九年级数学第一次诊断考试试卷
- 格式:doc
- 大小:307.00 KB
- 文档页数:6
东城区2023—2024学年度第二学期初三年级统一测试(一)数学试卷考生须知1.本试卷共8页,共三道大题,28道小题,满分100分,考试时间120分钟.2.在试卷和答题卡上准确填写学校、班级、姓名和教育ID 号.3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效.4.在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答.5.考试结束后,将本试卷、答题卡和草稿纸一并交回.一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.在下列几何体中,俯视图是矩形的几何体是( )A .B .C .D .2.2024年2月29日,在国家统计局发布的《中华人民共和国2023年国民经济和社会发展统计公报》中,2023年全年完成造林面积400万公顷,其中人工造林面积133万公顷.将数字1330000用科学记数法表示应为()A .71.3310⨯B .513.310⨯C .61.3310⨯D .70.1310⨯3.在平面直角坐标系xOy 中,点()0,2A ,()1,0B -,()2,0C 为ABCD 的顶点,则顶点D 的坐标为( )A .()3,2-B .()2,2C .()3,2D .()2,34.若实数a ,b 在数轴上的对应点的位置如图所示,在下列结论中,正确的是()A .a b <B .11a b +<+C .22a b <D .a b>-5.在平面直角坐标系xOy 中,点()1,2P 在反比例函数k y x =(k 是常数,0k ≠)的图象上.下列各点中,在该反比例函数图象上的是()A .()2,0-B .()1,2-C .()1,2--D .()1,2-6.如图,AB 是O 的弦,CD 是O 的直径,CD AB ⊥于点E .在下列结论中,不一定成立的是( )A .AE BE =B .90CBD ∠=︒C .2COB D∠=∠D .COB C ∠=∠7.一个不透明的口袋中有三个完全相同的小球,把它们分别标号为1,2,3.随机摸出一个小球后放回,摇匀后再随机摸出一个小球,两次摸出的小球标号相同的概率为()A .12B .13C .16D .198.2024年1月23日,国内在建规模最大塔式光热项目——甘肃省阿克塞汇东新能源“光热+光伏”试点项目,一万多面定日镜(如图1)全部安装完成.该项目建成后,年发电量将达17亿千瓦时.该项目采用塔式聚光热技术,使用国内首创的五边形巨蜥式定日镜,单块定日镜(如图2)的形状可近似看作正五边形,面积约为248m ,则该正五边形的边长大约是( )(结果保留一位小数,参考数据:tan 360.7︒≈,tan 54 1.4︒≈ 6.5≈ 4.6≈)A .5.2mB .4.8mC .3.7mD .2.6m二、填空题(本题共16分,每小题2分)9x 的取值范围是______.10.因式分解:2218xy x -=______.11.方程323x x =-的解为______.12.若关于x 的一元二次方程220x x m -+=有两个不相等的实数根,则实数m 的取值范围是______.13.为了解某校初三年级500名学生每周在校的体育锻炼时间(单位:小时),随机抽取了50名学生进行调查,结果如下表所示:锻炼时间x56x ≤<67x ≤<78x ≤<8x ≥学生人数1016195以此估计该校初三年级500名学生一周在校的体育锻炼时间不低于7小时的约有______人.14.在Rt ABC △中,90A ∠=︒,点D 在AC 上,DE BC ⊥于点E ,且DE DA =,连接DB .若20C ∠=︒,则DBE ∠的度数为______°.15.阅读材料:如图,已知直线l 及直线l 外一点P .按如下步骤作图:①在直线l 上任取两点A ,B ,作射线AP ,以点P 为圆心,PA 长为半径画弧,交射线AP 于点C ;②连接BC ,分别以点B ,C 为圆心,大于12BC 的长为半径画弧,两弧分别交于点M ,N ,作直线MN ,交BC 于点Q ;③作直线PQ .回答问题:(1)由步骤②得到的直线MN 是线段BC 的______;(2)若CPQ △与CAB △的面积分别为1S ,2S ,则12:S S ______.16.简单多面体的顶点数(V )、面数(F )、棱数(E )之间存在一定的数量关系,称为欧拉公式.(1)四种简单多面体的顶点数、面数、棱数如下表:名称图形顶点数(V )面数(F )棱数(E )三棱锥446长方体8612五棱柱10715正八面体6812在简单多面体中,V ,F ,E 之间的数量关系是______;(2)数学节期间,老师布置了让同学们自制手工艺品进行展示的任务,小张同学计划做一个如图所示的简单多面体作品.该多面体满足以下两个条件:①每个面的形状是正三角形或正五边形;②每条棱都是正三角形和正五边形的公共边.小张同学需要准备正三角形和正五边形的材料共______个.三、解答题(本题共68分,第17-22题,每题5分,第23-26题,每题6分,第27-28题,每题7分)解答应写出文字说明、演算步骤或证明过程.17()02cos30π12-︒+---.18.解不等式组:26516132x x x +<⎧⎪+-⎨-≥⎪⎩.19.已知290x y --=,求代数式226344x y x xy y--+的值.20.如图,四边形ABCD 是菱形.延长BA 到点E ,使得AE AB =,延长DA 到点F ,使得AF AD =,连接BD ,DE ,EF ,FB .(1)求证:四边形BDEF 是矩形;(2)若120ADC ∠=︒,2EF =,求BF 的长.21.每当优美的“东方红”乐曲从北京站的钟楼响起时,会唤起很多人的回忆,也引起了同学们的关注.某数学兴趣小组测量北京站钟楼AB 的高度,同学们发现在钟楼下方有建筑物遮挡,不能直接到达钟楼底部点B 的位置,被遮挡部分的水平距离为BC 的长度.通过对示意图的分析讨论,制定了多种测量方案,其中一种方案的测量工具是皮尺和一根直杆.同学们在某两天的正午时刻测量了钟楼顶端A 的影子D 到点C 的距离,以及同一时刻直杆的高度与影长.设AB 的长为x 米,BC 的长为y米.测量数据(精确到0.1米)如表所示:直杆高度直杆影长CD 的长第一次1.00.615.8第二次 1.00.720.1(1)由第一次测量数据列出关于x ,y 的方程是______,由第二次测量数据列出关于x ,y 的方程是______;(2)该小组通过解上述方程组成的方程组,已经求得10y =,则钟楼的高度约为______米.22.在平面直角坐标系xOy 中,一次函数y kx b =+(k 为常数,0k ≠)的图象由函数13y x =的图象平移得到,且经过点()3,2A ,与x 轴交于点B .(1)求这个一次函数的解析式及点B 的坐标;(2)当3x >-时,对于x 的每一个值,函数y x m =+的值大于一次函数y kx b =+的值,直接写出m 的取值范围.23.某校初三年级两个班要举行韵律操比赛.两个班各选择8名选手,统计了他们的身高(单位:cm ),数据整理如下:a .1班 168 171 172 174 174 176 177 1792班 168 170 171 174 176 176 178 183b .每班8名选手身高的平均数、中位数、众数如下:班级平均数中位数众数1班173.8751741742班174.5m n 根据以上信息,回答下列问题:(1)写出表中m ,n 的值;(2)如果某班选手的身高的方差越小,则认为该班选手的身高比较整齐.据此推断:在1班和2班的选手中,身高比较整齐的是______班(填“1”或“2”);(3)1班的6位首发选手的身高分别为171,172,174,174,176,177.如果2班已经选出5位首发选手,身高分别为171,174,176,176,178,要使得2班6位首发选手的平均身高不低于1班6位首发选手的平均身高,且方差尽可能小,则第六位选手的身高是______cm .24.如图,AB 为O 的直径,点C 在O 上,EAC CAB ∠=∠,直线CD AE ⊥于点D ,交AB 的延长线于点F .(1)求证:直线CD 为O 的切线;(2)当1tan 2F =,4CD =时,求BF 的长.25.小明是一位羽毛球爱好者,在一次单打训练中,小明对“挑球”这种击球方式进行路线分析,球被击出后的飞行路线可以看作是抛物线的一部分.建立如图所示的平面直角坐标系xOy ,击球点P 到球网AB 的水平距离 1.5m OB =.小明在同一击球点练习两次,球均过网,且落在界内.第一次练习时,小明击出的羽毛球的飞行高度y (单位:m )与水平距离x (单位:m )近似满足函数关系()20.2 2.5 2.35y x =--+.第二次练习时,小明击出的羽毛球的飞行高度y (单位:m )与水平距离x (单位:m )的几组数据如下:水平距离x /m01234飞行高度y /m 1.1 1.6 1.92 1.9根据上述信息,回答下列问题:(1)直接写出击球点的高度;(2)求小明第二次练习时,羽毛球的飞行高度y 与水平距离x 满足的函数关系式;(3)设第一次、第二次练习时,羽毛球落地点与球网的距离分别为1d ,2d ,则1d ______2d (填“>”,“<”或“=”).26.在平面直角坐标系xOy 中,()11,M x y ,()22,N x y 是抛物线()210y ax bx a =++>上任意两点,设抛物线的对称轴为直线x t =.(1)若点()2,1在该抛物线上,求t 的值;(2)当0t ≤时,对于22x >,都有12y y <,求1x 的取值范围.27.在Rt ABC △中,90BAC ∠=︒,AB AC =,点D ,E 是BC 边上的点,12DE BC =,连接AD .过点D 作AD 的垂线,过点E 作BC 的垂线,两垂线交于点F .连接AF 交BC 于点G .(1)如图1,当点D 与点B 重合时,直接写出DAF ∠与BAC ∠之间的数量关系;(2)如图2,当点D 与点B 不重合(点D 在点E 的左侧)时,①补全图形;②DAF ∠与BAC ∠在(1)中的数量关系是否仍然成立?若成立,加以证明;若不成立,请说明理由.(3)在(2)的条件下,直接用等式表示线段BD ,DG ,CG 之间的数量关系.28.在平面直角坐标系xOy 中,已知线段PQ 和直线1l ,2l ,线段PQ 关于直线1l ,2l 的“垂点距离”定义如下:过点P 作1PM l ⊥于点M ,过点Q 作2QN l ⊥于点N ,连接MN ,称MN 的长为线段PQ 关于直线1l 和2l 的“垂点距离”,记作d .(1)已知点()2,1P ,()1,2Q ,则线段PQ 关于x 轴和y 轴的“垂点距离”d 为______;(2)如图1,线段PQ 在直线3y x =-+上运动(点P 的横坐标大于点Q 的横坐标),若PQ =段PQ 关于x 轴和y 轴的“垂点距离”d 的最小值为______;(3)如图2,已知点(0,A ,A 的半径为1,直线y x b =+与A 交于P ,Q 两点(点P 的横坐标大于点Q 的横坐标),直接写出线段PQ 关于x 轴和直线y =的“垂点距离”d 的取值范围.。
2023年盐城市大丰区九年级中考数学第一次调研考试卷注意事项:1.本次考试时间为120分钟,卷面总分为150分.考试形式为闭卷.2.本试卷共6页,在检查是否有漏印、重印或错印后再开始答题.3.所有试题必须作答在答题卡上规定的区域内,注意题号必须对应,否则不给分.4.答题前,务必将姓名、准考证号用0.5毫米黑色签字笔填写在试卷及答题卡上.一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.2023的相反数是(▲)A .2023-B .2023C .12023D .12023-2.下列运算中,正确的是(▲)A .a 6÷a 2=a 3B .246a a a -⋅=C .(ab )3=a 3b 3D .(a 2)4=a 63.使式子1-x 有意义,x 的取值范围是(▲)A .x >1B .x =1C .x ≥1D .x ≤14.为了发扬“中国航天精神”,每年的4月24日设立为“中国航天日”.正方体的每个面上都有一个汉字,如图是它的一种平面展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是(▲)A .航B .天C .精D .神第4题图第5题图第6题图5.如图,A 、B 、C 是⊙O 上的点,OC ⊥AB ,垂足为点D ,若OA =5,AB =8,则线段CD 的长为(▲)A .5B .4C .3D .26.一个小球在如图所示的地板上自由滚动,并随机停在某块方砖上.如果每一块方砖除颜色外完全相同,那么小球最终停留在黑砖上的概率是(▲)A .49B .59C .23D .457.若x =2是关于x 的一元二次方程220x mx +-=的一个根,则m 的值为(▲)A .1B .3C .1-D .3-8.在三张透明纸上,分别有∠AOB 、直线l 及直线l 外一点P 、两点M 与N ,下列操作能通过折叠透明纸实现的有(▲)①图1,∠AOB 的角平分线②图2,过点P 垂直于直线l 的垂线③图3,点M 与点N 的对称中心A .①B .①②C .②③D .①②③第8题图1第8题图2第8题图3二、填空题(本大题共有8小题,每小题3分,共24分.不需写出解答过程,请将答案直接写在答题卡的相应位置上)9.分解因式:x 2-9=▲.10.盐城,一座让人打开心扉的城市.这里生态环境优美,文化底蕴丰厚,交通便捷,以“东方湿地之都,仙鹤神鹿世界”而闻名.盐城湿地面积约769700公顷,将数字769700用科学记数法表示为▲.第10题图第12题图11.从甲、乙、丙三人中选一人参加环保知识决赛,经过两轮测试,他们的平均成绩都是88.9,方差分别是s甲2=1.82,s乙2=2.51,s丙2=3.42,你认为这三人中最适合参加决赛的选手是▲(填“甲”或“乙”或“丙”).12.如图,用一个圆心角为150°,半径为6的扇形作一个圆锥的侧面,这个圆锥的底面圆的半径为▲.13.中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(我国古代货币单位);马二匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹x 两,牛每头y 两,根据题意可列方程组为▲.第13题图第14题图14.如图,△ABC 中,∠A =40°,△ABC 绕点B 顺时针旋转一定的角度得到△A 1BC 1,若点C 恰好在线段A 1C 1上,A 1C 1∥AB ,则∠C 1的度数为▲.15.定义:如果三角形的一个内角是另一个内角的2倍,那么称这个三角形为“倍角三角形”.若△ABC 是“倍角三角形”,∠A =90°,ACAB 的长为▲.16.在△ABC 中,AB =10,BC =8,D 为边BC 上一点,当∠CAB 最大时,连接AD 并延长至点E ,使BE =BD ,则AD ·DE 的最大值为▲.三、解答题(本大题共有11小题,共102分.请在答题卡指定区域内作答,解答时应写出文字说明、推理过程或演算步骤)17.(本题满分6分)计算:04212sin 453⎛⎫-+--︒ ⎪⎝⎭π.18.(本题满分6分)解不等式组:32134532x x x -⎧>⎪⎨⎪-+⎩ .19.(本题满分8分)先化简,再求值:222211121x x x x x ++⎛⎫+÷ ⎪--+⎝⎭,其中x =4.20.(本题满分8分)2023年盐城市初中毕业升学体育考试有必考项目立定跳远和一项选考项目,男生选考项目为掷实心球或引体向上,女生选考项目为掷实心球或仰卧起坐.(1)小明(男)从选考项目中任选一个,选中引体向上的概率为▲;(2)小明(男)和小红(女)分别从选考项目中任选一个,求两人都选择掷实心球的概率.(用树状图或列表法写出分析过程)21.(本题满分8分)一列快车从甲地匀速驶往乙地,一列慢车从乙地匀速驶往甲地,两车同时出发,设慢车行驶的时间为x (h ),两车之间的距离为y (km ),图中的折线表示y 与x 之间的函数关系.根据图像解决下列问题:(1)求慢车和快车的速度;(2)求线段CD 所表示的y 与x 之间的函数关系式,并写出自变量x的取值范围.22.(本题满分10分)如图,AB 为⊙O 的直径,E 为AB 的延长线上一点,过点E 作⊙O 的切线,切点为点C ,连接AC 、BC ,过点A 作AD ⊥EC 交EC 延长线于点D .(1)求证:∠BCE =∠DAC ;(2)若BE =2,CE =4,求⊙O 的半径及AD 的长.23.(本题满分10分)某中学为了解家长对课后延时服务的满意度,从七、八年级中各随机抽取50名学生家长进行问卷调查,获得了每位学生家长对课后延时服务的评分数据(记为x ),并对数据进行整理、描述和分析.