波动方程的变步长有限差分数值模拟
- 格式:pdf
- 大小:595.99 KB
- 文档页数:5
地震波波动方程数值模拟方法地震波波动方程数值模拟方法主要包括克希霍夫积分法、傅里叶变换法、有限元法和有限差分法等。
克希霍夫积分法引入射线追踪过程,本质上是波动方程积分解的一个数值计算,在某种程度上相当于绕射叠加。
该方法计算速度较快,但由于射线追踪中存在着诸如焦散、多重路径等问题,故其一般只能适合于较简单的模型,难以模拟复杂地层的波场信息。
傅里叶变换法是利用空间的全部信息对波场函数进行三角函数插值,能更加精确地模拟地震波的传播规律,同时,利用快速傅里叶变换(FFT)进行计算,还可以提高运算效率,其主要优点是精度高,占用内存小,但缺点是计算速度较慢,对模型的适用性差,尤其是不适应于速度横向变化剧烈的模型.波动方程有限元法的做法是:将变分法用于单元分析,得到单元矩阵,然后将单元矩阵总体求和得到总体矩阵,最后求解总体矩阵得到波动方程的数值解;其主要优点是理论上可适宜于任意地质体形态的模型,保证复杂地层形态模拟的逼真性,达到很高的计算精度,但有限元法的主要问题是占用内存和运算量均较大,不适用于大规模模拟,因此该方法在地震波勘探中尚未得到广泛地应用。
相对于上述几种方法,有限差分法是一种更为快速有效的方法。
虽然其精度比不上有限元法,但因其具有计算速度快,占用内存较小的优点,在地震学界受到广泛的重视与应用。
声波方程的有限差分法数值模拟对于二维速度-深度模型,地下介质中地震波的传播规律可以近似地用声波方程描述:)()(2222222t S zu x u v t u +∂∂+∂∂=∂∂ (4-1) (,)v x z 是介质在点(x , z )处的纵波速度,u 为描述速度位或者压力的波场,)(t s 为震源函数。
为求式(4-1)的数值解,必须将此式离散化,即用有限差分来逼近导数,用差商代替微商。
为此,先把空间模型网格化(如图4-1所示)。
设x 、z 方向的网格间隔长度为h ∆,t ∆为时间采样步长,则有:z∆,i j1,i j +2,i j+1,i j-h i x ∆= (i 为正整数)h j z ∆= (j 为正整数)t n t =∆ (n 为正整数)k j i u , 表示在(i,j)点,k 时刻的波场值。
CSC频率—空间域波动方程数值模拟吕晓春;顾汉明;成景旺;周丽【摘要】针对频率空间域波动方程数值模拟需要巨大内存空间的现状,提出了利用列索引压缩存储(CSC)技术存储大型稀疏非对称复数型的矩阵系数.CSC技术将系数矩阵转化为三个一维数组来存储,分别存储系数非零元素、非零元素对应所在的行以及每列起始非零元素所在位置.经CSC技术压缩存储后显著减少了内存空间及计算量,在计算时只有少许的非零元素参加计算,且根据三个一维数组可以简便地找到对应的非零元素,进而采用LU分解快速而精确地求解.本文基于Jo等提出的最优化9点差分方法,首次应用CSC技术在频率空间域进行二维声波方程数值模拟.通过对Corner-edge模型和二维Marmousi模型进行试算,可以显著节省内存需求,明显提高计算速度,进而得到精度较高的正演结果.【期刊名称】《石油地球物理勘探》【年(卷),期】2014(049)002【总页数】7页(P288-294)【关键词】频率—空间域;CSC;系数矩阵;一维数组;LU分解;数值模拟【作者】吕晓春;顾汉明;成景旺;周丽【作者单位】中国地质大学(武汉)地球物理与空间信息学院,湖北武汉430074;中国地质大学(武汉)构造与油气资源教育部重点实验室,湖北武汉430074;中国地质大学(武汉)地球物理与空间信息学院,湖北武汉430074;中国地质大学(武汉)构造与油气资源教育部重点实验室,湖北武汉430074;中国地质大学(武汉)地球物理与空间信息学院,湖北武汉430074;中国地质大学(武汉)构造与油气资源教育部重点实验室,湖北武汉430074;中国地质大学(武汉)地球物理与空间信息学院,湖北武汉430074【正文语种】中文【中图分类】P6311 引言为了反演地下介质参数或研究地震波在各种复杂介质中的传播机制,需要进行波场数值模拟。
波动方程的数值模拟方法包括有限差分法、有限元法、伪谱法等。
在时间—空间域的数值模拟技术已较成熟,并广泛应用于复杂介质的正演模拟中。
