方程为cy2+by+a=0(c≠0).……………………(14分)【点评】本题属于阅读理解题,读懂题意,理解题目讲述的方法的基础;在实际解题时,还要灵活运用题目提供的方法进行解题,实际上是数学中“转化”思想的运用.八、(本大题16分)26.(2012贵州黔西南州,26,16分)如图11,在平面直角坐标系xoy中,已知抛物线经过点A(0,4),B(1,0),C(5,0)抛物线的对称轴l与x轴相交于点M.(1)求抛物线对应的函数解析式和对称轴.(2)设点P为抛物线(x>5)上的一点,若以A、O、M、P为顶点的四边形的四条边的长度为四个连续的正整数.请你直接写出点P的坐标.(3)连接AC,探索:在直线AC下方的抛物线上是否存在一点N,使△NAC的面积?若存在,请你求出N的坐标;若不存在,请说明理由.【解析】(1)已知抛物线上三点,用“待定系数法”确定解析式;(2)四边形AOMP 中,AO=4,OM=3,过A作x轴的平行线交抛物线于P点,这个P点符合要求“四条边的长度为四个连续的正整数”;(3)使△NAC的面积,AC确定,需要N点离AC的距离,一种方法可以作平行于AC的直线,计算这条直线与抛物线只有一个交点时,这个交点即为N;另一种方法,过AC上任意一点作y轴的平行线交抛物线于N点,这样△NAC被分成两个三角形,建立函数解析式求值.【答案】(1)根据已知条件可设抛物线对应的函数解析式为y=a(x―1)(x―5),………………(1分)把点A(0,4)代入上式,得a=45.………………(2分)∴y=45(x―1)(x―5)=45x2―245x+4=―45(x―3)2―165.………………(3分) ∴抛物线的对称轴是x=3.…………(4分)(2)点P的坐标为(6,4).………………(8分)(3)在直线AC下方的抛物线上存在点N,使△NAC的面积,由题意可设点N的坐标为(t,45t2―245t+4)(0<t<5).………………(9分)如图,过点N作NG∥y轴交AC于点G,连接AN、CN.由点A(0,4)和点C(5,0)可求出直线AC的解析式为:y=―45x+4.………………(10分)把x=t代入y=―45x+4得y=―45t+4,则G(t,―45t+4).………………(11分)此时NG=―45t+4―(45t2―245t+4)=―45t2+205t.………………(12分)∴S△NAC=12NG OC=12(-45t2+205t)×5=―2t2+10t=―2(t-52)2+252.………………(13分)又∵0<t<5,∴当t=52时,△CAN的面积,值为252 .………………(14分)t=52时,45 t2-245t+4=-3.………………(15分)∴点N的坐标为(52,-3).……………………(16分)【点评】本题是一道二次函数、一次函数、三角形的综合题,其中第(3)问也是一道具有难度的“存在性”探究问题.本题主要考查二次函数、一次函数的图象与性质的应用.专项十阅读理解题19. (2012山东省临沂市,19,3分)读一读:式子“1+2+3+4+……+100”表示从1开始的100个连续自然数的和,由于式子比较长,书写不方便,为了简便起见,我们将其表示为,这里“ ”是求和符号,通过以上材料的阅读,计算 = . 【解析】式子“1+2+3+4+……+100”的结果是,即 = ;又∵ ,,………,∴ = + +…+ =1- ,∴ = = + +…+ =1- = .【答案】【点评】本题是一道找规律的题目,要求学生的通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题.此题重点除首位两项外,其余各项相互抵消的规律.23. (2012浙江省嘉兴市,23,12分)将△ABC绕点A按逆时针方向旋转θ度,并使各边长变为原来的n倍,得△AB′ C′ ,即如图①,∠BAB′ =θ, ,我们将这种变换记为.