下面给出了部分信息:①八年级课后延时服务家长评分数据的频数分布表如表(数据分为5组:0≤x <60,60≤x <70,70≤x <80,80≤x <90,90≤x ≤100):分组频数0≤x <60260≤x <70570≤x <801580≤x <90a 90≤x ≤1008合计50②八年级课后延时服务家长评分在80≤x <90这一组的数据按从小到大的顺序排列,前5个数据如下:81,81,82,83,83.③七、八年级课后延时服务家长评分的平均数、中位数、众数如表:第22题图第21题图年级平均数中位数众数七787985八81b83根据以上信息,回答下列问题:(1)表中a=▲,b=▲;(2)你认为哪个年级的课后延时服务开展得较好?请说明理由(至少从两个不同的角度说明理由);(3)已知该校八年级共有600名学生家长参加了此次调查评分,请你估计其中大约有多少名家长的评分不低于80分.24.(本题满分10分)2023年3月18、19日,盐城市亭湖区中小学生篮球赛在先锋实验学校火热上演.本次比赛为期2天,共有来自全区26所中小学代表队,近270名运动员参加.如图1,图2分别是某款篮球架的实物图与侧面示意图,已知底箱矩形ABCD在水平地面上,它的高AB为40cm,长BC为200cm,底箱与后拉杆EF所成的角∠DEF=60°,后拉杆EF长为180cm,支撑架FG的长为182cm,伸臂GH平行于地面,支撑架FG与伸臂GH的夹角∠FGH=143°,篮筐与伸臂在同一水平线上.(1)求点F到地面的距离;(2)求篮筐到地面的距离.(结果精确到1cm,参考数据:60︒,75cos≈.037tan≈︒,7337.037.0︒,80sin≈3≈).1第24题图1第24题图225.(本题满分10分)比萨斜塔是意大利的一座著名斜塔,据说物理学家伽利略曾在塔顶上做过著名的自由落体试验:在地球上同一地点,不同质量的物体从同一高度同时下落,如果除地球引力外不考虑其他外力的作用,那么它们的落地时间相同.已知:某建筑OA的高度为44.1m,将一个小铁球P(看成一个点)从A处向右水平抛出,在水平方向小铁球移动的距离d(m)与运动时间t(s)之间的函数表达式是:d=7t,在竖直方向物体的下落距离h(m)与下落时间t(s)之间的函数表达式为h=4.9t2.以点O为坐标原点,水平向右为x轴,OA所在直线为y轴,取1m为单位长度,建立如图所示平面直角坐标系,已知小铁球运动形成的轨迹为抛物线.(1)求小铁球从抛出到落地所需的时间;(2)当t=1时,求小铁球P此时的坐标;(3)求抛物线的函数表达式,并写出自变量x的取值范围.26.(本题满分12分)如图在网格中,每个小正方形的边长均为1,小正方形的顶点称为格点,A 、B 、C 、D 、M 、N 、K 均为格点.仅用无刻度的直尺在给定网格中完成画图,并回答问题.【操作】在图1中,①过点D 画AC 的平行线DE (E 为格点);②过点B 画AC 的垂线BF ,交AC 于点F ,交DE 于点G ,连接AG .【发现】在图1中,BF 与FG 的数量关系是▲;AG 的长度是▲.【应用】在图2中,点P 是边MK 上一点,在MN 上找出点H ,使PH MN.第26题图1第26题图227.(本题满分14分)定义:平面直角坐标系中有点Q (a ,b ),若点P (x ,y )满足|x-a|≤t 且|y-b|≤t (t ≥0),则称P 是Q 的“t 界密点”.(1)①点(0,0)的“2界密点”所组成的图形面积是▲;②反比例函数y =6x图像上▲(填“存在”或者“不存在”)点(1,2)的“1界密点”.(2)直线y =kx +b (k ≠0)经过点(4,4),在其图像上,点(2,3)的“2界密点”组成的线段长17b 的值.(3)关于x 的二次函数y =x 2+2x +1-k (k 是常数),将它的图像M 绕原点O 逆时针旋转90°得曲线L ,若M 与L 上都存在(1,2)的“1界密点”,直接写出k 的取值范围.第25题图2023年春学期第一次学情调研数学参考答案与试题解析一.选择题A C CB ;D BCD .二.填空题9.()()33x x +-.10.7.697×105.11.甲.12.2.5.13.46482538x y x y +=⎧⎨+=⎩.14.70°.15.1或316.32.三.解答题17.原式=﹣1+··········································································4分.··························································································6分18.由313x >,得:x >53,········································································2分由2435x x -+ ,得:x ≤7,···································································4分则不等式组的解集为53<x ≤7.································································6分19.原式=()22221221111x x x x x x -⎛⎫+-+⋅ ⎪--+⎝⎭=()22212111x x x x x -++⋅-+=()()()()2211111x x x x x +-⋅+-+=x ﹣1,························································································5分当x =4时,原式=4﹣1=3.·······································································8分20.(1)12;····························································································3分(2)把掷实心球、引体向上、仰卧起坐分别记为A 、B 、C ,列表如下:AC A (A ,A )(A ,C )B(B ,A )(B ,C )················································································································6分由表知,共有4种等可能结果,两人都选择掷实心球的有1种结果,···············7分∴两人都选择掷实心球的概率为14.·························································8分21.(1)由题意,得快车与慢车的速度和为:1200÷6=200(km/h ),慢车的速度为:1200÷15=80(km/h ),快车的速度为:200﹣80=120(km/h ).答:快车的速度为120km/h ,慢车的速度为80km/h ;································4分(2)由题意得,快车走完全程的时间为:1200÷120=10(h ),10时时两车之间的距离为:200×(10﹣6)=800(km ).则C (10,800).设线段CD 的解析式为y =kx +b (k ≠0),由题意,得10800151200k b k b +=⎧⎨+=⎩,解得:8000k b =⎧⎨=⎩,则线段CD 的解析式为y =80x ,自变量x 的取值范围是10≤x ≤15.············8分22.(1)证明:∵AB 为⊙O 的直径,∴∠ACB =90°,∴∠BCE +∠ACD =90°,∵AD ⊥ED ,∴∠ADC =90°,∴∠DAC +∠ACD =90°,∴∠BCE =∠DAC ;·······································································3分(2)连接OC ,设⊙O 半径为r ,则OC =r ,OE =r +2,∵EC 是⊙O 的切线,C 为切点,∴OC ⊥EC ,∴∠OCE =90°,在Rt △OEC 中,∵OC 2+EC 2=OE 2,∴r 2+42=(r +2)2,解得r =3,∴⊙O 半径为3,·········································································6分∴OE =5,AE =8,OC =3.∵OC ⊥ED ,AD ⊥ED ,∴OC ∥AD ,∴△OCE ∽△ADE ,∴OC OEAD AE =,即358AD =,解得245AD =.··········································································10分23.(1)a =50﹣2﹣5﹣15﹣8=20,b =(82+83)÷2=82.5;·································4分(2)八年级的课后延时服务开展得较好,理由如下:(答案不唯一,言之有理即可.)八年级课后延时服务家长评分数据的平均数为81分,高于七年级的78分,说明八年级家长评分整体高于七年级;八年级课后延时服务家长评分数据的中位数为82.5,七年级为79,说明八年级一半的家长评分高于82.5分,而七年级一半的家长评分仅高于79分.·········7分(3)20860050+⨯=336(名),答:估计其中大约有336名家长的评分不低于80分.·····························10分24.(1)过点F 作FM ⊥AD 于点M ,延长FM 交BC 于点N 在Rt △EMF 中,sin ∠DEF =EFFM,∴FM =EF ×sin ∠DEF =180×sin60°=903cm··············································3分∵∠A =∠ABC =∠AMN =90°,∴四边形ABNM 是矩形∴MN =AB =40cm∴FN =FM +MN =903+40=195.7≈196cm答:点F 到地面的距离约为196cm····························································5分(2)延长HP 、NF 交于点P ∵GH ∥BC∴∠P =∠FME =90°在Rt △PFG 中,sin ∠PGF =GFPF,∴PF =GF ×sin ∠PGF =182×sin37°≈109.2cm·············································8分∴PN =PF +FN =109.2+903+40=304.9≈305cm答:篮筐到地面的距离约为305cm .·························································10分25.(1)由4.9t 2=44.1(t ≥0),得t =3···························································3分(2)当t =1时,d =7t =7,h =4.9t 2=4.944.1-4.9=39.2∴此时P (7,39.2)·······································································6分(3)由(1)可知OB =7t =21∴B (21,0)设抛物线的函数表达式为y =ax 2+bx +c (a ≠0),将A (0,44.1)、P (7,39.2)、B (21,0)代入解得2144.110y x =-+······································································9分自变量x 的范围是0≤x ≤21.··························································10分26.(1)【操作】如图所示,DE 、BF 、AG 即为所求.··················································4分(2)【发现】BF =GF ·····································································8分(3)【应用】如图所示,点H 即为所求.·······························································12分27.(1)①16···························································································2分②存在···························································································4分(2)①当直线y =kx +b (k ≠0)与左边界相交时,()22244b -+=解得b 1=3,b 2=5∴直线y =kx +b (k ≠0)不可能和上边界相交,②当直线y =kx +b (k ≠0)与下边界相交时,由相似得13b -=∴4b =-综上b 的值为3或5或4-.··························································10分(4)84≤≤k ·······················································································14分。
虎跳中学2021秋第一次诊断性考试九年级数 学 试 卷〔满分是120分,考试时间是是120分钟〕一、选择题〔每一小题3分,一共30分〕1、假如3a -有意义,那么a 的取值范围是〔〕 A.0a≥B.0a ≤C.3a ≥D. 3a ≤2、化简()25-的结果是〔 〕A 5B -5C 士5D 253.以下图形中,既是中心对称图形又是轴对称图形的是〔 〕A B C D4、一元二次方程0422=-x 的解是 〔 〕A、2=xB 、2-=xC 、2,221-==x xD 、2,221-==x x0632=+-x x 的根的情况是〔 〕A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .无法确定是否有实数根6、关于x 的一元二次方程()()2212110m x m x m -+++-=的一个根为0,那么m 的值是 〔 〕 A. 1m= B.1m =- C.1m =或者-1 D.12m =-7.7 7、三角形两边的长分别是4和6,第三边的长是一元二次方程060162=+-x x 的一个实数根,那么该三角形的周长是〔 〕A 、20B 、20或者16C 、16D 、18或者2155,51==b a ,那么〔 〕 A a,b 互为相反数 B a,b 互为倒数 C 5=ab D a=b 9、方程(x-5)(x+2)=1的根为 〔 〕A 、 5B 、 -2C 、 -2或者5D 、 以上均不对 10以下语句中不正确的有〔 〕①相等的圆心角所对的弧相等;②平分弦的直径垂直于弦;③圆是轴对称图形,任何一条直径都是它的对称轴;④半圆是弧. A .1个 B.2个 C .3个 D.4个二、填空题〔每一小题3分,一共15分〕11、点P 〔-2,4〕关于坐标原点对称的点的坐标是( )12.一元二次方程x 2-8=-2x 的.二次项系数是_________,一次项系数是_________,常数项是_______13、关于x 的一元二次方程0122=-+x kx有两个不相等的实数根, 那么k 的取值范围是_______________________.14、方程x 2-7x+12=0的两根恰好是Rt △ABC 的两条边的长,那么Rt △ABC•的第三边长为________ . 15、观察以下各式:===请你将发现的规律用含自然数n(n ≥1)的等式表示出来__________________________三、计算和解方程〔每一小题5分,一共30分〕16、计算(1) ①(826)223-+|32|)21()3(121--+---π17、解方程〔1〕2316x x -=〔公式法〕 〔2〕()()3121x x x -=- 〔3〕 22x x = 〔4〕0142=+-y y 〔配方法〕四、解答题〔每一小题7分,一共21分〕18、当a=3+1时 先化简 1a 2a 1a 1a 1a 2a 222+--++÷-+)( 再求值。
