高一化学极性分子和非极性分子
- 格式:pdf
- 大小:1.05 MB
- 文档页数:11
高中化学:分子极性一、分类:按照分子的极性,可把分子分为两类。
1、非极性分子:正负电荷重心重合,分子对外不显示电负性的分子。
例如:等。
疏水分子是指不溶于水的分子。
非极性分子是指原子间以共价键结合,分子里电荷分布均匀,正负电荷中心重合的分子。
水分子是极性分子,根据相似相溶原理,非极性分子很难溶于水。
但疏水分子也可能是极性很大的分子,例如各类脂肪酸,所以疏水分子不一定是非极性分子!2、极性分子:正负电荷重心不重合,分子对外显示电负性的分子。
例如HCl、H2O2等。
二、掌握常见分子极性及其空间构型:常见分子极性及其空间构型可用下表表示。
三、了解常见分子空间构型及其键角:中学常见分子空间构型及其键角列举如下:(1)等双原子单质分子为直线形,夹角为180°。
(2)为平面形,夹角为104.5°。
(3)为三角锥形,夹角为107°18”。
(4)S为平面形,夹角为92°。
(5)为正四面体形,夹角为109°28”。
(6)为四面体形,夹角不确定。
(7)为直线形,夹角为180°。
(8)为平面形,夹角为120°。
(9)为平面形,夹角为60°。
(10)为正四面体形,夹角为109°28”。
(11)为直线形,夹角为180°。
(12)为平面形,夹角为120°。
②③④⑤注意:中学常见的四面体物质有①CH4⑥⑦⑧⑨等。
其中是正四面体的有①、⑤、⑥、⑦、⑧、⑨共6种。
四、分子极性判断规律。
①双原子单质分子都是非极性分子。
如等。
②双原子化合物分子都是极性分子。
如HCl、HBr、HI等。
③多原子分子极性要看空间构型是否对称,对称的是非极性分子,否则是极性分O、等是极性分子;子。
如H2等是非极性分子。
④形分子极性判断:若A原子的最外层电子全部参与成键,这种分子一般为非极性分子。
如等。
若A原子的最外层电子没有全部参与成键,这种分子一般为极性分子。
极性分子和非极性分子比较
(1)极性分子:正电荷中心和负电荷中心不相重合的分子
(2)非极性分子:正电荷中心和负电荷中心相重合的分子
(3)分子极性的判断:分子的极性由共价键的极性及分子的空间构型两个方面共同决定。
分子极性的判断方法:
An型分子(以非极性键结合形成的单质分子)一般是非极性分子(O3例外),AB型分子一定是极性分子。
对于ABn型分子是极性分子还是非极性分子,通常有以下判断方法。
根据分子的立体构型判断
判断ABn型分子是否有极性,关键是看分子的立体构型.如果分子的立体构型为直线形、平面三角形、正四面体形、三角双锥形、正八面体形等空间对称的结构,致使正电中心与负电中心重合,这样的分子就是非极性分子。
若为V形、三角锥形、四面体形(非正四面体形)等非对称结构,则为极性分子。
比如H2O分子中虽然2个H原子轴对称,但整
个分子的空间构型是不对称的:,负电中心在a点,正电中心在b 点,二者不重合,因此是极性分子。
根据实验现象判断
将液体放入适宜的滴定管中,打开活塞让其缓慢流下,将用毛皮摩擦过的橡胶棒靠近液流,流动方向变化(发生偏移)的是极性分子.流动方向不变的是非极性分子。
举例说明:。
高一化学 非极性分子和极性分子教学实例【教学设计】《非极性分子和极性分子》这节内容是在学习完键的极性的基础上进行授课的。
本节课要求学生通过对简单的分子结构的分析,了解化学键的极性与分子极性的关系。
在这堂课的教学中,我以多媒体作为辅助教学的手段,通过展示多种分子的立体结构,使学生更直观地学会从分子结构判断分子的极性,并在此基础上引导学生利用其他方面的知识来判断分子的极性。
