第一章 复变函数和解析函数
- 格式:ppt
- 大小:2.56 MB
- 文档页数:69
第一章:复数与复变函数这一章主要是解释复数和复变函数的相关概念,大部分内容与实变函数近似,不难理解。
一、复数及其表示法介绍复数和几种新的表示方法,其实就是把表示形式变来变去,方便和其他的数学知识联系起来。
二、复数的运算高中知识,加减乘除,乘方开方等。
主要是用新的表示方法来解释了运算的几何意义。
三、复数形式的代数方程和平面几何图形就是把实数替换成复数,因为复数的性质,所以平面图形的方程式二元的。
四、复数域的几何模型——复球面将复平面上的点,一一映射到球面上,意义是扩充了复数域和复平面,就是多了一个无穷远点,现在还不知道有什么意义,猜想应该是方便将微积分的思想用到复变函数上。
五、复变函数不同于实变函数是一个或一组坐标对应一个坐标,复变函数是一组或多组坐标对应一组坐标,所以看起来好像是映射在另一个坐标系里。
六、复变函数的极限和连续性与实变函数的极限、连续性相同。
第二章:解析函数这一章主要介绍解析函数这个概念,将实变函数中导数、初等函数等概念移植到复变函数体系中。
一、解析函数的概念介绍复变函数的导数,类似于实变二元函数的导数,求导法则与实变函数相同。
所谓的解析函数,就是函数处处可导换了个说法,而且只适用于复变函数。
而复变函数可以解析的条件就是:μ对x与ν对y的偏微分相等且μ对y和ν对x的偏微分互为相反数,这就是柯西黎曼方程。
二、解析函数和调和函数的关系出现了新的概念:调和函数。
就是对同一个未知数的二阶偏导数互为相反数的实变函数。
而解析函数的实部函数和虚部函数都是调和函数。
而满足柯西黎曼方程的两个调和函数可以组成一个解析函数,而这两个调和函数互为共轭调和函数。
三、初等函数和实变函数中的初等函数形式一样,但是变量成为复数,所以有一些不同的性质。
第三章:复变函数的积分这一章,主要是将实变函数的积分问题,在复变函数这个体系里进行了系统的转化,让复变函数有独立的积分体系。
但是很多知识都和实变函数的知识是类似的。
可以理解为实变函数积分问题的一个兄弟。
第一章 复变函数和解析函数1.1 下列各式在复平面z 上表示什么? (1) 2Im 4z =解:()()2222z x iy x iy x y i xy =++=-+ ,2Im 24z xy ∴==,则2xy =, 为双曲线.(2) 1Re 2z=解:2211x iy z x iy x y -==++ ,221Re 2x z x y ∴==+,22102x y x +-=,该方程表示圆心在1(,0)4半径为14的圆,但1z 要求0z ≠,故1Re 2z=为该圆除去点(0,0).(3) Re 1z z +≤解:由题Re 1z z x +=+≤,即1x ≤-,可得212y x ≤-,它表示如图所示的抛物线及内部阴影部分.(4)221z z +=- =()()22222414x y x y ++=-+,整理得22(2)4x y -+=,可见原式表示圆心在(-2, 0)半径为2得圆。
(5) 0arg4z i z i π-<<+ 解:原式为()()10arg14x i y x i y π+-<<++,对()()11x i y x i y +-++化简有:Oi-i复平面()()()()()()22222212111111x y i x x i y x i y x i y x i y x y x y ⎡⎤+--+--+⎡⎤⎡⎤+-⎣⎦⎣⎦⎣⎦==++++++ 原式即为()2222120arg 41x y i x x y π⎡⎤+--⎣⎦<<++, 满足条件()()222222222222101102020121211x y x y x y x x x y x y x xx y ⎧+->⎪++⎪⎧+->⎪-⎪⎪>⇒->⎨⎨++⎪⎪++>⎩⎪-⎪<+-⎪⎩ 即需满足0x <,并在圆2210x y +-=与222(1)x y ++=之外的区域。
复变函数理论与解析函数的性质复变函数理论是数学中的一个重要分支,它研究的是具有复变量的函数。
复变函数与实变函数有着明显的区别,它们的性质和行为也有很大的不同。
本文将探讨复变函数理论的一些基本概念和解析函数的性质。
一、复变函数的定义和基本性质复变函数是指定义在复数域上的函数。
复数可以表示为实部与虚部的和,即z = x + iy,其中x和y分别是实数部分和虚数部分。
一个复变函数可以表示为f(z) = u(x, y) + iv(x, y),其中u和v分别是实部和虚部的函数。
复变函数的定义域是复平面上的一个开集。
复变函数的基本性质包括解析性、连续性和可微性。
解析性是指函数在其定义域内处处可导,即函数的导数存在。
连续性是指函数在其定义域内连续。
可微性是指函数在某一点处可导。
对于复变函数来说,解析性和可微性是等价的,即函数在某一点处可导当且仅当函数在该点处解析。
二、解析函数的性质解析函数是复变函数中的一类特殊函数,它具有许多重要的性质。
首先,解析函数是无穷可微的,即它的导数、二阶导数、三阶导数等都存在。
这个性质使得解析函数在数学和物理中有广泛的应用,例如在电磁场的分析和量子力学中的波函数描述等。
其次,解析函数满足柯西-黎曼方程,即它的实部和虚部满足柯西-黎曼方程的偏导数条件。
这个方程表明解析函数的实部和虚部是相互独立的,它们的变化是相互约束的。
柯西-黎曼方程的满足使得解析函数具有一定的几何性质,例如保角性和共形映射等。
此外,解析函数还具有唯一性定理和辐角原理等重要性质。
唯一性定理指出,如果两个解析函数在某个区域内的实部和虚部都相等,那么它们在该区域内是相等的。
辐角原理是指解析函数的辐角的变化是连续的,且在某个区域内的辐角变化总和为零。
三、解析函数的应用解析函数在数学和物理中有广泛的应用。
在数学中,解析函数常用于复积分、级数和变换等问题的求解。
在物理学中,解析函数常用于电磁场的分析、流体力学中的势函数描述等。