2024年昭阳区第一次初中毕业诊断性检测九年级数学试题卷(全卷三个大题,共27个小题,共8页;满分100分,考试用时120分钟)注意事项:1.本卷为试题卷.考生必须在答题卡上解题作答。
答案应书写在答题卡的相应位置上,在试题卷、草稿纸上作答无效。
2.考试结束后,请将试题卷和答题卡一并交回。
一、选择题(本大题共15小题,每小题只有一个正确选项,每小题2分,共30分)1. 若气温上升记作,则气温下降记作( )A. B. C. D. 【答案】C【解析】【分析】本题考查了正负数的应用.解题的关键在于熟练掌握正数与负数表示意义相反的两种量.根据用正负数来表示具有相反的意义量:上升记为正,则下降记为负,直接得出结论即可.【详解】解:若气温上升记作,则气温下降记作,故选:C .2. 2024年昭通市人民政府继续为群众办好“十件民生实事”,为全市群众送上“民生大礼包”.其中,脱贫人口劳动力转移就业稳定在万人以上,把万用科学记数法表示为( )A. B. C. D. 【答案】C【解析】【分析】此题考查科学记数法的定义,关键是理解运用科学记数法.利用科学记数法的定义解决.科学记数法的表示形式为的形式,其中,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.【详解】解:万.故选:C .3. 如图,已知,则( )2C ︒2C +︒3C ︒2C-︒2C +︒3C -︒3C+︒2C ︒2C +︒3C ︒3C -︒83.683.6483.610⨯48.3610⨯58.3610⨯68.3610⨯10n a ⨯110a ≤<83.658360008.3610==⨯,,160a b c d ∠=︒∥∥2∠=A. B. C. D. 【答案】D【解析】【分析】根据可得,根据可得.【详解】解:如图,,,,,故选:D .【点睛】本题考查平行线的性质,解题的关键是掌握两直线平行、同位角相等.4. 下列运算结果正确的是( )A. B. C. D. 【答案】D【解析】【分析】本题考查了整式的运算,根据同底数幂的乘法、合并同类项法则、积的乘方、幂的乘方分别运算即可判断求解,掌握整式的运算法则是解题的关键.【详解】解:、,该选项错误,不合题意;、,该选项错误,不合题意;、,该选项错误,不合题意;、,该选项正确,符合题意;故选:.120︒150︒30︒60︒a b ∥3160∠=∠=︒c d ∥2360∠=∠=︒ a b ∥∴3160∠=∠=︒ c d ∥∴2360∠=∠=︒339x x x ⋅=336235x x x +=()32626x x =222642ab ab ab -=A 336x x x ⋅=B 333235x x x +=C ()32628x x =D 222642ab ab ab -=D5. 母亲节马上就到了(5月的第二个星期天),娜娜同学准备送给母亲一个小礼物.已知礼物外包装的主视图如图所示,则该礼物的外包装不可能是( )A. 长方体B. 三棱锥C. 圆柱D. 正方体【答案】B【解析】【分析】本题考查的是简单几何体的主视图,熟记简单几何体的三种视图是解本题的关键.【详解】解:∵长方体,正方体,圆柱的主视图是长方形,而三棱锥的主视图是三角形,∴该礼物的外包装不可能是三棱锥,∴A ,D ,C 不符合题意, B 符合题意;故选:B .6. 函数的取值范围为( )A. B. C. D. 【答案】B【解析】【分析】根据被开方数大于等于0列式计算即可得解.【详解】解:由题意得,,解得.故选:B .【点睛】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.7. 水平社区卫生所在对本村老年人进行年度免费体检时,发现张奶奶血压偏高,为了准确诊断,随后天,卫生所每天定时为张奶奶测量血压,测得数据如下表:测量时间第天第天第天第天第天第天第天收缩压(毫米汞柱)y =x 4x >4x ≥4x <4x ≤40x -≥4x ≥71234567151148140139140136140舒张压(毫米汞柱)对收缩压,舒张压两组数据分别进行统计分析,其中错误的是()A. 收缩压的中位数为 B. 舒张压的众数为C. 收缩压的平均数为 D.舒张压的方差为【答案】A【解析】【分析】本题考查的是众数,中位数,平均数,方差的含义,熟记众数,中位数,平均数与方差的求解方法是解本题的关键.把数据按照大小排序后再确定中位数,即可判断,出现的次数最多的数为众数,可判断再利用所有数据的和除以数据总个数可得平均数,可判断,先算出来舒张压的平均数,再根据方差公式计算可判断,从而可得答案.【详解】、把收缩压的数据按照从小到大的顺序排列为:,,,,,,,收缩压的数据排在最中间的数据是,可得中位数为,故A不符合题意;、舒张压中出现的次数最多,故舒张压的众数为,故符合题意;、收缩压的平均数为:,故符合题意;、舒张压的平均数为:,则舒张压的方差为:,故符合题意;故选.8. 不等式组的解集在数轴上表示正确的是【】A. B.C. D.【答案】A【解析】9092888890808813988142887A BC DA136139140140140148 151140140B8888BC()113613914031481511427++⨯++=CD()190928839080887++⨯++=()()()()22222188290889288388888908877S⎡⎤=⨯-+-+⨯-+-=⎣⎦DA215{3112xxx-<-+≥【分析】先求出不等式组中每一个不等式的解集,再利用口诀求出这些解集的公共部分:同大取大,同小取小,大小小大中间找,大大小小解不了(无解)【详解】解 ①得,x<3解②得,x -1不等式的解集为:-1x<3在数轴上表示为:故选A9. 如图,以∠AOB 的顶点O 为圆心,适当长为半径画弧,交OA 于点C ,交OB 于点D .再分别以点C 、D为圆心,大于CD 的长为半径画弧,两弧在∠AO B 内部交于点E ,过点E 作射线OE ,连接CD.则下列说法错误的是A. 射线OE 是∠AOB 的平分线B. △COD 是等腰三角形C. C 、D 两点关于OE 所在直线对称D. O 、E 两点关于CD 所在直线对称【答案】D【解析】【详解】解:A 、连接CE 、DE ,根据作图得到OC =OD ,CE =DE .∵在△EO C 与△EOD 中,OC =OD ,CE =DE ,OE =OE ,∴△EOC ≌△EOD (SSS ).∴∠AOE =∠BOE ,即射线OE 是∠AOB 的平分线,正确,不符合题意.B 、根据作图得到OC =OD ,∴△COD 是等腰三角形,正确,不符合题意.2153112x x x -<⎧⎪⎨-+≥⎪⎩①②≥∴≤12C 、根据作图得到OC =OD ,又∵射线OE 平分∠AOB ,∴OE 是CD 的垂直平分线.∴C 、D 两点关于OE 所在直线对称,正确,不符合题意.D 、根据作图不能得出CD 垂直平分OE ,∴CD 不是OE 的垂直平分线,∴O 、E 两点关于CD 所在直线不对称,错误,符合题意.故选:D .10. 关于x 的方程的根的情况是( )A. 有两个不相等的实数根B. 有两个相等的实数根C. 只有一个实数根D. 没有实数根【答案】A【解析】【分析】根据方程各项系数结合根的判别式△=b 2-4ac ,找出方程根的判别式的符号,由此即可得出结论.【详解】方程的判别式为△=-4ac==+80,所以该方程有两个不相等的实数根.故选A.【点睛】本题考查一元二次方程根的判别式.11.的值应在( )A. 4和5之间 B. 5和6之间 C. 6和7之间 D. 7和8之间【答案】A【解析】的大小.解题的关键利用夹逼的大小.,则,的220x px +-=220xpx +-=2b 2412p -⨯⨯-()2p >1-1<<56<<∴,的值应在4和5之间,故选:A .12. 为丰富学生课外活动,某校积极开展社团活动,学生可根据自己的爱好选择一项,已知该校开设的体育社团有::篮球,:排球,:足球;:羽毛球,:乒乓球.李老师对某年级同学选择体育社团情况进行调查统计,制成了两幅不完整的统计图(如图),则以下结论不正确的是( )A. 选科目的有5人B. 选科目的扇形圆心角是C. 选科目的人数占体育社团人数的一半D. 选科目的扇形圆心角比选科目的扇形圆心角的度数少【答案】C【解析】【分析】本题考查了条形统计图与扇形统计图信息关联, A 选项先求出调查的学生人数,再求选科目的人数来判定,B 选项利用选科目所占的比例判定即可,C 选项中求出的人数即可判定,D 选项利用选科目的人数减选科目,再除以总人数乘求解即可判定.【详解】解:由题意得:调查的学生人数为:(人),选科目的人数为:(人),故A 选项正确,选科目的扇形圆心角是,故B 选项正确,选科目的人数为,总人数为50人,所以选科目的人数占体育社团人数的一半错误,故C 选项不正确,选科目的扇形圆心角比选科目的扇形圆心角的度数.故D 选项正确,故选:C .13. 如图,是边边上的两点,且,若,则与415<-<1-A B C D E E D 72︒A B D 21.6︒E D 360⨯︒B C D ,,B D 360︒1224%50÷=E 5010%5⨯=D 103607250⨯︒=︒B C D ,,7121029++=A B D 336021.650⨯︒=︒,D E ABC ,AB AC DE BC ∥:1:16ADE ABC S S =△△ADE V的周长之比为( )A. B. C. D. 【答案】B【解析】【分析】由平行易证,由面积比等于相似比的平方,周长比等于相似比求解.【详解】∵∴,∴∵∴与周长之比为,故选B .【点睛】本题考查相似三角形的判定和性质,熟练掌握相似三角形性质是解题的关键.14. 如图,A ,B ,C 为上的三个点,,若,则的度数是( )A. B. C. D. 【答案】B【解析】【分析】本题主要考查了圆周角定理,根据同圆中同弧所对的圆周角度数是圆心角度数的一半得到,再根据即可得到答案.【详解】解:∵,∴,∵,ABC 1:21:41:51:16ADE ABC DE BC∥ADE B ∠=∠ADE ABC:1:16ADE ABC S S =△△ADE V ABC 1:4O 4AOB BOC ∠=∠60ACB ∠=︒BOC ∠20︒30︒15︒60︒2120AOB ACB ∠=∠=︒4AOB BOC ∠=∠60ACB ∠=︒2120AOB ACB ∠=∠=︒4AOB BOC ∠=∠∴,故选:B .15. 一组数:2,1,5,x ,17,y ,65,满足“前两个数依次为a 、b ,紧随其后的第三个数是”,例如这组数中的第三个数“5”是由“”得到的,那么这组数中y 表示的数为( )A. 27B. 11C. 31D. 41【答案】C【解析】【分析】本题考查了规律型中数字的变化类,根据数列中数的变化,代入数据求出x 值是解题的关键.根据数列中数的规律即可得出,再求出y 的值即可.【详解】解:依题意,得,,故选:C .二、填空题(本大题共4小题,每小题2分,共8分)16. 分解因式:_____.【答案】【解析】【分析】先提取公因式a ,再利用完全平方公式分解因式即可.【详解】解:,故答案为:.【点睛】本题主要考查了分解因式,熟知分解因式方法是解题的关键.17. 如图,图中网格由边长为1的小正方形组成,点为网格线的交点.若线段绕原点顺时针旋转90°后,端点的坐标变为______.的30BOC ∠=︒2a b +221´+215x =⨯+2157x =⨯+=271731y =⨯+=22ab ab a -+=()21a b -22ab ab a -+()221a b b =-+()21a b =-()21a b -A OA O A【答案】【解析】【分析】根据题意作出旋转后的图形,然后读出坐标系中点的坐标即可.【详解】解:线段OA 绕原点O 顺时针旋转90°后的位置如图所示,∴旋转后的点A 的坐标为(2,-2),故答案为:(2,-2).【点睛】题目主要考查图形的旋转,点的坐标,理解题意,作出旋转后的图形读出点的坐标是解题关键.18. 若点关于原点的对称点在反比例函数的图象上,则该反比例函数的解析式为___________.【答案】【解析】【分析】本题考查反比例函数图象上点的坐标特征和关于原点对称坐标的特征;先求出点关于原点的对称点,再代入反比例函数即可求解.【详解】点关于原点的对称点是()2,2-(3,2)P -k y x =6y x =-(3,2)P -k y x =(3,2)P -(3,2)-把代入得:∴该反比例函数的解析式为故答案为:.19. 如图,中,,,以为直径的交于点,为的中点,则图中阴影部分的面积为___________.【答案】【解析】【分析】本题考查了圆周角定理及其推论、等腰三角形的判定和性质以及扇形的面积公式,证明是等腰三角形,求出的度数是解题的关键.首先证明是等腰三角形,求出,然后根据圆周角定理求出,再利用扇形的面积公式计算即可.【详解】解:连接,如图所示,是直径,,即,为的中线,是等腰三角形,,,,半径,为(3,2)-k y x=6k =-6y x =-6y x=-ABC 6AB =24∠︒=C AB O BC D D BC 6π5ABC AOD ∠ABC 24B C ∠=∠=︒AOD ∠AD AB 90ADB ∴∠=︒AD BC ⊥AD BC ABC ∴ 24B C ∴∠=∠=︒248AOD B ∴∠=∠=︒=6AB ∴3,故答案为:.三、解答题(本大题共8小题,共62分)20.【答案】【解析】【分析】先将二次根式化简、分别得出零指数幂、负指数幂、特殊角的三角函数值,然后根据实数的运算法则求得计算结果即可.【详解】解:原式【点睛】本题主要考查二次根式化简、零指数幂、负指数幂、特殊角的三角函数值,熟练掌握二次根式化简、零指数幂、负指数幂、特殊角的三角函数值的化简计算是解决本题的关键.21. 如图,在中,D 、E 是边BC 上两点,且.求证:.【答案】见解析【解析】【分析】本题主要考查对全等三角形判定定理的理解和掌握,先由等角对等边证,再在利用即可证明,即可证得结论.熟练掌握全等三角形的判定定理并灵活运用.【详解】证明:,,在与中,248π36π3605S ∴= 阴影=6π5()20126tan 302π-⎛⎫+---︒ ⎪⎝⎭03146=++--0=ABC ADB AEC B C ∠=∠∠=∠,BD CE =AB AC =AAS ABD ACE △△≌B C ∠=∠ AB AC ∴=ABD △ACE △ADB AEC B CAB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩()AAS ABD ACE ∴ ≌.22. 某中学在五四青年节来临之际用元购进、两种运动衫共件.已知购买种运动衫与购买种运动衫的费用相同(各为元),种运动衫的单价是种运动衫单价的倍.求、两种运动衫的单价各是多少元?【答案】、两种运动衫的单价各是元、元【解析】【分析】本题考查了分式方程的实际应用,解题的关键是找准等量关系,正确列出分式方程.设种运动衫单价为元,种运动衫单价为元,故种运动衫购买数量为元,种运动衫购买数量为元,即可得出关于的分式方程,解之经检验后,即可得出结果 .【详解】解:设种运动衫单价为元,种运动衫单价为元.则由题意可列: ,解得,,经检验,是所列方程的解,(元),答:、两种运动衫的单价各是元、元.23. 为弘扬中国传统文化,某校举办了中小学生“国学经典大赛”,比赛项目为:A .唐诗,B .宋词,C .论语,D .三字经.比赛形式为“单人组”和“双人组”.(1)小颖参加“单人组”,她从中随机抽取一个比赛项目,恰好抽中“论语”的概率为___________;(2)若“双人组”比赛规则是:同一小组的两名成员的比赛项目不能相同,且每人只能随机抽取一次,则小明和小峰组成的“双人组”恰好有一人是唐诗,另一人是宋词的概率是多少?请用画树状图或列表的方法进行说明.【答案】(1) (2);见解析【解析】【分析】本题主要考查树状图法或列表法求概率:(1)直接利用概率公式求解;(2)先画树状图展示所有等可能的结果数,再找出恰好小明和小峰组成的“双人组”恰好有一人是唐诗,另一人是宋词的结果数,然后根据概率公式求解.BD CE ∴=4800A B 88A B 2400B A 1.2A B A B 5060A x B 1.2x A 2400x B 24001.2xx A x B 1.2x 24002400881.2x x+=50x =50x =1.2 1.25060x =⨯=A B 50601416【小问1详解】解:小颖从4个项目中随机抽取一个比赛项目,恰好抽中“论语”的概率为,故答案为:;【小问2详解】解:画树状图如下:共有12种等可能的结果数,其中小明和小峰组成的“双人组”恰好有一人是唐诗,另一人是宋词的结果数为2,所以恰好小明和小峰组成的“双人组”恰好有一人是唐诗,另一人是宋词的概率.24. 如图,D 为线段中点,连接,,过A 作且,连接.(1)求证:四边形是矩形.