【教学实录】师:演示实验:有机玻璃棒与稠布摩擦后接近滴定管放出的水柱,结果水柱发生偏转,分成几股溶液。
师:为什么有机玻璃棒摩擦后接近水流时会出现这种现象?生:因为玻璃棒带静电,水带电,电性与玻璃棒相反,异性相吸所以水发生偏向。
师:水溶液为什么发生偏转,是因为它带电吗?我们先把这个问题放在这,学习完接下来的内容我们再来找答案。
首先请同学们通读教材并思考两个问题:1、键的极性如何区别 2、分子的极性怎样判断,从教材中总结几条判断规律。
生:非极性键和极性键的判断方法是:同种元素原子形成的共价键是非极性键,不同种元素原子形成的共价键是极性键。
师:回答得很好,投影:师:那么分子的极性怎样判断呢?是否由极性键形成的分子就是极性分子?生:不一定,1、由非极性键结合的双原子分子一定是非极性分子。
如:H 2、Cl 2等;2、由极性键结合成的双原子分子一定是极性分子。
如:HCl 、HF ;3、由极性键结合形成的多原子分子,可能是极性分子也可能是非极性分子,决定于分子的空间结构。
师:总结得很好,双原子分子极性的判断方法比较简单,那么多原子分子究竟该怎样由分子结构来判断分子的极性呢?我们来看以下几个多原子分子的空间结构图。
投影: 展示CO 2、CH 4、H 2O 等分子的空间结构的动画判断键的极性的方法很简单,即看成键的两 原子是否相同,但要注意前提条件:该化学 键必须是共价键。
如:NaCl 分子中成键的两 元素不同,但并不是极性键,而是离子键。
折线型分三角锥型NH3SO2用简图表示:O=C=O师:已知以上六种分子的结构,请根据你从书中总结的判断规律分析它们分子的极性。
极性分子与非极性分子你知道冰为什么在4℃时密度最大吗?这就是本讲所学内容——分子间作用力和氢键的有关知识。
由于水分子间有氢键缔合这样的特殊结构。
根据近代X射线的研究,证明了冰具有四面体的晶体结构。
这个四面体是经过氢键形成的,是一个敞开式的松弛结构,因为5个水分子不能把全部四面体的体积占完,在冰中氢键把这些四面体联系起来,成为一个整体。
这种通过氢键形成的定向有序排列,空间利用率较小,约占34%,因此冰的密度较小。
液态水不像冰那样完全是有序排列了,而是有一定程度的无序排列,即水分子间的距离不像冰中那样固定,H2O分子可以由一个四面体的微晶进入另一微晶中去。
这样,分子间的空隙减少,密度就增大了。
温度升高时,水分子的四面体集团不断被破坏,分子无序排列增多,使密度增大。
但同时,水分子的热运动也增加了分子间的距离,使密度又减小。
这两个矛盾的因素在4℃时达到平衡,因此,在4℃时水的密度最大。
过了4℃后,分子的热运动使分子间的距离增大的因素,就占优势了,水的密度又开始减小。
知识延伸一、分子间作用力分子型物质无论是气态、液态或固态,都是由许多分子组成的,在分子间存在着一种较弱的作用力叫分子间作用力,也叫做范德华力。
它比分子内原子间的作用力(化学键)要小。
分子间的作用力是一个总的提法,按作用力产生的原因和特性可分为三种力:l.取向力当两个极性分子靠近时,同极相斥,异极相吸,产生相对转动,最后必然是异极相对,同极尽量远离,这叫做分子的取向。
这种由于极性分子取向而产生的力叫取向力。
2.诱导力当极性分子接近非极性分子时,极性分子的偶极电场使非极性分子发生极化从而产生正、负电荷重心不相重合,这种由于外来的影响而产生的偶极叫诱导偶极,诱导偶极与固有偶极产生的力称为诱导力。
一般说来,极性分子的极性越大,诱导力越大。
分子的变形性越大,诱导力也越大。
3.色散力非极性分子之间也存在着相互吸引力,非极性分子内部的原子核和电子都在不断地运动,不断地改变它们相对的位置。