(1)如图①,对△ABC作变换得△AB′ C′ ,则 : =_______;直线BC与直线B′C′所夹的锐角为_______度;(2)如图② ,△ABC中,∠BAC=30° ,∠ACB=90° ,对△ABC作变换得△AB′ C′ ,使点B、C、在同一直线上,且四边形ABB′C′为矩形,求θ和n的值;(3)如图③ ,△ABC中,AB=AC,∠BAC=36° ,BC=1,对△ABC作变换得△AB′C′ ,使点B、C、B′在同一直线上,且四边形ABB′C′为平行四边形,求θ和n的值.【解析】(1) 由题意知, θ为旋转角, n为位似比.由变换和相似三角形的面积比等于相似比的平方,得 : = 3, 直线BC与直线B′C′所夹的锐角为60°; (2)由已知条件得θ=∠CAC′=∠BAC′-∠BAC=60°.由直角三角形中, 30°锐角所对的直角边等于斜边的一半得n==2.(3) 由已知条件得θ=∠CAC′=∠ACB=72°.再由两角对应相等,证得△ABC∽△B′BA,由相似三角形的性质求得n== .【答案】(1) 3;60°.(2) ∵四边形ABB′C′是矩形,∴∠BAC′=90°.∴θ=∠CAC′=∠BAC′-∠BAC=90°-30°=60°.在Rt△ABB′中,∠ABB′=90°, ∠BAB′=60°,∴n==2.(3) ∵四边形ABB′C′是平行四边形,∴AC′∥BB′,又∵∠BAC=36°∴θ=∠CAC′=∠ACB=72°∴∠C′AB′=∠ABB′=∠BAC=36°,而∠B=∠B,∴△ABC∽△B′BA,∴AB2=CB B′B=CB (BC+CB′),而CB′=AC=AB=B′C′, BC=1, ∴AB2=1 (1+AB)∴AB=,∵AB>0,∴n== .【点评】本题是一道阅读理解题.命题者首先定义了一种变换,要求考生根据这种定义解决相关的问题. 读懂定义是解题的关键所在.本题所涉及的知识点有相似三角形的面积比等于相似比的平方,黄金比等.27.(2011江苏省无锡市,27,8′)对于平面直角坐标系中的任意两点 ,我们把叫做两点间的直角距离,记作 .(1)已知O为坐标原点,动点满足 =1,请写出之间满足的关系式,并在所给的直角坐标系中出所有符合条件的点P所组成的图形;(2)设是一定点,是直线上的动点,我们把的最小值叫做到直线的直角距离,试求点M(2,1)到直线的直角距离。
往年四川省达州市中考数学真题及答案本试卷分为第I 卷(选择题)和第II 卷(非选择题)两部分。
第I 卷1至2页,第II 卷3至10页。
考试时间120分钟,满分120分。
第I 卷(选择题,共30分)温馨提示:1、答第I 卷前,请考生务必将姓名、准考证号、考试科目等按要求填涂在机读卡上。
2、每小题选出正确答案后,请用2B 铅笔把机读卡上对应题号的答案标号涂黑。
3、考试结束后,请将本试卷和机读卡一并交回。
一.选择题:(本题10个小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.-2013的绝对值是( )A .2013B .-2013C .±2013D .12013-答案:A解析:负数的绝对值是它的相反数,故选A 。
2.某中学在芦山地震捐款活动中,共捐款二十一万三千元。
这一数据用科学记数法表示为( )A .321310⨯元B .42.1310⨯元C .52.1310⨯元D .60.21310⨯元 答案:C解析:科学记数法写成:10na ⨯形式,其中110a ≤<,二十一万三千元=213000=52.1310⨯元 3.下列图形中,既是轴对称图形,又是中心对称图形的是( )答案:D解析:A 、C 只是轴对称图形,不是中心对称图形;B 是中心对称图形,不是轴对称轴图形,只有D 符合。
4.甲、乙、丙三家超市为了促销一种定价相同的商品,甲超市先降价20%,后又降价10%;乙超市连续两次降价15%;丙超市一次降价30%。
那么顾客到哪家超市购买这种商品更合算( ) A .甲 B .乙 C .丙 D .一样 答案:C解析:设原价a 元,则降价后,甲为:a (1-20%)(1-10%)=0.72a 元,乙为:(1-15%)2a =0.7225a 元,丙为:(1-30%)a =0.7a 元,所以,丙最便宜。