(2)连接交于点F ,若,求的长.【答案】(1)见解析(2【解析】【分析】(1)由题意得,,由,可证四边形是平行四边形,由且D 为线段中点,可得,即,进而结论得证;(2)由(1)知:,则,可知,证明,则,即141421126=BC AB AC 、AB AC =AE BC ∥AE DC =BE AEBD CE AB 602ACB AE ∠=︒=,CF AE BD =AE BC ∥AEBD AB AC =BC AD BC ⊥90ADB ∠=︒2AE BD CD ===4BC =tan 60AD CD =⋅︒=AEBD BE AD ==CE =AEF BCF ∽EF AE CF BC=,计算求解即可.【小问1详解】证明:∵D 为线段中点,∴,∵,∴,又∵,四边形是平行四边形,∵且D 为线段中点,∴,即,四边形矩形;【小问2详解】解:由(1)知:,∴,∵,,∴由矩形可知,由勾股定理得,,∵,∴,∴,∴,解得,,∴.【点睛】本题考查了矩形的判定与性质,等腰三角形的判定与性质,正切,相似三角形的判定与性质等知识.熟练掌握矩形的判定与性质,等腰三角形的判定与性质,正切,相似三角形的判定与性质是解题的关是12=BC BD DC =AE DC =AE BD =AE BC ∥∴AEBD AB AC =BC AD BC ⊥90ADB ∠=︒∴AEBD 2AE BD CD ===4BC =90ADC ∠=︒602ACB CD ∠=︒=,tan 60AD CD =⋅︒=AEBD BE AD ==CE ==AE BC ∥EAB ABC AEC ECB ∠=∠∠=∠,AEF BCF ∽EF AE CF BC =12=CF =CF键.25. 新能源汽车作为一个新兴产业,摆脱了汽车对石油的依赖,而且没有废气排放,发展新能源是保障国家环境安全及能源安全重要措施.如图是某型号新能源纯电动汽车充满电后,蓄电池剩余电量y (千瓦时)关于已行驶路程x (千米)的函数图象.(1)根据图象,直接写出蓄电池剩余电量为35千瓦时时汽车已行驶的路程.当时,求1千瓦时的电量汽车能行驶的路程,(2)当时,求y 关于x 的函数表达式,并计算当汽车已行驶180千米时,蓄电池的剩余电量.【答案】(1)150千米;6千米(2);20千瓦时【解析】【分析】本题考查的是一次函数的实际应用,掌握利用待定系数法求解函数的解析式是解本题的关键;(1)直接利用函数图象可得答案;(2)设当时, y 关于x 的函数表达式为.把代入求解解析式即可,再求解当时的函数值即可.【小问1详解】解:由图可知,蓄电池剩余电量为35千瓦时时汽车已行驶的路程为150千米.当时,(千米/千瓦时)千瓦时的电量汽车能行驶的路程6千米.0150x ≤≤150200x ≤≤11102y x =-+150200x ≤≤y kx b =+(150,35),(200,10)180x =0150x ≤≤15066035=-1∴.【小问2详解】设当时, y 关于x 的函数表达式为.把代入,得,解得 当时,即蓄电池的剩余电量为20千瓦时26. 已知点和在二次函数(a ,b 是常数,)的图象上,该图象与y 轴交于点C .(1)当时,求a 和b 的值;(2)若二次函数的图象经过点且点N 不在坐标轴上,当时,求n 的取值范围.【答案】(1) (2)且【解析】【分析】本题主要考查二次函数图像上点的坐标特征,熟练掌握二次函数图像上点的坐标特征是解题的关键.(1)用待定系数法求出函数解析式即可得到答案;(2)先求出对称轴为,再根据图象经过点且点不在坐标轴上,得到即可得到答案.【小问1详解】解:当时,二次函数的图象过150200x ≤≤y kx b =+(150,35),(200,10)1503520010k b k b +=⎧⎨+=⎩12110k b ⎧=-⎪⎨⎪=⎩1110,(150200)2y x x ∴=-+≤≤180x =1180110202y =-⨯+=(,0)A m -(3,0)B m 24y ax bx =++0a ≠2m =-(,4)N n 11m -<<14,33a b =-=-22n -<<0n ≠x m =(,4)N n N 2n m =2m =-24y ax bx =++(2,0),(6,0)A B -,解得,即:;【小问2详解】图象过点∴其对称轴为 又的图象过点,即,则, ,有点N 不在坐标轴上且,且.27. 已知中,,且,M 为线段的中点,作,点P 在线段上,点Q 在线段上,以为直径的始终过点M ,且交线段于点E .(1)求线段的长度;(2)求的值;(提示:连接)(3)当是等腰三角形时,求出线段的长.【答案】(1) (2) 的424036640a b a b ++=⎧∴⎨-+=⎩1343a b ⎧=-⎪⎪⎨⎪=-⎪⎩14,33a b =-=-24y ax bx =++ (,0),(3,0)A mB m -32m m x m -+==24y ax bx =++ (,4),(0,4)n 02n m +∴=2n m =2n m =11m -<< 112n -<< 112n ∴-<<0n ≠22n ∴-<<0n ≠Rt ABC △90,20C AB ∠=︒=4cos 5A =AB DM AB ⊥CB AC PQ O PQ DM AD tan PQM ∠CM △MPE AQ 25243(3)或【解析】【分析】(1)中点求出的长,锐角三角函数求出的长即可;(2)连接,斜边上的中线,推出,圆周角定理,推出,,进而得到,进行求解即可;(3)先证明,得到为等腰三角形,分三种情况进行讨论求解即可.【小问1详解】解:为中点,在中,即:,;【小问2详解】连接,是斜边上的中点,,∴,,,是的直径,,,,;10254AM AD CM A ACM ∠=∠A MPQ ∠=∠90ACB PMQ ∠=∠=︒PQM ABC ∠=∠AMO PME △△∽AMQ △M AB 20AB =1102AM AB ∴==DM AB ⊥ Rt ADM 4cos 5AM A AD ==1045AD =252AD ∴=CM M Rt ABC △12CM AB AM BM ∴===A ACM ∠=∠B BCM∠=∠MPQ ACM ∠=∠ A MPQ ∴∠=∠QP O 90ACB PMQ ∴∠=∠=︒PQM ABC BCM ∴∠=∠=∠4cos ,205AC A AB AB === 16,12AC BC ∴===164tan tan 123AC PQM ABC BC ∠=∠===;【小问3详解】由(1)知.,当是等腰三角形时,有为等腰三角形,当时,,当时,,而,所以这种情况不存在;当时,,而由(1)知,可得;或.【点睛】本题考查圆周角定理,解直角三角形,斜边上的中线,相似三角形的判定和性质,等腰三角形的性质,熟练掌握相关知识点,是解题的关键.4tan 3PQM ∴∠=90,90QMA QMD DMP QMD ∠+∠=︒∠+∠=︒QMA DMP∴∠=∠A MPQ ∠=∠AMO PME ∴∽△△PME △AMQ △AM AQ =10AQ =AM MQ =A AQM ACM ∠=∠=∠AQM ACM ∠>∠AQ MQ =A QMA ∠=∠9090A ADM QMA DMQ ∠+∠=︒∠+∠=︒,ADM DMQ∴∠=∠12QD QM AQ AD ∴===252AD =254AQ =10AQ ∴=254。
2023年四川省泸县第四中学九年级第一次教学质量诊断性考试数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.怀化市雅礼实验学校的美术课上,七年级同学创造了一批民间剪纸艺术作品,下列剪纸作品中,是中心对称图形的为()A .B .C .D .2.方程240x -=的根为()A .2B .根号2C .±2D .±根号23.下列方程中,是一元二次方程的是()A .2251x x =-B .12x x +=C .()()2315x x x -+=-D .35x y -=4.点()1,2--A 关于坐标原点O 对称的点A '的坐标为()A .()1,2-B .()2,1-C .()2,3D .()1,25.如图,ADE △是由ABC 绕A 点旋转得到的,若40BAC ∠=︒,90B ∠=︒,10CAD ∠=︒,则旋转角的度数为()A .80°B .50°C .40°D .10°6.4件外观相同的产品中只有1件不合格,现从中一次抽取2件进行检测,抽到的两件产品中有一件产品合格而另一件产品不合格的概率是()A .38B .13C .23D .127.如图,已知12∠=∠,那么添加下列一个条件后,仍无法判定ABC ADE 的是()A .C E ∠=∠B .B ADE ∠=∠C .AB BCAD DE=D .AB ACAD AE=8.关于x 的一元二次方程2(1)320a x x -+-=有实数根,则a 的取值范围是()A .18a >-B .18a ≥-C .1,18a a >-≠D .118,a a ≥-≠9.如图,AB 是O 的直径,C ,D 是O 上位于AB 两侧的点,若35ACD ∠=︒,则BAD ∠度数为()A .45︒B .55︒C .60︒D .70︒10.如果抛物线的对称轴是直线2x =,与x 轴的一个交点的坐标是(6,0),那么它与x 轴的一个交点的坐标是()A .(﹣6,0)B .(﹣4,0)C .(﹣2,0)D .(4,0)11.如图,四边形ABCD 内接于O ,AE CB ⊥交CB 的延长线于点E ,若BA 平分DBE ∠,7AD =,5CE =,则AE =()A .3B .C .D .12.已知二次函数2()1y x h =-+(h 为常数),在自变量x 的值满足13x ≤≤的情况下,与其对应的函数值y 的最小值为10,则h 的值为()A .2-或4B .0或6C .1或3D .2-或6二、填空题13.已知O 的半径为1,则它的内接正三角形边心距为____________.14.喜迎2022年10月16日“二十大”的召开,某公司为了贯彻“发展低碳经济,建设美丽中国”的理念,对其生产设备进行了升级改造,不仅提高了产能,而且大幅降低了碳排放量.已知该公司七月份的产值为200万元,第三季度的产值为720万元,设公司每月产值的平均增长率相同且为x ,则根据题意列出的方程是______.15.如图,已知点A (2,0),B (0,4),C (2,4),D (6,6),连接AB ,CD ,将线段AB 绕着某一点旋转一定角度,使其与线段CD 重合(点A 与点C 重合,点B 与点D 重合),则这个旋转中心的坐标为_____.16.关于x 的一元二次方程2(1)20x k x k ---+=有两个实数根1x ,2x ,若121212(2)(2)23x x x x x x -+--+=-,则k =_____.三、解答题17.解方程:()2141x x -=+.18.已知:D 、E 是ABC 的边AB 、AC 上的点,8AB =,3AD =,6AC =,4AE =,求证:ABC AED ∽△△.19.已知一个抛物线经过点()3,0,()1,0-和()2,6-.(1)求这个二次函数的解析式;(2)求这个二次函数图象的顶点坐标和对称轴;20.如图,ABC 在平面直角坐标系中,将ABC 绕原点O 顺时针旋转90°得到111A B C △.(1)画出111A B C △,并写出点1B 、1C 的坐标;(2)求出边AC 在旋转变换过程中所扫过的图形的面积.21.某商店经销一种健身球,已知这种健身球的成本价为每个20元,市场调查发现,该种健身球每天的销售量y (个)与销售单价x (元)有如下关系:()2802040y x x =-+≤≤,设这种健身球每天的销售利润为w 元.(1)如果销售单价定为25元,那么健身球每天的销售量是个;(2)求w 与x 之间的函数关系式;(3)该种健身球销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?22.疫情期间,我市积极开展“停课不停学”线上教学活动,并通过电视、手机APP 等平台进行教学视频推送.某校随机抽取部分学生进行线上学习效果自我评价的调查(学习效果分为:A .效果很好;B .效果较好;C .效果一般;D .效果不理想)并根据调查结果绘制了如下两幅不完整的统计图:(1)此次调查中,共抽查了名学生;(2)补全条形统计图,并求出扇形统计图中∠a 的度数;(3)某班4人学习小组,甲、乙2人认为效果很好,丙认为效果较好,丁认为效果一般.从学习小组中随机抽取2人,则“1人认为效果很好,1人认为效果较好”的概率是多少?(要求画树状图或列表求概率)23.在平面直角坐标系xOy 中,二次函数2y x bx c =++的图象经过(02)(20)A B -,,,两点.(1)求这个二次函数的解析式;(2)若一次函数y mx n =+的图象也经过A ,B 两点,结合图象,直接写出不等式2x bx c mx n ++<+的解集.24.已知O 是ABC ∆的外接圆,AB 是O 的直径,D 是AB 延长线上的一点,AE CD ⊥交DC 的延长线于E ,交O 于G ,CF AB ⊥于F ,点C 是弧BG 的中点.(1)求证:DE 是O 的切线;(2)若AF ,()BF AF BF >是一元二次方程28120x x -+=的两根,求CE 和AG 的长.25.如图,直线y =﹣x+m 与抛物线y =ax 2+bx 都经过点A (6,0),点B ,过B 作BH 垂直x 轴于H ,OA =3OH .直线OC 与抛物线AB 段交于点C .(1)求抛物线的解析式;(2)当点C 的纵坐标是52时,求直线OC 与直线AB 的交点D 的坐标;(3)在(2)的条件下将△OBH 沿BA 方向平移到△MPN ,顶点P 始终在线段AB 上,求△MPN 与△OAC 公共部分面积的最大值.参考答案:1.C【分析】根据中心对称图形的概念求解即可.【详解】解:A 、不是中心对称图形,本选项错误;B 、不是中心对称图形,本选项错误;C 、是中心对称图形,本选项正确;D 、不是中心对称图形,本选项错误;故选:C .【点睛】本题考查中心对称图形,正确掌握中心对称图形的定义:绕一个点旋转180︒,与原图形重合的图形叫做中心对称图形是解题的关键.2.C【分析】直接开平方法解一元二次方程,即可得解.【详解】解:240x -=,∴24x =,∴2x =±;故选C .【点睛】本题考查解一元二次方程.熟练掌握直接开平方法,解一元二次方程,是解题的关键.3.A【分析】利用一元二次方程的定义,即可找出结论.【详解】解:A .方程2251x x =-是一元二次方程,选项A 符合题意;B .方程12x x +=是分式方程,选项B 不符合题意;C .原方程整理得220x -=,该方程为一元一次方程,选项C 不符合题意;D .35x y -=是二元一次方程,选项D 不符合题意.故选:A .【点睛】本题考查了一元二次方程的定义,熟练掌握含有一个未知数,且未知数的最高次数为2的整式方程是一元二次方程是解题的关键.4.D【分析】根据关于原点对称的点的特征:横坐标互为相反数,纵坐标互为相反数,进行求解即可.【详解】解:点()1,2--A 关于坐标原点O 对称的点A '的坐标为:()1,2;故选D .【点睛】本题考查关于原点对称的点.熟练掌握:关于原点对称的点的特征:横坐标互为相反数,纵坐标互为相反数,是解题的关键.5.B【分析】根据旋转的性质可得旋转角为∠BAD ,即可求解.【详解】解∶∵ADE △是由ABC 绕A 点旋转得到的,∴旋转角为∠BAD ,∵40BAC ∠=︒,10CAD ∠=︒,∴∠CAD =∠BAC +∠CAD =50°,即旋转角的度数为50°.故选:B【点睛】本题主要考查了图形的旋转,熟练掌握图形旋转的性质是解题的关键.6.D【分析】设合格产品记为1A ,2A ,3A ,不合格产品记为B ,然后画树状图先找出所有等可能性的结果数,找到符合题意的结果数,最后依据概率计算公式求解即可.【详解】设三件合格产品记为1A ,2A ,3A ,不合格产品记为B ,画出树状图如下:由上可得,一共有12种等可能性,其中抽到的两件产品中有一件产品合格而另一件产品不合格的可能性有6种,∴抽到的两件产品中有一件产品合格而另一件产品不合格的概率为61122=.故选:D .【点睛】本题主要考查了简单的概率计算,熟练掌握列表法或树状图法求概率是解题的关键.7.C【分析】先根据12∠=∠求出DAE BAC ∠=∠,再根据相似三角形的判定方法解答.【详解】∵12∠=∠,∴DAE BAC ∠=∠,A 、添加C E ∠=∠,可用两角法判定ABC ADE △△∽,故本选项不符合题意;B 、添加B ADE ∠=∠,可用两角法判定ABC ADE △△∽,故本选项不符合题意;C 、添加AB BCAD DE=,不能判定ABC ADE △△∽,故本选项符合题意;D 、添加AB ACAD AE=,可用两边及其夹角法判定ABC ADE △△∽,故本选项不符合题意;故选:C .【点睛】本题考查了相似三角形的判定,先求出两三角形的一对相等的角DAE BAC ∠=∠是确定其他条件的关键,注意掌握相似三角形的几种判定方法.8.D【分析】根据一元二次方程的定义和判别式的意义得到1a ≠且()()2Δ=3-41·20a --≥,然后求出两个不等式的公共部分即可.