学生实验报告实验课程名称偏微分方程数值解开课实验室数统学院学院数统年级2013 专业班信计02班学生姓名学号开课时间2015 至2016 学年第 2 学期数学与统计学院制开课学院、实验室:数统学院实验时间:2016年6月20日五.实验结果及实例分析1、u(x,t)在t=0.5,1.0,1.5,2.0时刻的数值解、精确解以及绝对误差表1 u(x,t)在t=0.5,1.0,1.5,2.0时刻的数值解时刻tt=0.5,1.0,1.5,2.0时刻的数值解t=0.5 0 -0.0059 -0.0113 -0.0155 -0.0182 -0.0192 -0.0182 -0.0155 -0.0113 -0.0059 0 t=1.0 0 -0.3090 -0.5877 -0.8090 -0.9510 -0.9999 -0.9510 -0.8090 -0.5877 -0.3090 0 t=1.5 0 0.0020 0.0038 0.0052 0.0061 0.0064 0.0061 0.0052 0.0038 0.0020 0 t=2.0 0 0.3090 0.5878 0.8090 0.9511 1.0000 0.9511 0.8090 0.5878 0.3090 0表2 u(x,t)在t=0.5,1.0,1.5,2.0时刻的精确解时刻tt=0.5,1.0,1.5,2.0时刻的精确解t=0.5 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0 t=1.0 0 -0.3090 -0.5878 -0.8090 -0.9511 -1.0000 -0.9511 -0.8090 -0.5878 -0.3090 0 t=1.5 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0 t=2.0 0 0.3090 0.5878 0.8090 0.9511 1.0000 0.9511 0.8090 0.5878 0.3090 0表3 u(x,t)在t=0.5,1.0,1.5,2.0时刻的绝对误差时刻tt=0.5,1.0,1.5,2.0时刻的绝对误差t=0.5 0 0.0059 0.0113 0.0155 0.0182 0.0192 0.0182 0.0155 0.0113 0.0059 0 t=1.0 0 0.0000 0.0000 0.0001 0.0001 0.0001 0.0001 0.0001 0.0000 0.0000 0 t=1.5 0 0.0020 0.0038 0.0052 0.0061 0.0064 0.0061 0.0052 0.0038 0.0020 0 t=2.0 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0说明:在t=0.5时刻的绝对误差最大,t=1.5时刻次之,t=1与t=2时刻的绝对误差均较小,由于0.11r hτ==<,该格式稳定,由数值计算得到的矩阵不难看出,数值解符合理论解。
基于GID有限元前处理的波动方程数值模拟刘静;文山师;黄晶晶【摘要】在地震波数值模拟计算过程中,缺乏简单易行的有限元前处理方法,使得复杂构造模型较难建立和分析.本文以二维声波方程为例结合GID软件,网格剖分部分采用三角形单元模拟速度界面,把单元内的场和波速均看作单元上的线性函数;GID 软件可以方便地进行网格剖分和设置网格控制节点,通过编写用户自定义”问题类型”,建立并输出已有的有限元计算程序的初始模型.将GID软件前处理与有限元计算程序整合,提高了方法的效率,简单易行.【期刊名称】《工程地球物理学报》【年(卷),期】2014(011)002【总页数】7页(P243-249)【关键词】数值模拟;有限元;GID;声波方程;三角形单元【作者】刘静;文山师;黄晶晶【作者单位】山西省煤炭地质115勘查院,山西大同037003;中石化西北油田分公司勘探开发研究院,新疆乌鲁木齐830011;中石化石油工程地球物理有限公司河南分公司,河南南阳473000【正文语种】中文【中图分类】P631.41 引言地震波场的数值模拟技术是在已知地下介质结构和参数的情况下,利用理论计算的方法研究地震波在地下介质中的传播规律,合成地震记录的一种技术。
地震勘探中的数值模拟方法主要以射线理论和波动方程理论为基础,有射线追踪法,柯西霍夫积分法,有限元法,有限差分法和伪谱法[1~6]。
有限差分法直接用差分代替微分,因其方法简单、精度高,在地震模拟中而得到了广泛的研究和应用。
但其固有缺陷是不能准确模拟具有复杂几何形态的物性界面,有限元法则是求解原问题等价泛函的变分或原问题的等效积分方程的弱解(当等价泛函不存在时),因而能够适应较有限差分更为剧烈的物性变化,加之种类繁多的插值形函数,使其能够模拟很复杂的几何界面。
有限元法的主要缺点是计算和存储量都很大,效率相对较低。
建立有限元分析模型比较复杂且存在困难,因此可以用一些成形的软件作为有限元网格剖分的工具,建立并输出可用于已有有限元计算程序的初始模型,将大大提高方法的效率[7]。
