高二数学不等式的解法
- 格式:docx
- 大小:12.46 KB
- 文档页数:2
解不等式的步骤如下:
1. 将不等式转化为“小于等于”或“大于等于”的形式。
例如,将 $x<2$ 转化为 $x-2<0$。
2. 对不等式两边进行同等的加减、乘除运算,直到将未知量(通常是 $x$)单独放在一边。
注意,如果对不等式两边进行乘除运算,需要注意正负号的变化。
3. 判断不等式的解集,即确定 $x$ 的取值范围。
如果不等式中存在分数或绝对值,需
要对不等式进行分类讨论。
4. 将解集用数轴表示出来,可以用一个实心点或开口方向表示。
需要注意的是,当不等式的左右两边都有未知量时,不能简单地移项,必须根据不等
式的性质和具体情况进行分类讨论。
此外,在解不等式时,需要注意不能对不等式两
边同时乘以未知量的情况,因为未知量可能为零或负数,导致不等式的方向发生改变。
不等式的解法、应用习题课预习案一、 自学教材,思考下列问题 1.不等式的解法解不等式是求定义域、值域、参数的取值范围时的重要手段,与“等式变形”并列的“不等式的变形”,是研究数学的基本手段之一。
高考试题中,对解不等式有较高的要求,近两年不等式知识占相当大的比例。
(1)同解不等式((1)f x g x ()()>与f x F x g x F x ()()()()+>+同解;(2)m f x g x >>0,()()与mf x mg x ()()>同解,m f x g x <>0,()()与mf x mg x ()()<同解;(3)f xg x ()()>0与f x g x g x ()()(()⋅>≠00同解); 2.一元一次不等式解一元一次不等式(组)及一元二次不等式(组)是解其他各类不等式的基础,必须熟练掌握,灵活应用。
ax b a a a >⇒>=<⎧⎨⎪⎩⎪分()()()102030情况分别解之。
3.一元二次不等式ax bx c a 200++>≠()或ax bx c a 200++<≠⇒()分a >0及a <0情况分别解之,还要注意∆=-b ac 24的三种情况,即∆>0或∆=0或∆<0,最好联系二次函数的图象。
二、 一试身手1.下列结论正确的是 . ①不等式x 2≥4的解集为{x |x ≥±2} ②不等式x 2-9<0的解集为{x |x <3}③不等式(x -1)2<2的解集为{x |1-2<x <1+2}④设x 1,x 2为ax 2+bx +c =0的两个实根,且x 1<x 2,则不等式ax 2+bx +c <0的解集为{x |x 1<x <x 2} 2.(2007·湖南理)不等式12+-x x ≤0的解集是 . 3.(2008·天津理)已知函数f (x )=⎩⎨⎧≥-<+-,0,1,0,1x x x x 则不等式x +(x +1)·f (x +1)≤1的解集是 .4.在R 上定义运算⊗:x ⊗y =x (1-y ).若不等式(x -a )⊗(x +a )<1对任意实数x 成立,则a 的取值范围是 .5.(2008·江苏,4)A ={x |(x -1)2<3x -7},则A ∩Z 的元素的个数为 .导学案一、 学习目标1. 掌握有理不等式的解法。
高二数学知识点:不等式的解法不等式的解法:(1)一元二次不等式:一元二次不等式二次项系数小于零的,同解变形为二次项系数大于零;注:要对进行讨论:(2)绝对值不等式:若,则;;注意:(1)解有关绝对值的问题,考虑去绝对值,去绝对值的方法有:⑴对绝对值内的部分按大于、等于、小于零进行讨论去绝对值;(2).通过两边平方去绝对值;需要注意的是不等号两边为非负值。
(3).含有多个绝对值符号的不等式可用“按零点分区间讨论”的方法来解。
(4)分式不等式的解法:通解变形为整式不等式;(5)不等式组的解法:分别求出不等式组中,每个不等式的解集,然后求其交集,即是这个不等式组的解集,在求交集中,通常把每个不等式的解集画在同一条数轴上,取它们的公共部分。
(6)解含有参数的不等式:解含参数的不等式时,首先应注意考察是否需要进行分类讨论.如果遇到下述情况则一般需要讨论:①不等式两端乘除一个含参数的式子时,则需讨论这个式子的正、负、零性.②在求解过程中,需要使用指数函数、对数函数的单调性时,则需对它们的底数进行讨论.③在解含有字母的一元二次不等式时,需要考虑相应的二次函数的开口方向,对应的一元二次方程根的状况(有时要分析△),比较两个根的大小,设根为(或更多)但含参数,要讨论几种常见不等式的解法:1.一元一次不等式的解法任何一个一元一次不等式经过变形后都可以化为axb或axb而言,当a0时,其解集为(ab,+),当a0时,其解集为(-,ba),当a=0时,b0时,期解集为R,当a=0,b0时,其解集为空集。
例1:解关于x的不等式ax-2b+2x解:原不等式化为(a-2)xb+2①当a2时,其解集为(b+2a-2,+)②当a2时,其解集为(-,b+2a-2)③当a=2,b-2时,其解集为④当a=2且b-2时,其解集为R.2.一元二次不等式的解法任何一个一元二次不等式都可化为ax?2+bx+c0或ax?2+bx+c0(a0)的形式,然后用判别式法来判断解集的各种情形(空集,全体实数,部分实数),如果是空集或实数集,那么不等式已经解出,如果是部分实数,则根据“大于号取两根之外,小于号取两根中间”分别写出解集就可以了。
高二数学不等式的解法
通常不等式中的数是实数,字母也代表实数,不等式的一般形式为F(x,y,……,z)≤G(x,y,……,z)(其中不等号也可以为<,≤,≥,>中某一个),两边的解析式的公共定义域称为不等式的定义域,不等式既可以表达一个命题,也可以表示一个问题。
不等式的解法:
(1)一元二次不等式:一元二次不等式二次项系数小于零的,同
解变形为二次项系数大于零;注:要对进行讨论:
(2)绝对值不等式:若,则;;
注意:
1、解有关绝对值的问题,考虑去绝对值,去绝对值的方法有:
(1)对绝对值内的部分按大于、等于、小于零进行讨论去绝对值;
(2)通过两边平方去绝对值;需要注意的是不等号两边为非负值。
(3)含有多个绝对值符号的不等式可用“按零点分区间讨论”的
方法来解。
(4)分式不等式的解法:通解变形为整式不等式;
(5)不等式组的解法:分别求出不等式组中,每个不等式的解集,然后求其交集,即是这个不等式组的解集,在求交集中,通常把每
个不等式的解集画在同一条数轴上,取它们的公共部分。
(6)解含有参数的不等式:
解含参数的不等式时,首先应注意考察是否需要进行分类讨论.
如果遇到下述情况则一般需要讨论:
①不等式两端乘除一个含参数的式子时,则需讨论这个式子的正、负、零性.
②在求解过程中,需要使用指数函数、对数函数的单调性时,则需对它们的底数进行讨论.
③在解含有字母的一元二次不等式时,需要考虑相应的二次函数的开口方向,对应的一元二次方程根的状况(有时要分析△),比较两个根的大小,设根为(或更多)但含参数,要讨论。