【详解】根据题意得1a ≠且()2=3-41(2)0a ∆--≥g ,解得18a ≥-且1a ≠.故选:D .【点睛】本题考查了根的判别式:一元二次方程20(0)ax bx c a ++=≠的根与24=b ac ∆-有如下关系:当0∆>时,方程有两个不相等的实数根;当=0∆时,方程有两个相等的实数根;当Δ0<时,方程无实数根.9.B【分析】连接BD ,由AB 是O 的直径,可得90ADB ∠=︒,再根据“同弧所得的圆周角相等”可得35ACD ABD ∠=∠=︒,再根据三角形内角和定理进行计算即可.【详解】解:如图,连接BD ,AB 是O 的直径,90ADB ∴∠=︒,∴35ACD ABD ∠=∠=︒,∴55BAD ∠=︒,故选:B .【点睛】本题考查圆周角定理,掌握“直径所对的圆周角是直角”以及“同弧所得的圆周角相等”是正确解答的关键.10.C【分析】根据抛物线的对称性解答即可.【详解】解: 抛物线与x 轴的一个交点坐标为(6,0),对称轴为直线2x =,∴抛物线与x 轴另一交点的横坐标为2262⨯-=-,∴抛物线与x 轴的另一个交点坐标为20(-,),故选:C【点睛】本题考查的是抛物线与x 轴的交点坐标,正确理解抛物线的对称性是解题的关键.11.C【分析】连接AC ,由圆内接四边形的性质和圆周角定理得到ABE CDA ∠=∠,ABD ACD ∠=∠,从而得到ACD CDA ∠=∠,得出7AC AD ==,然后利用勾股定理计算AE 的长.【详解】解:连接AC ,如图,∵BA 平分DBE ∠,∴ABE ABD ∠=∠,∵四边形ABCD 内接于O ,∴180ABC ADC ∠+∠=︒,又180ABC ABE ∠+∠=︒∴ABE CDA ∠=∠,又ABD ACD ∠=∠,∴ACD CDA ∠=∠,∴7AC AD ==,∵AE CB ⊥,∴AE ==故选:C .【点睛】本题考查了圆内接四边形的性质、等腰三角形的判定、圆周角定理、勾股定理、角平分线定义等知识;熟练掌握圆周角定理和圆内接四边形的性质是解题的关键.12.D【分析】根据题意可得分类讨论当1x =或3x =取最小即可得到答案.【详解】解:由题意可得,抛物线的顶点为(,1)h ,最小值为1,∵当13x ≤≤函数值y 的最小值为10,∴有两种情况对称轴3h >,1h <当3h >时,10a =>,13x ≤≤时y 随x 增大而减小,∴3x =时取最小,即2(3)110h -+=,解得6h =,0h =(不符合题意舍去),1h <时,10a =>,13x ≤≤时y 随x 增大而增大,∴1x =时取最小,即2(1)110h -+=,解得2h =-,4h =(不符合题意舍去),综上所述2h =-或6h =,故选D .【点睛】本题考查二次函数的性质,解题的关键是分类讨论.13.12##0.5【分析】根据题意画出图形,根据含30度角的直角三角形的性质,即可求解.【详解】解:如图,ABC 是等边三角形,O 是ABC 的外接圆,过点O 作OD BC ⊥,连接OB ,OC ,1OB =,2120BOC A ∠=∠=︒ ,OB OC =,∴30OBD ∠=︒,在Rt OBD △中,1122OD OB ==,故答案为:12.【点睛】本题考查了正多边形与圆,等边三角形的性质,含30度角的直角三角形的性质,掌握以上知识是解题的关键.14.()()220020012001720x x ++++=【分析】可先表示出八月份的营业额,那么八月份的营业额×(1+增长率)=九月份的营业额,等量关系为:七月份的营业额+八月份的营业额+九月份的营业额=900,把相应数值代入即可求解.【详解】解:∵七月份的营业额为200万元,平均每月的增长率为x ,∴八月份的营业额为()2001x +万元,∴九月份营业额为()22001x +万元,∴可列方程为()()220020012001720x x ++++=,故答案为:()()220020012001720x x ++++=.【点睛】此题考查由实际问题抽象出一元二次方程,掌握求平均变化率的方法是解决问题的关键.注意本题的等量关系为3个月的营业额之和.15.(4,2)【分析】画出平面直角坐标系,作出新的AC ,BD 的垂直平分线的交点P ,点P 即为旋转中心.【详解】解:平面直角坐标系如图所示,旋转中心是P 点,P (4,2),故答案为:(4,2).【点睛】本题考查坐标与图形变化﹣旋转,解题的关键是理解对应点连线段的垂直平分线的交点即为旋转中心.16.2【分析】由根与系数的关系可得出121x x k +=-,122x x k =-+,结合121212(2)(2)23x x x x x x -+--+=-可求出k 的可能值,根据方程的系数结合根的判别式0∆≥可得出关于k 的一元二次不等式,解之即可得出k 的取值范围,进而可确定k 的值,此题得解.【详解】解: 关于x 的一元二次方程2(1)20x k x k ---+=的两个实数根为1x ,2x ,121x x k ∴+=-,122x x k =-+.121212(2)(2)23x x x x x x -+--+=- ,即21212()243x x x x +--=-,2(1)2443k k ∴-+--=-,解得:2k =±.关于x 的一元二次方程2(1)20x k x k ---+=有实数根,∴2Δ[(1)]41(2)0k k =---⨯⨯-+≥,解得:1k ≥-或1k ≤-,2k ∴=.故答案为:2.【点睛】本题考查了根的判别式以及根与系数的关系,利用根与系数的关系结合121212(2)(2)23x x x x x x -+--+=-,求出k 的值是解题的关键.17.11x =-,25x =【分析】先将方程整理成一般式,再用因式分解法求解即可.【详解】解:()2141x x -=+,整理得:2450x x --=,()()150x x +-=,10x +=或50x -=,∴11x =-,25x =.【点睛】本题考查解一元二次方程,熟练掌握用因式分解法解一元二次方程是解题的关键.18.见解析【分析】根据已知线段长度求出AB AC AE AD=,再根据A A ∠=∠推出相似即可.【详解】证明:在ABC 和AED △中, 862,243AB AC AE AD ====,∴AB AC AE AD=.又A A ∠=∠ ,ABC AED ∴ ∽.【点睛】本题考查了相似三角形的判定定理的应用,注意:有两边的对应成比例,且夹角相等的两三角形相似.19.(1)2246y x x =--(2)顶点坐标为()1,8-;对称轴为直线1x =【分析】(1)用待定系数法求解即可;(2)根据顶点坐标公式求解即可.【详解】(1)设()()31y a x x =-+将()2,6-代入,则2a =∴()()2231246y x x x x =-+=--(2)∵12b x a =-=,2484ac b y a-==-∴顶点坐标为()1,8-;对称轴为直线1x =.【点睛】本题考查了待定系数法求函数解析式,以及二次函数的图象和性质,对于二次函数2y ax bx c =++(a ,b ,c 为常数,0a ≠),其对称轴是直线2b x a=-,其顶点坐标是24(,)24b ac b a a--.20.(1)图见解析,1(1,4)B 、1(1,2)C (2)54π【分析】(1)利用旋转变换的旋转分别作出A ,B ,C 的对应点1A ,1B ,1C 即可;(2)边AC 在旋转变换过程中所扫过的图形的面积可以看成两个扇形的面积之差.【详解】(1)解:(1)如图,111A B C △即为所求,1(1,4)B 、1(1,2)C ;(2)解:2223110OA =+= ,222215OC =+=,∴901090553603604AC S πππ⨯⨯=-=线段扫过.【点睛】本题考查作图-旋转变换,扇形的面积等知识,解题的关键是掌握旋转变换的旋转,记住扇形的面积2360n r S π=.21.(1)30(2)221201600w x x =-+-(3)该种健身球销售单价定为30元时,每天的销售利润最大,最大利润是200元【分析】(1)在2080y x =-+中,令25x =,进行计算即可得;(2)根据总利润=每个建生球的利润×销售量即可列出w 与x 之间的函数关系式;(3)结合(2)的函数关系式,根据二次函数性质即可得.【详解】(1)解:在280y x =-+中,令25x =得,2258030y =-⨯+=,故答案为:30;(2)解:根据题意得,2(20)(280)21201600w x x x x =--+=-+-,即w 与x 之间的函数关系式为:221201600w x x =-+-;(3)解:22212016002(30)200w x x x =-+-=--+,∵20-<,∴当30x =时,w 取最大值,最大值为200,即该种健身球销售单价定为30元时,每天的销售利润最大,最大利润是200元.【点睛】本题考查了二次函数的应用,解题的关键是理解题意,列出函数关系式.22.(1)200;(2)补全条形统计图见解析,72°;(3)16.【分析】(1)用评价为“效果很好”的人数除以评价为“效果很好”的人数所占百分比即可得到抽查的总人数;(2)首先求出评价为“效果一般”的人数,再补全条形统计图;用评价为“效果一般”的人数除以抽查的总人数,得到评价为“效果一般”的人数所占百分比乘以360°可得到∠∝;(3)用A ,B ,C ,D 分别表示甲,乙,丙,丁四人,画出树状图(或列表)表示所有等可能的情况数,得到“1人认为效果很好,1人认为效果较好”结果数,进而用概率公式求解即可.【详解】(1)80÷40%=200(人),故答案为:200;(2)“C”的人数为:200-80-60-20=40(人),补全条形统计图如下:∠∝=40360=72 200⨯︒︒;(3)用A,B,C,D分别表示甲,乙,丙,丁,①画树状图如下:共有12种可能出现的结果,其中“1人认为效果很好,1人认为效果较好”的有2种,∴P(1人认为效果很好,1人认为效果较好)=21 126=;②列表如下认为效果很好认为效果较好A B C DA AB AC ADB BA BC BDC CA CB CDD DA DB DC共有12种可能出现的结果,其中“1人认为效果很好,1人认为效果较好”的有2种,∴P(1人认为效果很好,1人认为效果较好)=21 126=;【点睛】本题考查了从条形统计图和扇形统计图,读懂统计图,从统计图中得到必要的信息是解决问题的关键,要把两图形结合在一起进行解答.同时还考查了画树状图或列表求概率.23.(1)22y x x =--;(2)02x <<.【分析】(1)把A 、B 的坐标代入2y x bx c =++,根据待定系数法求得即可;(2)根据图象即可求得一次函数图象在二次函数图象上方的x 的取值范围.【详解】(1)解:∵二次函数2y x bx c =++的图象经过点(02)(20)A B -,,,,∴2420c b c =-⎧⎨++=⎩,解得12b c =-⎧⎨=-⎩,∴二次函数的解析式为2y x x 2=--;(2)解:由图象可知,不等式2x bx c mx n ++<+的解集为02x <<..【点睛】本题考查了待定系数法求二次函数的解析式,二次函数与不等式组,数形结合是解题的关键.24.(1)见解析(2)CE =6,AG =4【分析】(1)求出AC 平分EAF ∠,推出∥OC AE ,推出OC DE ⊥,根据切线判定推出即可;(2)连接CG ,得到CG BC =,解方程求得6AF =,2BF =,得到8AB =,根据根据相似三角形的判定与性质得到AC =4BC =,解直角三角形即可得到结论.【详解】(1)证明:连接OC ,如图,点C 是弧BG 的中点,∴CG BC = ,EAC CAF ∴∠=∠,OA OC = ,CAF OCA ∴∠=∠,OCA EAC ∴∠=∠,OC AE ∴∥,AE DE ⊥ ,OC DE ∴⊥,OC 为O 半径,DE ∴是O 的切线;(2)解:连接CG ,如图,CG BC =,CG BC ∴=,AF ,()BF AF BF >是一元二次方程28120x x -+=的两根,6AF ∴=,2BF =,8AB ∴=,AB 是O 的直径,90ACB ∴∠=︒,CF AB ⊥ ,∴90AFC BFC ACB ∠=∠=∠=︒,A A ∠=∠ ,B B ∠=∠,AFC ACB ∴∽,CFB ACB ∽,AC AF AB AC∴=,BC BF AB BC =,26848AC AF AB ∴=⋅=⨯=,216BC BF AB =⋅=,AC ∴=4BC =,tan BC CAB AC ∴∠=30CAE CAB ∴∠=∠=︒,12CE AC ∴==6AE =,4CG BC == ,2EG ∴=,4AG ∴=.【点睛】本题考查了切线的判定,平行线的性质和判定,勾股定理,三角函数等知识点的综合运用,主要考查学生的推理和计算能力.25.(1)y =-12x 2+3x ;(2)(4,2);(3)32【分析】(1)先求出直线AB 的解析式,求出点B 坐标,再将A ,B 的坐标代入y =ax 2+bx 即可;(2)求出直线AC 的解析式,再联立直线OC 与直线AB 的解析式即可;(3)设PM 与OC 、PA 分别交于G 、H ,PN 与OC 、OA 分别交于K 、F ,分别求出直线OB ,PM ,OC 的解析式,再分别用含a 的代数式表示出H ,G ,E ,F 的坐标,最后分情况讨论,可求出△MPN 与△OAC 公共部分面积的最大值.【详解】解:(1)∵直线y =﹣x+m 点A (6,0),∴﹣6+m =0,∴m =6,∴y AB =﹣x+6,∵OA=3OH,∴OH=2,在y AB=﹣x+6中,当x=2时,y=4,∴B(2,4),将A(6,0),B(2,4)代入y=ax2+bx,得,3660 424a ba b+=⎧⎨+=⎩,解得,a=﹣12,b=3,∴抛物线的解析式为y=-12x2+3x;(2)∵直线OC与抛物线AB段交于点C,且点C的纵坐标是5 2,∴52=﹣12x2+3x,解得,x1=1(舍去),x2=5,∴C(5,5 2),设y OC=kx,将C(5,52)代入,得,k=12,∴y OC=12x,联立612y xy x=-+⎧⎪⎨=⎪⎩,解得,x=4,y=2,∴点D的坐标为(4,2);(3)设直线OB的解析式为y OB=mx,点P坐标为(a,﹣a+6),将点B(2,4)代入,得,m=2,∴y OB=2x,由平移知,PM∥OB,∴设直线PM的解析式为y PM=2x+n,将P (a ,﹣a+6)代入,得,﹣a+6=2a+n ,∴n =6﹣3a ,∴y PM =2x+6﹣3a ,设PM 与OC 、PA 分别交于G 、H ,PN 与OC 、OA 分别交于K 、F ,联立12263y x y x a⎧=⎪⎨⎪=+-⎩,解得,x =2a ﹣4,y =a ﹣2,∴G (2a ﹣4,a ﹣2),y G =a ﹣2,在y PM =2x+6﹣3a 中,当y =0时,x =332a -,∴E (332a -,0),OE =332a -,∵点P 的横坐标为a ,∴K (a ,12a ),F (a ,0),∴OF =a ,KF =12a ,设△MPN 与△OAC 公共部分面积为S ,①当0≤a <4时,S =S △OFK ﹣S △OEG ,=12×a×12a ﹣12(332a -)(a ﹣2),=﹣12a 2+3a ﹣3=﹣12(a ﹣3)2+32,∵﹣12<0,根据二次函数的图象及性质可知,∴当a =3时S 有最大值32;②当4≤a≤6时,S =S △PEF =12EF•PF =12(a ﹣32a+3)(﹣a+6)=21394a a -+=21(6)4a -,∵104>,根据二次函数的图象及性质知,当a =4时,S 有最大值1;∵312>∴△MPN 与△OAC 公共部分面积的最大值为32.【点睛】本题考查了待定系数法求函数解析式,一次函数交点问题,图形平移,二次函数综合最值,解决本题的关键是正确理解题意,熟练运用待定系数法求函数解析式,熟练掌握函数交点问题的解法步骤,要与方程相结合,对于求图形面积最值问题转化为二次函数最值问题,万熟练掌握二次函数的性质.。
