第4章第12节频率响应与频率特性及频率特性的图示法
- 格式:ppt
- 大小:338.50 KB
- 文档页数:20
1、频率响应法•基本思想是把系统中的信号分解为多种不同频率的正弦信号,这些信号经过控制系统时,会以一定的规律产生幅值和相位的变化,通过分析这些变化规律就能得出关于系统运动的性能指标。
•由于幅值和相位的变化称频率特性函数可以绘制在图形上,因此该方法非常直观。
另外,可以用实验法建立系统的模型,也可以据开环频率特性分析闭环系统的特性。
该方法具有很高的工程价值,深受工程技术人员欢迎。
6 频率响应分析法22、频率特性的图示方法•为了直观地分析系统的特性,通常把幅频和相频特性以图形的形式表示出来:1.幅相频率特性(奈氏图)2.对数频率特性(Bode图)3.对数幅相特性(尼氏图)6 频率响应分析法52.1 幅相频率特性图•极坐标图:奈奎斯特(Nyquist)图,幅相特性图,当频率连续变化时,频率特性函数在复平面的运动轨迹。
G(jω)=x(ω)+ j y(ω)ω:0→+∞6 频率响应分析法62.2 对数频率特性(Bode图)•对数坐标图:伯德(Bode)图,由两辐图组成。
对数幅频特性图+对数相频特性图,横坐标为频率的(以10为底数)对数,单位是10倍频程(dec)。
–对数幅频图的纵坐标为幅频的对数,单位为分贝(dB)–对数相频图的纵坐标为相频值,单位为弧度6 频率响应分析法86 频率响应分析法10伯德(Bode)图的优点•对数坐标图有如下优点:–把乘、除的运算变成加、减运算。
串联环节的Bode 图为单个环节的Bode图迭加。
–K 的变化对应于对数幅频曲线上下移动,而相频曲线不变。
–一张图上可以同时画出低、中、高频的特性。
•因此在工程上得到了广泛的应用6 频率响应分析法112.3 对数幅相特性(尼氏图)对数幅相图•尼科尔斯(Nichols)图,以对数幅频特性为纵坐标(分贝),相频特性为横坐标,频率ω为参变量。
6 频率响应分析法126 频率响应分析法146 频率响应分析法203.7 用Matlab绘制频域特性图•sys = tf(num,den);•伯德图–bode(sys); [mag,phase,w] = bode(sys);•奈奎斯特图–nyquist(sys); [re,im,w] = nyquist(sys);•尼科斯图–nichols(sys); [mag,phase,w] = nichols(sys);6 频率响应分析法23对数频域特性图与频域性能指标分贝对应的频率:截止频率-3分贝对应的频率:带宽6 频率响应分析法5. 开环传递函数的频率特性5.1 开环对数频率特性的绘制①以典型环节的频率特性为依据进行迭加;②首先考虑积分环节和比例环节;③充分利用环节的特征点。