5.下面是一天中四个不同时刻两座建筑物的影子,将它们按时间先后顺序正确的是( )A .(3)(1)(4)(2)B .(3)(2)(1)(4)C .(3)(4)(1)(2)D .(2)(4)(1)(3) 答案:C解析:因为太阳从东边出来,右边是东,所以,早上的投影在左边,(3)最先,下午的投影在右边,(2)最后,选C 。
2012年达州市中考试卷数 学(考试时间100分钟,满分100分)第Ⅰ卷(选择题 共24分)一、选择题:(本题8个小题,每小题3分,共24分)在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(2012四川达州,1,3分)如-2的倒数是( ) A 、2 B 、-2 C 、21 D 、21- 【答案】D2.(2012四川达州,2,3 )C . 【答案】A3.(2012四川达州,3,3分)如图,⊙O 是△ABC 的外接圆,连结OB 、OC ,若OB=BC ,则∠BAC 等于( )A 、60°B 、45°C 、30°D 、20°【答案】C4.(2012四川达州,4,3分)今年我市参加中考的学生人数约为41001.6⨯人.对于这个近似数,下列说法正确的是( )A 、精确到百分位,有3个有效数字B 、精确到百位,有3个有效数字C 、精确到十位,有4个有效数字D 、精确到个位,有5个有效数字 【答案】B5.(A 、145万人 130万人B 、103万人 130万人C 、42万人 112万人D 、103万人 112万人 【答案】D6.(2012四川达州,6,3分)一次函数)0(1≠+=k b kx y 与反比例函数)0(2≠=m xmy ,在同一直角坐标系中的图象如图所示,若1y ﹥2y ,则x 的取值范围是( )A 、-2﹤x ﹤0或x ﹥1B 、x ﹤-2或0﹤x ﹤1C 、x ﹥1D 、-2﹤x ﹤1 【答案】A7.(2012四川达州,7,3分)为保证达万高速公路在2012年底全线顺利通车,某路段规定在若干天内完成修建任务.已知甲队单独完成这项工程比规定时间多用10天,乙队单独完成这项工程比规定时间多用40天,如果甲、乙两队合作,可比规定时间提前14天完成任务.若设规定的时间为x 天,由题意列出的方程是( )A 、141401101+=-+-x x xB 、141401101-=+++x x x C 、141401101-=+-+x x x D 、401141101-=++-x x x 【答案】B8.(2012四川达州,8,3分)如图,在梯形ABCD 中,AD ∥BC ,E 、F 分别是AB 、CD 的中点,则下列结论:①EF ∥AD ; ②S △ABO =S △DCO ;③△OGH 是等腰三角形;④BG=DG ;⑤EG=HF.其中正确的个数是( )A 、1个B 、2个C 、3个D 、4个 【答案】D第Ⅱ卷(非选择题 共76分)二、填空题(本题7个小题,每小题3分,共21分)把最后答案直接填在题中的横线上.9.(2012四川达州,9,3分)写一个比-3小的整数 . 【答案】-2(答案不唯一)10.(2012四川达州,10,3分)实数m 、n 在数轴上的位置如右图所示,化简:n m -= .【答案】n -m11.(2012四川达州,11,3分)已知圆锥的底面半径为4,母线长为6,则它的侧面积是 .(不取近似值) 【答案】24π12.(2012四川达州,12,3分)如右图,在某十字路口,汽车可直行、可左转、可右转.若这三种可能性相同,则两辆汽车....经过该路口都向右转的概率为 .【答案】9113.(2012四川达州,13,3分)若关于x 、y 的二元一次方程组⎩⎨⎧-=+-=+22132y x k y x 的解满足y x +﹥1,则k 的取值范围是 .【答案】k >214.