重庆市南开中学2024-2025学年九年级上学期数学9月第一次考试模拟试卷一.选择题(共10小题,满分40分,每小题4分)1.(4分)下列社交软件的标志中,是中心对称图形的是()A.B.C.D.2.(4分)下列计算正确的是()A.a2•a3=a6B.a+2a2=3a3C.(﹣3ab)2•2ab2=﹣18a3b4D.6ab3÷(﹣2ab)=﹣3b23.(4分)如图,在Rt△ABC中,CD是斜边AB上的高,∠A≠45°,下列比值中等于sin A的是()A.B.C.D.4.(4分)如图,△ABC和△A′B′C′是以点O为位似中心的位似图形,点A在线段OA′上.若OA:AA′=1:2,则△ABC和△A′B′C′的周长之比为()A.1:2B.1:4C.4:9D.1:35.(4分)下列命题中,不一定是真命题的是()A.平行四边形的两条对角线长度相等B.菱形的两条对角线互相垂直C.矩形的两条对角线长度相等且互相平分D.正方形的两条对角线长度相等,并且互相垂直平分6.(4分)某公司上半年生产甲、乙两种型号的无人机若干架,已知甲种型号无人机架数比总架数的一半多11架,乙种型号无人机架数比总架数的三分之一少2架.设甲种型号无人机x架,乙种型号无人机y架,根据题意可列出的方程组是()A.B.C.D.7.(4分)估算的值()A.在3和4之间B.在4和5之间C.在2和3之间D.在5和6之间8.(4分)下列图形都是由正方形按一定规律组成的,其中第①个图形中一共有8个正方形,第②个图形中一共有15个正方形,第③个图形中一共有22个正方形,…,按此规律排列,则第⑨个图形中正方形的个数为()A.50B.60C.64D.729.(4分)已知四边形ABCD和DEFG都是正方形,点F在线段AB上,连接AE、BD,BD交FG于点H.若∠AEF=α,则∠BHF=()A.2αB.45°+αC.22.5°+αD.90°﹣α10.(4分)在多项式a+b﹣c﹣d﹣e中,除首尾项a、﹣e外,其余各项都可去掉,去掉项的前面部分和其后面部分都加上绝对值,并用减号连接,则称此为“消减操作”.每种“消减操作”可以去掉的项数分别为一项,两项,三项.“消减操作”只针对多项式a+b﹣c﹣d﹣e进行.例如:+b“消减操作”为|a|﹣|﹣c﹣d﹣e|,﹣c与﹣d同时“消减操作”为|a+b|﹣|﹣e|,…,下列说法:①存在对两种不同的“消减操作”后的式子作差,结果不含与e相关的项;②若每种操作只去掉一项,则对三种不同“消减操作”的结果进行去绝对值,共有8种不同的结果;③若可以去掉的三项+b,﹣c,﹣d满足:(|+b|+|+b+2|)(|﹣c+1|+|﹣c+4|)(|﹣d+1|+|﹣d﹣6|)=42,则2b+c﹣d的最大值为14.其中正确的个数是()A.0个B.1个C.2个D.3个二.填空题(共8小题,满分32分,每小题4分)11.(4分)已知,△ABC中,∠A是锐角,sin A=,则∠A的度数是.12.(4分)一个多边形的内角和是720°,这个多边形的边数是.13.(4分)如图,分别过矩形ABCD的顶点A、D作直线l1、l2,使l1∥l2,l2与边BC交于点P,若∠1=38°,则∠BPD的度数为.14.(4分)已知a、b是一元二次方程x2﹣x﹣1=0的两个根,则代数式3a2+2b2﹣3a﹣2b的值等于.15.(4分)如图,点B在x的正半轴上,且BA⊥OB于点B,将线段BA绕点B逆时针旋转60°到BB′的位置,且点B′的坐标为(1,).若反比例函数y=(x>0)的图象经过A点,则k=.16.(4分)若关于x的一元一次不等式组有且只有2个整数解,且关于y的分式方程的解为正数,则所有满足条件的整数a的值之和为.17.(4分)如图,点E在矩形ABCD的边CD上,将△ADE沿AE翻折,点D恰好落在边BC的点F处,如果BC =10,,那么EC=.18.(4分)一个四位自然数,若满足千位数字与十位数字的差比百位数字与个位数字的差多1,则称这样的四位数为“多一数”,如:9675,9﹣7=6﹣5+1,9765是“多一数”;又如:6973,∵6﹣7≠9﹣3+1,∴6973不是“多一数”.现有一个“多一数”M,千位数字为a,百位数字为b,十位数字为c,个位数字为d(1≤c≤a≤9,0≤d≤b≤9),将M的千位数字与十位数字交换,百位数字与个位数字交换,得到新的四位数N,若,F(M)能被6整除,则a﹣c=;规定,若G(M)为完全平方数,则满足条件的“多一数”M中,最大值与最小值的差是.三.解答题(共8小题,满分78分)19.(8分)计算:(1)因式分解:9(x+y)2﹣25(x﹣y)2;(2)计算:.20.(10分)解方程:(1)x2﹣2x﹣2=0;(2).21.(10分)在第18章学习了三角形的中位线定理后,小明对这一知识进行了拓展性研究.他发现,连接梯形两腰中点的线段也具有类似的性质.探究过程如下:(1)用直尺和圆规,作线段CD的垂直平分线,垂足为点F,连接EF,连接AF并延长AF交线段BC的延长线于点M(只保留作图痕迹);(2)已知:在四边形ABCD中,AD∥BC,E为AB中点,F为CD中点,连接EF.猜想:EF∥AD∥BC,且.证明:∵F是CD中点,∴.∵AD∥BC,∴∠DAF=∠CMF.在△ADF和△MCF中,,∴△ADF≌△MCF(AAS).∴AF=FM,AD=CM.∵在△ABM中,E是AB中点,F是AM中点,∴EF∥BM且.∵BM=BC+CM,∴BM=BC+AD.∴.∵EF∥BM,AD∥BC,∴EF∥AD∥BC.请你根据该探究过程完成下面命题:连接梯形两腰中点的线段平行于两底并且.22.(10分)重庆市自发布“重庆市长江10年禁鱼通告”后,忠县内的黄钦水库自然生态养殖鱼在市场上热销,并被誉为“清凉五月天,黄钦自有贤”的美誉.2024年五一假期依依同学旅游到此,并购买了若干桂花鱼和大罗非,她发现用840元买的桂花鱼的数量比用同样价钱买大罗非的数量多20斤,且大罗非的单价是桂花鱼的1.5倍.(1)求桂花鱼、大罗非两种鱼的单价分别为多少元;(2)两种鱼在得到一致好评后,依依决定再次购买这两种鱼作为“伴手礼”.由于商家对老顾客让利,其中桂花鱼按照原单价购买,大罗非的单价每斤降低m(m>0)元,则购买的数量会比第一次购买大罗非的数量增加2m斤,第二次一共购买80斤鱼共用了1340元.求m的值.23.(10分)如图矩形ABCD中,AB=4,BC=6,点F为BC边上的三等分点(CF<BF),动点P从点A出发,沿折线A→D→C运动,到C点停止运动.点P的运动速度为每秒2个单位长度,设点P运动时间为x秒,△APF 的面积为y1.(1)请直接写出y1关于x的函数解析式,并注明自变量x的取值范围;(2)若函数,请在平面直角坐标系中画出函数y1,y2的图象,并写出函数y1的一条性质;(3)结合函数图象,直接写出当y1≤y2时x的取值范围(保留一位小数,误差不超过0.2).24.(10分)已知图1是某超市购物车,图2是超市购物车的侧面示意图,现已测得支架AC=72cm,BC=54cm,两轮轮轴的距离AB=90cm(购物车车轮半径忽略不计),DG、EH均与地面平行.(参考数据:)(1)猜想两支架AC与BC的位置关系并说明理由;(2)若FG的长度为80cm,∠EHG=60°,求购物车把手F到AB的距离.(结果精确到0.1)25.(10分)如图,直线与双曲线交于A,B两点,点A的坐标为(m,﹣3),点C是双曲线第一象限分支上的一点,连接BC并延长交x轴于点D,且BC=2CD.(1)求k的值并直接写出点B的坐标;(2)点M、N是y轴上的动点(M在N上方)且满足MN=1,连接MB,NC,求MB+MN+NC的最小值;(3)点P是双曲线上一个动点,是否存在点P,使得∠ODP=∠DOB,若存在,请直接写出所有符合条件的P 点的横坐标.26.(10分)在△ABC中,AB=AC,∠B=30°,过A作AD⊥BC于点D.(1)如图1,过D作DE⊥AB于点E,连接CE,若AE=2,求线段CE的长;(2)如图2,H为平面内一点,连接AH、CH,在△AGH中,AG=AH,∠GAH=120°,延长AG与CB交于点F,过点H作HP∥AF交BC于点P,若C、H、G在一条直线上,求证:BF=CP;(3)如图3,M为AD上一点,连接BM,N为BM上一点,若,,∠BAN﹣∠CBN=30°,连接CN,请直接写出线段CN的长.重庆市南开中学2024-2025学年九年级上学期数学9月第一次考试模拟试卷参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分)1.(4分)下列社交软件的标志中,是中心对称图形的是()A.B.C.D.【解答】解:中心对称图形,即把一个图形绕一个点旋转180°后能和原来的图形重合,A、C、D都不符合;是中心对称图形的只有B.故选:B.2.(4分)下列计算正确的是()A.a2•a3=a6B.a+2a2=3a3C.(﹣3ab)2•2ab2=﹣18a3b4D.6ab3÷(﹣2ab)=﹣3b2【解答】解:a2•a3=a5,故A错误,不符合题意;a与2a2不能合并,故B错误,不符合题意;(﹣3ab)2•2ab2=18a3b4,故C错误,不符合题意;6ab3÷(﹣2ab)=﹣3b2,故D正确,符合题意;故选:D.3.(4分)如图,在Rt△ABC中,CD是斜边AB上的高,∠A≠45°,下列比值中等于sin A的是()A.B.C.D.【解答】解:在Rt△ABC中,sin A=,在Rt△ACD中,sin A=,∵∠A+∠B=90°,∠B+∠BCD=90°,∴∠A=∠BCD,在Rt△BCD中,sin∠BCD=sin A=.故选:B.4.(4分)如图,△ABC和△A′B′C′是以点O为位似中心的位似图形,点A在线段OA′上.若OA:AA′=1:2,则△ABC和△A′B′C′的周长之比为()A.1:2B.1:4C.4:9D.1:3【解答】解:∵OA:AA′=1:2,∴OA:OA′=1:3,∵△ABC和△A′B′C′是以点O为位似中心的位似图形,∴AC∥A′C′,∴△AOC∽△A′OC′,∴AC:A′C′=OA:OA′=1:3,∴△ABC和△A′B′C′的周长之比为1:3,故选:D.5.(4分)下列命题中,不一定是真命题的是()A.平行四边形的两条对角线长度相等B.菱形的两条对角线互相垂直C.矩形的两条对角线长度相等且互相平分D.正方形的两条对角线长度相等,并且互相垂直平分【解答】解:A、平行四边形的两条对角线长度不一定相等,故本选项命题不一定是真命题,符合题意;B、菱形的两条对角线互相垂直,是真命题,不符合题意;C、矩形的两条对角线长度相等且互相平分,是真命题,不符合题意;D、正方形的两条对角线长度相等,并且互相垂直平分,是真命题,不符合题意;故选:A.6.(4分)某公司上半年生产甲、乙两种型号的无人机若干架,已知甲种型号无人机架数比总架数的一半多11架,乙种型号无人机架数比总架数的三分之一少2架.设甲种型号无人机x架,乙种型号无人机y架,根据题意可列出的方程组是()A.B.C.D.【解答】解:设甲种型号无人机x架,乙种型号无人机y架,根据题意可列出的方程组是:.故选:D.7.(4分)估算的值()A.在3和4之间B.在4和5之间C.在2和3之间D.在5和6之间【解答】解:∵25<31<36,∴5<<6,∴3<﹣2<4.故选:A.8.(4分)下列图形都是由正方形按一定规律组成的,其中第①个图形中一共有8个正方形,第②个图形中一共有15个正方形,第③个图形中一共有22个正方形,…,按此规律排列,则第⑨个图形中正方形的个数为()A.50B.60C.64D.72【解答】解:观察图形发现第一个图形有8个正方形,第二个图形有8+7=15个正方形,第三个图形有8+7×2=22个正方形,…第n个图形有8+7(n﹣1)=7n+1个正方形,当n=9时,7n+1=7×9+1=64个正方形.故选:C.9.(4分)已知四边形ABCD和DEFG都是正方形,点F在线段AB上,连接AE、BD,BD交FG于点H.若∠AEF=α,则∠BHF=()A.2αB.45°+αC.22.5°+αD.90°﹣α【解答】解:过点E作EM⊥AB于点M,作EN⊥AD,交DA的延长线于N,设EF与AD交于T,如图所示:则∠N=∠EMB=∠EMA=90°,∵四边形ABCD和DEFG都是正方形,∴∠BEF=∠BAD=∠EFG=∠ADC=∠EDG=90°,DE=EF,∴∠N=∠EMA=∠MAN=90°,∴四边形AMEN为矩形,∴∠1+∠DTE=90°,∠2+∠FTA=90°,∵∠DTE=∠FTA,∴∠1=∠2,在△DME和△FNE中,,∴△DME≌△FNE(AAS),∴EM=EN,∴矩形AMEN为正方形,∴AE平分∠DAN,∴∠EAD=45°,∴∠EAF=∠BAD+∠EAD=90°+45°=135°,∴∠2=180°﹣∠EAF﹣AEF=180°﹣135°﹣α=45°﹣α,∴∠1=∠2=45°﹣α,∵BD是正方形ABCD的对角线,∴∠ADB=45°,∴∠EDH=∠1+∠ADB=45°﹣α+45°=90°﹣α,∴∠HDG=∠EDG﹣∠EDH=90°﹣(90°﹣α)=α,∴∠BHF=∠DHG=90°﹣∠HDG=90°﹣α.故选:D.10.(4分)在多项式a+b﹣c﹣d﹣e中,除首尾项a、﹣e外,其余各项都可去掉,去掉项的前面部分和其后面部分都加上绝对值,并用减号连接,则称此为“消减操作”.每种“消减操作”可以去掉的项数分别为一项,两项,三项.“消减操作”只针对多项式a+b﹣c﹣d﹣e进行.例如:+b“消减操作”为|a|﹣|﹣c﹣d﹣e|,﹣c与﹣d同时“消减操作”为|a+b|﹣|﹣e|,…,下列说法:①存在对两种不同的“消减操作”后的式子作差,结果不含与e相关的项;②若每种操作只去掉一项,则对三种不同“消减操作”的结果进行去绝对值,共有8种不同的结果;③若可以去掉的三项+b,﹣c,﹣d满足:(|+b|+|+b+2|)(|﹣c+1|+|﹣c+4|)(|﹣d+1|+|﹣d﹣6|)=42,则2b+c﹣d的最大值为14.其中正确的个数是()A.0个B.1个C.2个D.3个【解答】解:①﹣d“闪减操作”后的式子|a+b﹣c|﹣|﹣e|,﹣c﹣d“闪减操作”后的式子|a+b|﹣|﹣e|对这两个式子作差,得(|a+b﹣c|﹣|﹣e|)﹣(|a+b|﹣|﹣e)=|a+b﹣c|﹣|﹣e|﹣|a+b|+|﹣e|=|a+b﹣c|﹣|a+b|,结果不含与e相关的项,∴①正确;②若每种操作只闪退一项,则分三种情况:+b闪减操作”后的结果|a|﹣|﹣c﹣d﹣e|,当a≥0,﹣c﹣d﹣e≥0时,|a|﹣|﹣c﹣d﹣e|=a+c+d+e,当a≥0,﹣c﹣d﹣e≤0时,|a|﹣|﹣c﹣d﹣e|=a﹣c﹣d﹣e,当a≤0,﹣c﹣d﹣e≥0时,|a|﹣|﹣c﹣d﹣e|=﹣a+c+d+e,当a≤0,﹣c﹣d﹣e≤0时,|a|﹣|﹣c﹣d﹣e|=﹣a﹣c﹣d﹣e,﹣c“闪减操作”后的结果|a+b|﹣|﹣d﹣e|,当a+b≥0,﹣d﹣e≥0时,|a+b|﹣|﹣d﹣e|=a+b+d+e,当a+b≥0,﹣d﹣e≤0时,|a+b|﹣|﹣d﹣e|=a+b﹣d﹣e,当a+b≤0,﹣d﹣e≥0时,|a+b|﹣|﹣d﹣e|=﹣a﹣b+d+e,当a+b≤0,﹣d﹣e≤0时,|a+b|﹣|﹣d﹣e|﹣a﹣b﹣d﹣e,﹣d“闪减操作”后的结果|a+b﹣c|﹣|﹣e|,当a+b﹣d≥0,﹣e≥0时,|a+b﹣c|﹣|﹣e|=a+b﹣c+e,当a+b﹣d≥0,﹣e≤0时,|a+b﹣c|﹣|﹣e|=a+b﹣c﹣e,当a+b﹣d≤0,﹣e≥0时,|a+b﹣c|﹣|﹣e|=﹣a﹣b+c+e,当a+b﹣d≤0,﹣e≤0时,|a+b﹣c|﹣|﹣e|=﹣a﹣b+c﹣e,共有12种不同的结果,∴②错误;③∵|+b|+|+b+2|=|b﹣0|+|b﹣(﹣2)|,在数轴上表示点b与0和﹣2的距离之和,∴当距离取最小值0﹣(﹣2)=2时,b的最小值为﹣2,同理|﹣c+1|+|﹣c+4|=|1﹣c|+|4﹣c|,在数轴上表示点c与1和4的距离之和,∴当距离取最小值4﹣1=3时,c的最小值为1,|﹣d+1|+|﹣d﹣6|=|1﹣d|+|﹣6﹣d|,在数轴上表示点d与1和﹣6的距离之和,∴当距离取最小值1﹣(﹣6)=7时,d的最小值为﹣6,∴当|+b|+|+b+2|,|﹣c+1|+|﹣c+4|,|﹣d+1|+|﹣d﹣6|都取最小值时,(|+b|+|+b+2|)(|﹣c+1|+|﹣c+4|)(|﹣d+1|+|﹣d﹣6|)=2×3×7=42,∴③正确,故选:C.二.填空题(共8小题,满分32分,每小题4分)11.(4分)已知,△ABC中,∠A是锐角,sin A=,则∠A的度数是30° .【解答】解:∵∠A是锐角,sin A=,∴∠A=30°,故答案为:30°.12.(4分)一个多边形的内角和是720°,这个多边形的边数是6.【解答】解:∵多边形的内角和公式为(n﹣2)•180°,∴(n﹣2)×180°=720°,解得n=6,∴这个多边形的边数是6.故答案为:6.13.(4分)如图,分别过矩形ABCD的顶点A、D作直线l1、l2,使l1∥l2,l2与边BC交于点P,若∠1=38°,则∠BPD的度数为142° .【解答】解:∵l1∥l2,∠1=38°,∴∠ADP=∠1=38°,∵四边形ABCD为矩形,∴AD//BC,∴∠BPD+∠ADP=180°,∴∠BPD=180°﹣38°=142°.故答案为:142°.14.(4分)已知a、b是一元二次方程x2﹣x﹣1=0的两个根,则代数式3a2+2b2﹣3a﹣2b的值等于5.【解答】解:根据题意得a2﹣a=1,b2﹣b=1,所以3a2+2b2﹣3a﹣2b=3a2﹣3a+2b2﹣2b=3(a2﹣a)+2(b2﹣b)=3+2=5.故填515.(4分)如图,点B在x的正半轴上,且BA⊥OB于点B,将线段BA绕点B逆时针旋转60°到BB′的位置,且点B′的坐标为(1,).若反比例函数y=(x>0)的图象经过A点,则k=8.【解答】解:如图,过点B′作B′D⊥x轴于点D,∵BA⊥OB于点B,∴∠ABD=90°.∵线段BA绕点B逆时针旋转60°到BB′的位置,∴∠ABB′=60°,∴∠B′BD=90°﹣60°=30°.∵点B′的坐标为(1,),∴OD=1,B′D=,∴BB′=2B′D=2,BD==3,∴OB=1+3=4,AB=BB′=2,∴A(4,2),∴k=4×2=8.故答案为:8.16.(4分)若关于x的一元一次不等式组有且只有2个整数解,且关于y的分式方程的解为正数,则所有满足条件的整数a的值之和为8.【解答】解:,解得:,∵不等式组有且只有2个整数解,∴,解得2<a≤5.5,解分式方程得y=2a﹣5,∵y的值解为正数,∵2a﹣5>0,且2a﹣5≠3,∵a>2.5且a≠4,∴满足条件的整数a的值有3和5,∴3+5=8.故答案为:8.17.(4分)如图,点E在矩形ABCD的边CD上,将△ADE沿AE翻折,点D恰好落在边BC的点F处,如果BC =10,,那么EC=3.【解答】解:∵四边形ABCD是矩形,∴AD=BC=10,∠B=∠C=∠D=90°,由折叠的性质可得AF=AD=10,∠AFE=∠D=90°,在Rt△ABF中,,∴,∴CF=BC﹣BF=4,在Rt△ABF,由勾股定理得,∴,∵∠BAF+∠BF A=90°=∠BF A+∠CFE,∴∠BAF=∠CFE,∴在Rt△EFC中,,∴,故答案为:3.18.(4分)一个四位自然数,若满足千位数字与十位数字的差比百位数字与个位数字的差多1,则称这样的四位数为“多一数”,如:9675,9﹣7=6﹣5+1,9765是“多一数”;又如:6973,∵6﹣7≠9﹣3+1,∴6973不是“多一数”.现有一个“多一数”M,千位数字为a,百位数字为b,十位数字为c,个位数字为d(1≤c≤a≤9,0≤d≤b≤9),将M的千位数字与十位数字交换,百位数字与个位数字交换,得到新的四位数N,若,F(M)能被6整除,则a﹣c=5;规定,若G(M)为完全平方数,则满足条件的“多一数”M中,最大值与最小值的差是2222.【解答】解:根据题意可知0≤a﹣c≤8,a﹣c=b﹣d+1.M=1000a+100b+10c+d,N=1000c+100d+10a+b.=,=,=10(a﹣c)+b﹣d=10(a﹣c)+a﹣c﹣1,=11(a﹣c)﹣1,∵F(M)能被6整除,∴a﹣c=5.∵c≥1,∴a≥6.当a=6时,c=1.∵a﹣c=b﹣d+1,∴d=b﹣4.∴,∵G(M)为完全平方数,∴b=3.∴d=﹣1(舍去).同理,当a=7时,c=2,M=7420;当a=8时,c=3,M=8531;当a=9时,c=4,M=9642;∴满足条件的“多一数”M中,最大值与最小值的差=9642﹣7420=2222.故答案为:5;2222.三.解答题(共8小题,满分78分)19.(8分)计算:(1)因式分解:9(x+y)2﹣25(x﹣y)2;(2)计算:.【解答】解:(1)9(x+y)2﹣25(x﹣y)2=(3x+3y+5x﹣5y)(3x+3y﹣5x+5y)=﹣4(4x﹣y)(x﹣4y);(2)=1﹣•=1﹣==﹣.20.(10分)解方程:(1)x2﹣2x﹣2=0;(2).【解答】解:(1)x2﹣2x﹣2=0,移项得x2﹣2x=2,配方得x2﹣2x+1=2+1,即(x+1)2=3,开方得,解得;;(2),去分母,得m﹣4+m+2=0,解得m=1,经检验,m=1是原方程的根.21.(10分)在第18章学习了三角形的中位线定理后,小明对这一知识进行了拓展性研究.他发现,连接梯形两腰中点的线段也具有类似的性质.探究过程如下:(1)用直尺和圆规,作线段CD的垂直平分线,垂足为点F,连接EF,连接AF并延长AF交线段BC的延长线于点M(只保留作图痕迹);(2)已知:在四边形ABCD中,AD∥BC,E为AB中点,F为CD中点,连接EF.猜想:EF∥AD∥BC,且.证明:∵F是CD中点,∴DF=CF.∵AD∥BC,∴∠DAF=∠CMF.在△ADF和△MCF中,,∴△ADF≌△MCF(AAS).∴AF=FM,AD=CM.∵在△ABM中,E是AB中点,F是AM中点,∴EF∥BM且.∵BM=BC+CM,∴BM=BC+AD.∴.∵EF∥BM,AD∥BC,∴EF∥AD∥BC.请你根据该探究过程完成下面命题:连接梯形两腰中点的线段平行于两底并且等于两底边之和的一半.【解答】(1)解:如图所示..(2)证明:∵F是CD中点,∴DF=CF.∵AD∥BC,∴∠DAF=∠CMF.在△ADF和△MCF中,,∴△ADF≌△MCF(AAS).∴AF=FM,AD=CM.∵在△ABM中,E是AB中点,F是AM中点,∴EF∥BM且.∵BM=BC+CM,∴BM=BC+AD.∴.∵EF∥BM,AD∥BC,∴EF∥AD∥BC.连接梯形两腰中点的线段平行于两底并且等于两底边之和的一半.故答案为:DF=CF;∠AFD=∠MFC;;等于两底边之和的一半.22.(10分)重庆市自发布“重庆市长江10年禁鱼通告”后,忠县内的黄钦水库自然生态养殖鱼在市场上热销,并被誉为“清凉五月天,黄钦自有贤”的美誉.2024年五一假期依依同学旅游到此,并购买了若干桂花鱼和大罗非,她发现用840元买的桂花鱼的数量比用同样价钱买大罗非的数量多20斤,且大罗非的单价是桂花鱼的1.5倍.(1)求桂花鱼、大罗非两种鱼的单价分别为多少元;(2)两种鱼在得到一致好评后,依依决定再次购买这两种鱼作为“伴手礼”.由于商家对老顾客让利,其中桂花鱼按照原单价购买,大罗非的单价每斤降低m(m>0)元,则购买的数量会比第一次购买大罗非的数量增加2m斤,第二次一共购买80斤鱼共用了1340元.求m的值.【解答】解:(1)设桂花鱼的单价是x元,则大罗非的单价是1.5x元,根据题意得:﹣=20,解得:x=14,经检验,x=14是所列方程的解,且符合题意,∴1.5x=1.5×14=21(元).答:桂花鱼的单价是14元,大罗非的单价是21元;(2)第一次购买大罗非的数量是840÷21=40(斤).根据题意得:14(80﹣40﹣2m)+(21﹣m)(40+2m)=1340,整理得:m2+13m﹣30=0,解得:m1=2,m2=﹣15(不符合题意,舍去).答:m的值为2.23.(10分)如图矩形ABCD中,AB=4,BC=6,点F为BC边上的三等分点(CF<BF),动点P从点A出发,沿折线A→D→C运动,到C点停止运动.点P的运动速度为每秒2个单位长度,设点P运动时间为x秒,△APF 的面积为y1.(1)请直接写出y1关于x的函数解析式,并注明自变量x的取值范围;(2)若函数,请在平面直角坐标系中画出函数y1,y2的图象,并写出函数y1的一条性质;(3)结合函数图象,直接写出当y1≤y2时x的取值范围(保留一位小数,误差不超过0.2).【解答】解:(1)当0≤x≤3时,y1==4x,当3<x≤5时,y1=﹣×6×(2x﹣6)﹣=﹣4x+24,∴y1=;(2)函数y1,y2的图象如图:函数y1的性质:当0≤x≤3时,y随x的增大而增大,当3<x≤5时,y随x的增大而减小;(3)由两个函数图像可知,当y1≤y2时x的取值范围为0<x≤2.1或x=5.24.(10分)已知图1是某超市购物车,图2是超市购物车的侧面示意图,现已测得支架AC=72cm,BC=54cm,两轮轮轴的距离AB=90cm(购物车车轮半径忽略不计),DG、EH均与地面平行.(参考数据:)(1)猜想两支架AC与BC的位置关系并说明理由;(2)若FG的长度为80cm,∠EHG=60°,求购物车把手F到AB的距离.(结果精确到0.1)【解答】解:(1)AC⊥BC,理由如下:∵AC=72cm,BC=54cm,AB=90cm,∴AC2+BC2=722+542=8100,AB2=8100,∴AC2+BC2=AB2,∴∠ACB=90°,∴AC⊥BC.(2)过F作FN⊥AB交AB延长线于N,过C作CM⊥AB于M,延长DG交FN于K,∵EH∥DG∥AB,∴GK⊥FN,∴四边形MNKC是矩形,∴NK=CM,∵△ABC的面积=AB•CM=AC•BC,∴90CM=72×54,∴CM=43.2(cm),∴NK=CM=43.2(cm),∵EH∥DG,∴∠FGK=∠EHG=60°,∴sin∠FGK=sin60°==,∵FG=80cm,∴FK=40≈69.28(cm),∴FN=FK+NK=69.28+43.2≈112.5(cm).∴购物车把手F到AB的距离约是112.5cm.25.(10分)如图,直线与双曲线交于A,B两点,点A的坐标为(m,﹣3),点C是双曲线第一象限分支上的一点,连接BC并延长交x轴于点D,且BC=2CD.(1)求k的值并直接写出点B的坐标;(2)点M、N是y轴上的动点(M在N上方)且满足MN=1,连接MB,NC,求MB+MN+NC的最小值;(3)点P是双曲线上一个动点,是否存在点P,使得∠ODP=∠DOB,若存在,请直接写出所有符合条件的P 点的横坐标.【解答】解:(1)根据题意可知点A(m,﹣3)在直线和双曲线的图象上,∴,解得m=﹣2,∴点A的坐标为(﹣2,﹣3),代入双曲线得:k=(﹣2)×(﹣3)=6,由图象可知点B与点A关于原点对称,∴B(2,3);(2)过点B、C分别作x轴的垂线,垂足分别为E、F,作点B关于y轴的对称点点B',并向下平移一个单位记为B'',连接B''C,则BE∥CF,B'B''=1,∴△DCF∽△DBE,∴,∵BC=2CD,B(2,3),B'(﹣2,3),B''(﹣2,2),∴,BE=3,∴CF=1,即点C的纵坐标为1,∵点C在反比例函数的图象上,∴C(6,1),B''C=,∴MB+MN+NC的最小值即为B'B''+B''C=1+;(3)当∠ODP=∠DOB时,当DP在x轴下方时,DP∥AB,设直线BC的解析式为y=kx+b,由(2)可知:B(2,3),C(6,1),∴解得,∴,当y=0时,,解得x=8,∴D(8,0),∵DP∥AB,直线AB的解析式为,∴设直线DE的解析式为,把D(8,0)代入得:12+m=0,∴m=﹣12,∴,由P是直线DE与反比例函数的交点可得:,解得,此时点P在第三象限,符合题意,当DP在x轴上方时,则与下方的DP关于x轴对称,可得直线DP的解析式为:,再解方程组得,此时点P在第一象限,两个都符合题意,∴点P的横坐标为:..26.(10分)在△ABC中,AB=AC,∠B=30°,过A作AD⊥BC于点D.(1)如图1,过D作DE⊥AB于点E,连接CE,若AE=2,求线段CE的长;(2)如图2,H为平面内一点,连接AH、CH,在△AGH中,AG=AH,∠GAH=120°,延长AG与CB交于点F,过点H作HP∥AF交BC于点P,若C、H、G在一条直线上,求证:BF=CP;(3)如图3,M为AD上一点,连接BM,N为BM上一点,若,,∠BAN﹣∠CBN=30°,连接CN,请直接写出线段CN的长.【解答】解:(1)∵∠B=30°,AD⊥BC,∴∠BAD=60°,∴AD=2AE=4,∴AB=2AD=8,BD=AD=4,∴BE=AB﹣AE=6,过E作EF⊥BC于F,如图1,∴EF=BE=3,BF=BE=3,∵AB=AC,∴BD=CD,∴CF=2BD﹣BF=8﹣3=5,∴CE==2,(2)证明:∵∠ABC=30°,AB=AC,∴∠BAC=120°,又∵∠GAH=120°,∴∠F AB=∠CAH,∵AH=AG,∴∠AHG=30°=∠ABC,∴∠ABF=∠AHC,∴△ABF∽△AHC,∴=,∵PH∥FG,∴△CHP∽△CGF,∴=,又∵△ABC∽△AGH,∴=,∴=,∴=,∵=,∴==+1=+1=,∴CP=FB;(3)延长BM交AC于F,延长AN到E,使NE=BN,连接BE,如图3:∵∠BAN﹣∠CBN=30°,∴∠BAN=∠CBN+30°,∴∠BNE=∠BAN+∠ABN=∠CBN+∠ABN+30°=60°,∵NE=BN,∴△BEN是等边三角形,∴∠E=60°,∵∠ANB=180°﹣∠BNE=120°=∠BAC,∴△ABN∽△FBA,∴==,∠BAE=∠AFB,∴△ANF∽△BEA,∴==,∴FN===,∴BF=FN+BN=,∴AB2=BN•BF=5+,过F作FG⊥BC于F,过N作NH⊥BC于H,∵∠ACB=30°,∴FG=FC=(AB﹣AF)=AB,CG=AB,∴BG=BC﹣CG=AB﹣AB=AB,∵NH∥CF,∴===,∴NH=AB,BH=AB,∴CH=BC﹣BH=AB,∴CN2=CH2+NH2=9,∴CN=3.。
民勤县第五中学2021届九年级第一次诊断考试数学试题〔无答案〕新人教版一、选择1.施行低碳生活已经成为2021年的热门话题,据估计每人平均一年的碳排放量为2.7吨,某人口数大约为660万,估计该一年的碳排放量用可用科学计数法表示为〔 〕 A.51082.17⨯吨 B.61082.17⨯吨 C.710782.1⨯吨 D.610782.1⨯吨 2、以下运算错误的有〔 〕个. ①3a 2+4a 2=7a 4②3a 2-4a 2=-a 2③4a 2-a 2=4 ④3a ·5a=15a ⑤12a 3÷4a 3=3A 1B 2C 3D 4 3、在△ABC 中,∠C=90°,sinA=32,那么tanB=〔 〕 A .53 B .25C .552D .35 4、.某人沿倾斜角是β的斜坡前进100米,那么它上升的高度是〔 〕A .βsin 100米 B .100·sin β米 C .βcos 100米 D .100·cos β米 5.、⊙O 1与⊙O 2的半径分别为6cm 和3cm ,圆心距0201=8cm ,那么两圆的位置关系为〔 〕A .外离B .外切C .相交D .内切6、.如下图,在△ABC 中,DE ∥BC ,假设AD =1,DB =2,那么ABCADE S S ∆∆的值是( )A .41B .91 C .31 D .217、把抛物线y=-2x 2的图象向右平移4个单位,再向下平移9个单位,所得的图象的表达式〔 〕A .y=-2〔x +4〕2+3B .y=-2〔x -4〕2-3 C .y=-2〔x +4〕2-3D .y=-2〔x -4〕2+38.假设 那么 的值是( )A .3B .0C .6D .-69、0≠a ,在同一直角坐标系中,函数ax y =与2ax y =的图象有可能是〔 〕10、实数a 、b 、c 满足k cba b c a a c b =+=+=+,那么直线y=kx+b 一定经过〔 〕象限。
一、选择题(每题5分,共50分)1. 下列数中,有理数是()A. √2B. πC. 0.1010010001...D. 3/42. 已知a、b、c是等差数列,且a+b+c=12,则b的值为()A. 3B. 4C. 5D. 63. 下列函数中,定义域为全体实数的是()A. y = √(x-1)B. y = |x|C. y = 1/xD. y = x^24. 在直角坐标系中,点A(2,3)关于原点的对称点为()A. (-2,3)B. (2,-3)C. (-2,-3)D. (3,2)5. 已知等腰三角形ABC中,AB=AC,AD是底边BC上的高,若AB=8,则AD的长度为()A. 4B. 6C. 8D. 106. 若方程x^2-4x+3=0的解为x1和x2,则x1+x2的值为()A. 2B. 3C. 4D. 57. 在△ABC中,∠A=60°,∠B=45°,则∠C的度数为()A. 45°B. 60°C. 75°D. 90°8. 若函数f(x) = ax^2 + bx + c的图像开口向上,则a的取值范围为()A. a > 0B. a < 0C. a = 0D. a ≠ 09. 已知正方体ABCD-A1B1C1D1的棱长为a,则体积V为()A. a^2B. a^3C. 2a^2D. 2a^310. 下列不等式中,正确的是()A. 2x > xB. x^2 > xC. 2x^2 > xD. x^2 > 2x二、填空题(每题5分,共50分)11. 若|a| = 5,则a的值为______。
12. 二元一次方程组 2x + 3y = 6,x - y = 1 的解为 x = ______,y = ______。
13. 若函数y = -2x + 3的图像与x轴交于点A,则点A的坐标为______。
14. 在△ABC中,∠A=90°,AB=6,AC=8,则BC的长度为______。