(2012四川达州,14,3分)将矩形纸片ABCD ,按如图所示的方式折叠,点A 、点C 恰好落在对角线BD 上,得到菱形BEDF.若BC=6,则AB 的长为 .【答案】3215. (2012四川达州,15,3分)将边长分别为1、2、3、4……19、20的正方形置于直角坐标系第一象限,如图中方式叠放,则按图示规律排列的所有阴影部分的面积之和为 .【答案】210三、解答题:(55分)解答时应写出必要的文字说明、证明过程或演算步骤. (一)(本题2个小题,共9分) 16.(2012四川达州,16,4分)计算:-+-8)2012(04sin 1)21(45-+【答案】解:原式=2224221+⨯-+ =222221+-+=317.(2012四川达州,17,5分)先化简,再求值: 624)373(+-÷+--a a a a ,其中1-=a 【答案】原式=)3(243162+-÷+-a a a a=4)3(23)4)(4(-+∙+-+a a a a a=2(a +4)=2a +8当a=-1时,原式=2×(-1)+8=6(二)(本题2个小题,共12分) 18. (2012四川达州,18,6分)(6分)今年5月31日是世界卫生组织发起的第25个“世界无烟日”.为了更好地宣传吸烟的危害,某中学八年级一班数学兴趣小组设计了如下调查问卷,在达城中心广场随机调查了部分吸烟人群,并将调查结果绘制成统计图.根据以上信息,解答下列问题:(1)本次接受调查的总人数是 人,并把条形统计图补充完整.(2)在扇形统计图中, C 选项的人数百分比是 ,E 选项所在扇形的圆心角的度数是 . (3)若通川区约有烟民14万人,试估计对吸烟有害持“无所谓”态度的约有多少人?你对这部分人群有何建议?【答案】(1)300(1分) 补全统计图如下:(2)26% , 36°(3)解:A 选项的百分比为:30012×100%=4% 对吸烟有害持“无所谓”态度的人数为:14×4%=0.56(万)建议:只要答案合理均可19.(2012四川达州,19,6分)(6分)大学生王强积极响应“自主创业”的号召,准备投资销售一种进价为每件40元的小家电.通过试营销发现,当销售单价在40元至90元之间(含40元和90元)时,每月的销售量y (件)与销售单价x (元)之间的关系可近似地看作一次函数,其图象如图所示.(1)求y 与x 的函数关系式.(2)设王强每月获得的利润为p (元),求p 与x 之间的函数关系式;如果王强想要每月获得2400元的利润,那么销售单价应定为多少元?【答案】解(1)设y 与x 的函数关系式为:)0(≠+=k b kx y 由题意得⎩⎨⎧=+=+1006516050b k b k 解得⎩⎨⎧=-=3604b k∴3604+-=x y (40≤x ≤90)(2)由题意得,p 与x 的函数关系式为:)3604)(40(+--=x x p=1440052042-+-x x当P=2400时24001440052042=-+-x x 解得601=x , 702=x∴销售单价应定为60元或70元(三)(本题2个小题,共15分) 20.(2012四川达州,20,7分)(7分)数学课上,探讨角平分线的作法时,李老师用直尺和圆规作角平分线,方法如下:小颖的身边只有刻度尺,经过尝试,她发现利用刻度尺也可以作角平分线. 根据以上情境,解决下列问题:①李老师用尺规作角平分线时,用到的三角形全等的判定方法是_________. ②小聪的作法正确吗?请说明理由.③请你帮小颖设计用刻度尺作角平分线的方法.(要求:作出图形,写出作图步骤,不予证明) 【答案】(1)SSS(2)解:小聪的作法正确.理由:∵PM ⊥OM , PN ⊥ON∴∠OMP=∠ONP=90° 在Rt △OMP 和Rt △ONP 中 ∵OP=OP , OM=ON∴Rt △OMP ≌Rt △ONP (HL ) ∴∠MOP=∠NOP ∴OP 平分∠AOB(3)解:如图所示步骤:①利用刻度尺在OA 、OB 上分别截取OG=OH. ②连结GH ,利用刻度尺作出GH 的中点Q. ③作射线OQ.