绝密 ★ 启用前九年级数学中考第一次诊断考试测试题数 学本试卷分为试题卷和答题卡两部分,试题卷共4页,答题卡共6页.满分150分,考试时间120分钟.注意事项:1.答题前,考生务必将自己的姓名、考号用0.5毫米黑色签字笔填写在答题卡上,并认真核对条形码上的姓名、考号.2.选择题使用2B 铅笔填涂在答题卡对应题目标号的位置上,如需改动,用橡皮擦擦干净后再选涂其它答案;非选择题用0.5毫米黑色签字笔书写在答题卡的对应框内,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效.3.考试结束后将答题卡收回.第Ⅰ卷(选择题,共36分)一.选择题(本大题共12个小题,每小题3分,共36分,每个小题给出的四个选项中只有一项是符合要求的)1. 如果-2是方程x 2-m =0的一个根,则m 的值是A .2B .-2C .4D .-42. 下列图形中不是中心对称图形的是A .B .C .D .3. 抛物线c bx x y -+=22与x 轴的公共点是(-2,0),(4, 0),则这条抛物线的对称轴是 A .直线x =1B .直线x =-1C .直线x =2D .直线x =34. 如图,⊙O 中,OA ⊥BC ,∠ADC =28°,则∠OBC 的度数是A .28°B .34°C .44°D .56°5. 点A (3,2)经过某种图形变化后得到点B (-2,3),这种图形变化可以是A .关于x 轴对称B .关于原点对称C .绕原点逆时针旋转90°D .绕原点顺时针旋转90°6. 将抛物线y =2(x -4)2-1先向左平移a 个单位长度,再向上平移b 个单位长度,平移后所得抛物线的解析式为y =2x 2+1,则a ,b 的值分别是A .a =4,b =2B .a =4,b =1C .a =2,b =4D .a =-4,b =-27. 小明在学习一元二次方程时,针对方程(x -3)(x -2)-p 2=0作了如下探究,其中结论错误的是A .方程有两个不相等的实数根B .当p =3时,方程的一个根大于0,一个根小于0C .当p =6时,方程有两个整数根D .方程的根是x 1=2+p , x 2=3+p 8. 如图,抛物线y=x 2+m 与直线y=x 的交点A 、B 的横坐标分别是-1和2,则关于x 的不等式x 2+m -x <0的解集是A .-1<x <2B .x <-1或x >2C .-2<x <1D .x <-2或x >19. 如图,在设计人体雕像时,使雕像的上部(腰以上)与下部(腰以下)的高度比,等于下部与全部(全身)的高度比,可以增加视觉美感. 按此比例,如果雕像的高为2m ,那么它的上部应设计的高度是A .(51+-)mB .(51+)mC .(52+-)mD .(53-)m10. 数学兴趣小组在“中学生学习报”中了解到“直角三角形斜边上的中线等于斜边的一半”,用含30°角的直角三角板做实验,如图,∠ACB =90°,BC =6cm ,M ,N 分别是AB ,BC的中点,标记点N 的位置后,将三角板绕点C 逆时针旋转,点M 旋转到点M ′,在旋转过程中,线段NM ′的最大值是A .8cmB .9cmC .10cmD .11cm11. 如图,直线AB 与⊙O 相切于点A ,弦CD //AB , E ,F 为圆上的两点,且∠CDE =∠ADF ,若⊙O 的半径为5,EF =54,则△ACD 的面积是A .32B .40C .516D .52012. 已知一元二次方程ax 2+bx +c =0(a ≠0)的两个实数根为x 1,x 2,则x 1+x 2=a b -, x 1· x 2=ac . 这个结论是法国数学家韦达最先发现并证明的,故把它称为“韦达定理”. 请利用此定理解决问题:对于一切不小于2的自然数n , 关于x 的一元二次方程x 2-(n +2)x -2n 2=0的两个根记作a n , b n (n ≥2),则)2)(2(1)2)(2(1)2)(2(1201920193322--++--+--b a b a b a 的值是 A. 20201009- B.20201009 C.40401009- D.40401009 第Ⅱ卷(非选择题,共114分)二.填空题(共6个小题,每小题4分,共24分,将答案填写在答题卡相应的横线上)13. 小马虎在解一元二次方程x 2=2x 时,得到其中的一个根是2,则他漏掉的另一个根是 .14. 如图,菱形ABCD 的对角线交于坐标原点,已知点A 坐标为(a ,2),点C 的坐标为(3,b ),则a -b = .15. 如图,P A ,PB 是⊙O 的切线,A ,B 为切点,AC 是⊙O 的直径,∠ACB =64°,则∠P 的度数是 .16. 汽车刹车后行驶的距离s (单位:米)关于行驶的时间t (单位:秒)的函数解析式为s =-6t 2+5t .则汽车刹车后行驶的最大距离为 . 17. 如图,△ABC 中,AB =AC =8,∠BAC =30°,现将△ABC 绕点A逆时针旋转30°得到△ACD ,延长AD ,BC 相交于点E ,则DE 的长是 .18. 如图,在△ABC 中,∠ACB =90°,过B ,C 两点的⊙O 交AC 于点D ,交AB 于点E ,连接EO 并延长交⊙O 于点F .连接BF ,CF .若∠EDC =135°,CF =32,则AE 2+BE 2的值为 .三.解答题(本大题共7个小题,共90分,解答应写出文字说明、证明过程或演算步骤)19.(本题共2个小题,每小题8分,共16分)(1)解方程:(2x -3)2=10x -15(2)一名男生推铅球,铅球运行的高度y (m )与水平距离x (m )之间的函数关系式为21251233y x x =-++.求铅球推出的距离.20.(本题满分12分)如图,在平面直角坐标系中,已知点A (4,2),B (4,0).(1)画出将△OAB 绕原点逆时针旋转90°得到的△OA 1B 1;(2)直接写出A 的对应点A 1的坐标是 ,B 的对应点B 1的坐标是 ;(3)设点A ,A 1关于点P 成中心对称,点Q 是△ABO 的外心,求出点P , Q 两点之间的距离.21. (本题满分12分)已知矩形ABCD 的对角线AC 、BD 的长是关于x 的方程04322=++-m mx x 的两个实数根. (1)求m 的值;(2)若矩形ABCD 的其中一条边长为1,求这个矩形的面积.22.(本题满分12分)问题情境:数学课上,老师让同学们拿两张大小相同的正方形纸片做旋转探究活动,并提出数学问题加以解决:如图(1),四边形ABCD 和DCGH 都是正方形,点M ,N 分别是DH ,CG 的中点,将正方形ABCD 以点D 为中心,逆时针旋转角度α(0<α<90°),得到正方形ABC'D.解决问题:下面是兴趣小组提出两个数学问题,请你解决这些问题.(1)如图(2),当边BC'正好经过点N时,写出线段C'G和DN的位置关系,并证明;(2)如图(3),当点C′正好落在MN上时,求旋转角α的大小.23.(本题满分12分)绵阳市某商业公司为指导某种应季商品的生产和销售,对三月份至七月份该商品的售价和生产进行了调研,结果如下:某件商品的售价M(元)与时间t(月)的关系可用一条线段上的点来表示(如图甲),这件商品的成本Q(元)与时间t(月)的关系可用一条抛物线上的点来表示,其中6月份成本最高(如图乙).(1)这件商品在6月份出售时的利润是多少元?(2)求出图乙中表示的这件商品的成本Q(元)与时间t(月)之间的函数关系式,并写出自变量的取值范围;(3)你能求出3月份至7月份这件商品的利润W(元)与时间t(月)之间的函数关系式吗?若该公司能在一个月内售出此种商品2700件,请你计算该公司在一个月内最少获利多少元?24.(本题满分12分)如图,在四边形ABCD中,AD∥BC,AD⊥CD,AC=AB,⊙O为△ABC的外接圆.(1)如图1,求证:AD是⊙O的切线;(2)如图2,CD交⊙O于点E,过点A作AG⊥BE,垂足为F,交BC于点G.①求证:AG=BG;②若AD=2,CD=3,求△ABG的面积.25.(本题满分14分)如图,二次函数y=x2+bx+c的图象交x轴于A(-1,0)、B(3,0)两点,交y轴于点C,连接BC.(1)求二次函数的解析式;(2)如图1,点E是直线BC下方抛物线上的一动点,过点E作EG//x轴交BC于点G,作EF⊥BC于点F,求△EFG周长的最大值及此时点E的坐标;(3)如图2,动点P以每秒1个单位长度的速度从A向B运动,动点Q以每秒2个单位长度的速度从B向C运动,P、Q同时出发,连接PQ,当点Q到达C点时,P、Q 同时停止运动,设运动时间为t秒.当t<2时,延长QP交y轴于点M,在抛物线上是否存在一点N,使得PQ的中点恰为MN的中点?若存在,求出点N的坐标与t的值;若不存在,请说明理由.。
九年级数学第一次诊断考试试卷 数 学 命题人: 康永奎
一.选择题(本题共10个小题,每小题3分,共计30分。
在每小题给出的4个选项中,只有一项是符合
题目要求的.将此项的代号填入题后的括号内 ) 1.计算223)3(a a ÷-的结果是( )
A.4
9a - B .4
6a C.3
9a D.4
9a
2、方程
11
111=+--x x 的解是( ) A 、 1 B 、-1 C 、±3 D 、±√3 3、图(1)中几何体的主视图是( )
4.下列各图中,不是中心对称图形的是( )
A. B. C. D. 5.下列说法正确的是( ).
A 、一个游戏的中奖率是1%,则做100次这样的游戏一定会中奖
B 、为了解某品牌灯管的使用寿命,可以采用普查的方式
C 、一组数据6、8、7、8、9、10的众数和平均数都是8
D 、若甲组数据的方差2S 甲=0.05,乙组数据的方差2
S 乙=0.1,则乙组数据比甲组数据稳定
6、如图(2),P A 为⊙O 的切线,A 为切点,PO 交⊙O 于点B ,P A =4,OA =3,则cos ∠APO 的值为( )
A .
34 B .3
5 C .45 D .43
7、直径为6和10的两个圆相内切,则其圆心距 d 为(
A .2
B .4
C .8
D .16
8.已知,如图(3),A,B 两村之间有三条道路,甲,乙两人分别从A,B 两村同时出发,他们途中相遇的概率为 ( ) A 、
91 B 、61 C 、 31 D 、3
2 图3
9、如图(4),天平右盘中的每个砝码的质量都是1g ,则物体A 的质量m(g)的取值范围,在数轴上可表示为( )
正面 图1
A B C D
图4 C
D 图2
10.一个运动员打高尔夫球,若球的飞行高度(m )y 与水平距离(m )x 之间的函数表达式为
()2
13010
90
y x =-
-+,则高尔夫球在飞行过程中的最大高度为( ) A .10m B .20m C .30m D .60m
二.填空题(本题共8个小题,每小题4分,共32分,请把答案填在题中的横线上.) 11、已知点P (-2,3),则点P 关于x 轴的对称点坐标是 12、在函数2
1
-=
x y 中,自变量x 的取值范围是 13、在△ABC 中,∠C =90°,5
3
cos =
A ,那么tan A= 14、顺次连结等腰梯形四边中点所得到的四边形是
15、某地区为估计该地区黄羊的只数,先捕捉20只黄羊给它们分别作上标志,然后放回,待有标志的黄
羊完全混合于黄羊群后,第二次捕捉60只黄羊,发现其中2只有标志。
从而估计该地区有黄羊
16、如图(5),⊙P 的半径为2,圆心P 在函数6
(0)y x x
=>的图象上运动,当⊙P 与x 轴相切时,点P 的
坐标为 .
图5 图6
17、如图(6),圆心角都是90°的扇形AOB 与扇形COD 如图叠放在一起,连结AC 、BD ,若OA = 3cm ,OC = 1cm ,则阴影部分的面积为
18、如下图1,在边长为a 的正方形中挖掉一个边长为 b 的小正方形(a >b ),把余下的部分剪拼成一个矩形(如下图2),通过计算两个图形(阴影部分)的面积,验证了一个等式,则这个等式是
三.作图题(本题满分4分,不写作法和证明,但保留作图痕迹.)
19、我们在探索平面图形的性质时,往往通过剪拼的方式帮助我们寻找解题思路.
例如,在证明三角形中位线定理时,就采用了如图的剪拼方式,将三角形转化为平行四边形使问
题得以解决.
(1)请你将图(7)的平行四边形剪拼为矩形; (2)请你将图(8)的梯形剪拼为三角形.
x
F
B
A C
D
E
图7
图8
四.解答题(本大题共9道题,共计84分,解答时写出必要的文字说明、证明过程或演算步骤.)
20、(8分) 先化简,再求值:21
,221
2122
2=÷--++--x x x x x x x x 其中
21、(8分)将背面相同,正面分别标有数字1、2、3、4的四张卡片洗匀后,背面朝上放在桌子上.
(1)从中随机抽取一张卡片,求该卡片正面上的数字是偶数的概率; (2)先从中随机抽取一张卡片(不放回...),将该卡片正面上的数字作为十位上的数字;再随机抽取一张,将该卡片正面上的数字作为个位上的数字,则组成的两位数恰好是4的倍数的概率是多少?请用树状图或列表法加以说明.
22、(8分)阅读材料:为解方程(x 2-1)2-5(x 2-1)+4=0,我们可以将x 2-1看作一个整体,然后设x 2-1=y ,那么原方程可化为y 2-5y +4=0,……①解得y 1=1,y 2=4.当y =1时,x 2-1=1,∴x 2=2,∴x =±2;当y =4时,x 2-1=4,∴x 2=5,∴x =±5,故原方程的解为x 1=2,x 2=2-,x 3=5,x 4=5-.
解答问题:(1)上述解题过程,在由原方程得到方程①的过程中,利用_________法达到了解方程的目的,体现了 的数学思想;
(2)请利用以上知识解方程x 4-x 2-6=0. 23、(8分)瞭望台AB 高20m ,从瞭望台底部B 测得对面塔顶C 的仰角为60°,从瞭望台顶部A 测得塔顶C 的仰角为45°,已知瞭望台与塔CD 地势高低相同.求塔高CD .
24(10分)某超市销售一种商品,每件商品的成本是20元.经统计销售情况发现,当这种商品的单价定为40元时,每天售出200件.在此基础上,这种商品的单价每降低1元,每天就会多售出20件.设这种商品的单价定为x 元时,超市每天销售这种商品所获得的利润为y 元.
(1)用代数式表示,单价为x 元时销售1件该商品的利润和每天销售该商品的数量; (2)求y 与x 之间的函数关系式;
(3)当商品单价定为多少时,该超市每天销售这种商品获得的利润最大?最大利润为多少?
25、(10分)已知:如图,AB 是⊙O 的直径,BC 是和⊙O 相切于点B 的切线,⊙O 的弦AD 平行于OC . 求证:DC 是⊙O 的切线. 26、(10分)某中学图书馆将图书分为自然科学、文学艺术、社会百科、数学四类.在“师生读书月”活动期间,为了解图书的借阅情况,图书管理员对本月各类图书的借阅量进行了统计,图9-1和图9-2是图书管理员通过采集数据后,绘制的两幅不完整的频率分布表与频数分布直方图.请你根据图表中提供的信息,解答以下问题:
(1)填充图9-1频率分布表中的空格.
(2)在图9-2中,将表示“自然科学”的部分补充完整.
(3)若该学校打算采购一万册图书,请你估算“数学”类图书应采购多少册较合适?
(4)根据图表提供的信息,请你提出一条合理化的建议.
27、(10分)(1)已知:如下图1,△ABC 为正三角形,点M 为 BC 边上任意一点,点N 为 CA 边上任意一点,且BM = CN ,BN 与AM 相交于Q 点,试求∠BQM 的度数. (2)如果将(1)中的正三角形改为正方形ABCD (如下图2),点M 为BC 边上任意一点,点N 为CD 边上任意一点,且BM = CN ,BN 与AM 相交于Q 点,那么∠BQM 等于多少度呢?说明理由.
频率分布表
图9-2 自然科学 文学艺术 社会百科 数学 图书
图9-1
(3)如果将(1)中的“正三角形”改为正五边形……正 n 边形,其余条件都不变,请你根据(1)、(2)的求解思路,将你推断的结论填入下表:(注:正多边形的各个内角都相等)
28、(12分)已知二次函数1)12(22-+-+=m x m x y (m 为常数),它的图象(抛物线)经过坐标原点O ,且顶点M 在第四象限,
(1)求m 的值,并写出二次函数解析式;
(2)设点A 是抛物线上位于O 、M 之间的一个动点,过A 作x 轴的平行线,交抛物线于另一点D ,作
AB ⊥x 轴于B ,DC ⊥x 轴于C . ① 当BC =1时,求矩形ABCD 的周长;
② 试问矩形ABCD 的周长是否存在最大值?如果存在,请求出这个最大值,并指出此时A 点的坐标;
如果不存在,请说明理由.
附加题:(10分)如果你的全卷得分不足150分,则本题的得分计入总分,但计入总分后全卷不得超过150分。
阅读下面内容:“如下图1,以三角形ABC 三个顶点为圆心,以1为半径的三个圆(两两不相交)与三角形相交,则图中阴影部分的面积之和是多少?”
我们可以用如下方法解决这个问题: 设以 A 、B 、C 为圆心的三个扇形的圆心角的度数分别是 n 1、n 2、n 3 ,
面积分别是S 1、S 2、S 3 ,由扇形面积公式360
2r n s π= 可知 :
S 阴影部分 = S 1 + S 2 + S 3 ,
∵在△ABC 中,∠A +∠B +∠C = 180° 即:n 1 + n 2 + n 3 = 180
∴S 阴影部分 = S 1 + S 2 + S 3 根据以上推理过程,回答下列问题:
(1)以五边形 ABCDE 的顶点为圆心,以1为半径的五个圆(两两不相交,如上图2)与五边形相交,则图中阴影部分的面积之和是多少?请说明理由.
(2)试猜想,以n 边形的 n 个顶点为圆心,以 1 为半径的 n 个圆(两两不相交)与 n 边形相交,则其公共部分的面积(即阴影部分的面积之和) S = ________________.。