则OQ 为∠AOB 的平分线21.(2012四川达州,21,8分)(8分) 问题背景若矩形的周长为1,则可求出该矩形面积的最大值.我们可以设矩形的一边长为x ,面积为s ,则s 与x 的函数关系式为: x x x s (212+-=﹥0),利用函数的图象或通过配方均可 求得该函数的最大值. 提出新问题若矩形的面积为1,则该矩形的周长有无最大值或最小值?若有,最大(小)值是多少? 分析问题若设该矩形的一边长为x ,周长为y ,则y 与x 的函数关系式为:)1(2xx y += (x ﹥0),问题就转化为研究该函数的最大(小)值了. 解决问题借鉴我们已有的研究函数的经验,探索函数)1(2xx y +=(x ﹥0)的最大(小)值. (1)实践操作:填写下表,并用描点法 画出函数)1(2xx y +=(x ﹥0)的图象:(2)观察猜想:观察该函数的图象,猜想当x = 时,函数)1(2xx y +=(x ﹥0)有最 值(填“大”或“小”),是 .(3)推理论证:问题背景中提到,通过配方可求二次函数x x x s (212+-=﹥0)的最 大值,请你尝试通过配方求函数)1(2xx y +=(x ﹥0)的最大(小)值,以证明你的 猜想. 〔提示:当x >0时,2)(x x =〕 【答案】(1)(2)1、小、4(3)证明:⎥⎦⎤⎢⎣⎡+=22)(1)(2x x y ⎥⎦⎤⎢⎣⎡++-=2)(12)(222x x =4)1(22+-xx 当01=-xx 时,y 的最小值是4 即x =1时,y 的最小值是4(四)(本题2个小题,共19分)22.(2012四川达州,22,7分)(7分)如图,C 是以AB 为直径的⊙O 上一点,过O 作OE ⊥AC 于点E ,过点A 作⊙O 的切线交OE 的延长线于点F ,连结CF 并延长交BA 的延长线于点P.(1)求证:PC 是⊙O 的切线.(2)若AF=1,OA=22,求PC 的长. 【答案】(1)证明:连结OC∵OE ⊥AC ∴AE=CE ∴FA=FC∴∠FAC=∠FCA ∵OA=OC∴∠OAC=∠OCA∴∠OAC+∠FAC=∠OCA+∠FCA 即∠FAO=∠FCO∵FA 与⊙O 相切,且AB 是⊙O 的直径 ∴FA ⊥AB∴∠FCO=∠FAO=90° ∴PC 是⊙O 的切线(2)∵PC 是⊙O 的切线∴∠PCO=90° 而∠FPA=∠OPC ∠PAF=90°∴△PAF ∽△PCO∴COAFPC PA = ∵CO=OA=22,AF=1 ∴PC=22PA设PA=x ,则PC=x 22在Rt △PCO 中,由勾股定理得 222)22()22()22(+=+x x 解得:724=x ∴PC 716=23.(2012四川达州,23,12分)(12分)如图1,在直角坐标系中,已知点A (0,2)、点B (-2,0),过点B 和线段OA 的中点C 作直线BC ,以线段BC 为边向上作正方形BCDE. (1)填空:点D 的坐标为( ),点E 的坐标为( ). (2)若抛物线)0(2≠++=a c bx ax y 经过A 、D 、E 三点,求该抛物线的解析式.(3)若正方形和抛物线均以每秒5个单位长度的速度沿射线BC 同时向上平移,直至正方形的顶点E 落在y 轴上时,正方形和抛物线均停止运动.①在运动过程中,设正方形落在y 轴右侧部分的面积为s ,求s 关于平移时间t (秒)的函数关系式,并写出相应自变量t 的取值范围.②运动停止时,求抛物线的顶点坐标.【答案】(1)D (-1,3)、E (-3,2)(2分) (2)抛物线经过(0,2)、(-1,3)、(-3,2),则⎪⎩⎪⎨⎧=+-=+-=23932c b a c b a c 解得 ⎪⎪⎪⎩⎪⎪⎪⎨⎧=-=-=23121c b a ∴223212+--=x x y(3)①当点D 运动到y 轴上时,t=12. 当0<t≤21时,如下图设D′C′交y 轴于点F ∵ tan ∠BCO=OCOB=2,又∵∠BCO=∠FCC′ ∴ tan ∠FCC′=2, 即C O C F ''=2∵CC′=5t,∴FC′=25t.∴S △CC′F =21CC′·FC′=521t×52t=5 t 2 当点B 运动到点C 时,t=1. 当21<t≤1时,如下图设D′E′交y 轴于点G ,过G 作GH ⊥B′C′于H.在Rt △BOC 中,BC=51222=+∴GH=5,∴CH=21GH=25 ∵CC′=5t,∴HC′=5t -25,∴GD′=5t -25∴S 梯形CC′D′G =21(5t -25+5t) 5=5t -45当点E 运动到y 轴上时,t=23.当1<t≤23时,如下图所示设D′E′、E′B′分别交y 轴于点M 、N ∵CC′=5t ,B′C′=5,∴CB′=5t -5, ∴B′N=2CB′=52t -52 ∵B′E′=5,∴E′N=B′E′-B′N=53-52t∴E′M=21E′N=21(53-52t) ∴S △MNE′ =21(53-52t)·21(53-52t)=5t 2-15t+445∴S 五边形B′C′D′MN =S 正方形B′C′D′E′ -S △MNE′ =-2)5((5t 2-15t+445)=-5t 2+15t -425综上所述,S 与x 的函数关系式为: 当0<t≤21时, S=52t 当21<t≤1时,S=5t 45- 当1<t≤23时,S=-5t 2+15t 425-②当点E 运动到点E′时,运动停止.如下图所示∵∠CB′E′=∠BOC=90°,∠BCO=∠B′CE′数学试卷第11页(共11页) ∴△BOC ∽△E′B′C∴CE BC E B OB '='' ∵OB=2,B′E′=BC=5∴CE '=552∴CE′=25 ∴OE′=OC+CE′=1+25=27 ∴E′(0,27) 由点E (-3,2)运动到点E′(0,27),可知整条抛物线向右平移了3个单位,向上平移了23个单位.∵223212+--=x x y =825)23(212++-=x y ∴原抛物线顶点坐标为(23-,825) ∴运动停止时,抛物线的顶点坐标为(23,837)。
四川各市2012年中考数学试题分类解析汇编专题6:函数的图像与性质一、选择题1. (2012四川乐山3分)若实数a、b、c满足a+b+c=0,且a<b<c,则函数y=ax+c的图象可能是【】A.B.C.D.【答案】A。
【考点】一次函数图象与系数的关系。
【分析】∵a+b+c=0,且a<b<c,∴a<0,c>0,(b的正负情况不能确定也无需确定)。
a<0,则函数y=ax+c图象经过第二四象限,c>0,则函数y=ax+c的图象与y轴正半轴相交,观察各选项,只有A选项符合。
故选A。
2. (2012四川乐山3分)二次函数y=ax2+bx+1(a≠0)的图象的顶点在第一象限,且过点(﹣1,0).设t=a+b+1,则t值的变化范围是【】A.0<t<1B.0<t<2C.1<t<2D.﹣1<t<1【答案】B。
【考点】二次函数图象与系数的关系。
【分析】∵二次函数y=ax2+bx+1的顶点在第一象限,且经过点(﹣1,0),∴a﹣b+1=0,a<0,b>0,∵由a=b﹣1<0得b<1,∴0<b<1①,∵由b=a+1>0得a>﹣1,∴﹣1<a<0②。
∴由①②得:﹣1<a+b<1。
∴0<a+b+1<2,即0<t<2。
故选B。
3. (2012四川宜宾3分)给出定义:设一条直线与一条抛物线只有一个公共点,且这条直线与这条抛物线的对称轴不平行,就称直线与抛物线相切,这条直线是抛物线的切线.有下列命题:①直线y=0是抛物线y=14x2的切线②直线x=﹣2与抛物线y=14x 2相切于点(﹣2,1) ③直线y=x+b 与抛物线y=14x 2相切,则相切于点(2,1)④若直线y=kx ﹣2与抛物线y=14x 2 相切,则实数其中正确的命题是【 】 A . ①②④B . ①③C . ②③D . ①③④4. (2012四川内江3分)已知反比例函数xk y =的图像经过点(1,-2),则k 的值为【 】A.2B.21- C.1 D.-2【答案】D 。