声波方程有限差分数值模拟的变网格步长算法声波方程有限差分数值模拟是一种常用的声波传播模拟方法,可以在计算机上通过数值计算求解声波传播的过程。
在进行这种数值模拟时,常常需要选择合适的网格步长,以保证计算结果的准确性和计算效率。
本文将介绍一种变网格步长算法,用于优化声波方程有限差分数值模拟的计算。
声波方程可以用下面的形式表示:∂^2p/∂t^2=c^2∇^2p其中p是声场变量,t是时间,c是声速,∇^2是Laplace算子。
为了将声波方程用有限差分方法进行离散化计算,我们需要将空间和时间分别离散化。
首先,将空间离散化为网格,在每个网格点上计算声场的值。
其次,将时间离散化为离散的时间步长,通过迭代计算不同时间步长上的声场分布。
为了保证计算结果的准确性,网格步长应当满足Nyquist采样定理的要求。
即网格步长应小于声波的最小波长的一半。
根据声波方程的性质,我们可以通过声速和最高频率来估计声波的最小波长。
然后,我们可以根据最小波长来选择合适的网格步长。
然而,在实际的声波传播计算中,声场的变化往往不是均匀的。
有些区域的声场变化较大,而其他区域的声场变化较小。
如果我们在整个计算区域都采用较小的网格步长,将会造成计算资源的浪费。
因此,需要一种方法能够根据声场的变化情况来自适应地调整网格步长。
变网格步长算法就是一种能够根据声场变化情况自动调整网格步长的算法。
其基本思想是根据声场在不同网格上的变化率来决定每个网格上的网格步长。
具体的算法步骤如下:1.初始化:选择一个合适的初始网格步长。
通常可以选择根据声波的最小波长来确定。
2.计算网格步长:在每个时间步长上,对于每个网格点,计算其周围网格点上的声场变化率。
常用的方法是计算声场在三个相邻时间步长上的差分值,然后取绝对值并求平均。
根据声场变化率,调整当前网格点上的网格步长。
变化率大的网格点应该有更小的网格步长,而变化率小的网格点则可以有更大的网格步长。
3.更新声场:根据调整后的网格步长,更新所有网格点上的声场值。
文章标题:探索三维非均匀介质波动方程有限差分python开源代码1. 简介在地质勘探、医学成像和地震监测等领域,对三维非均匀介质波动方程的研究与应用日益重要。
而有限差分方法在数值求解波动方程中具有广泛的应用。
在本文中,我们将探讨如何利用Python编程语言实现三维非均匀介质波动方程的有限差分方法,并开源共享相应的代码,以便更多人能够深入理解和应用这一重要领域。
2. 三维非均匀介质波动方程简介三维非均匀介质波动方程描述了波在非均匀介质中的传播规律,是地震勘探、医学成像等领域中常见的数学模型之一。
该方程的数值求解通常采用有限差分方法,通过离散网格化空间和时间来逼近连续的微分方程,从而得到数值解。
3. 有限差分方法有限差分方法是数值求解微分方程的一种常见方法,其基本思想是将微分方程中的导数用差分近似代替,从而将连续的问题转化为离散的问题。
在三维非均匀介质波动方程中,有限差分方法可以有效地模拟波的传播过程,并得到波场的数值解。
4. Python编程实现利用Python编程语言实现三维非均匀介质波动方程的有限差分方法具有许多优势,如简洁易读的代码、丰富的科学计算库等。
在实现过程中,我们可以利用NumPy库进行数组操作,使用Matplotlib库进行波场可视化,并通过SciPy库进行数值求解等。
5. 开源代码共享在本文中,我们将共享我们编写的三维非均匀介质波动方程有限差分Python开源代码,包括空间离散化、时间离散化、边界条件处理、波场更新等关键部分。
我们也会附上详细的注释和使用说明,以便感兴趣的读者能够下载并运行我们的代码,深入理解和学习有限差分方法在波动方程中的应用。
6. 个人观点和理解通过编写三维非均匀介质波动方程的有限差分Python开源代码,我深刻体会到数值模拟在地质勘探、医学成像等领域中的重要作用。
Python作为一种强大的科学计算语言,为我们提供了丰富的工具和库,使得数值模拟变得更加高效和灵活。
波传播与地震模型分析: 部分求和有限差分法的应用地球物理场景中,波的传播和地震模型的研究是基于对地质结构及其物理性质的精确描述。
部分求和有限差分法是一种强有力的数值分析方法,用于解决这些模型在变化复杂的介质中传播的问题。
本文旨在从该方法的理论基础、实现方案到最终的应用效果三个方面进行全面阐述。
一、波动方程与有限差分法的原理波的传播现象可以通过波动方程来描述,而有限差分法则提供了一种强大的数值分析工具,对这一方程进行离散化处理。
(1)波动方程概览波动方程作为一种偏微分方程,能够刻画波在介质中传播的速度、方向和形态。
地震波动方程则特别体现了地震波在地球介质中的传播规律。
(2)有限差分法导论有限差分法通过将连续域离散化,使用格点近似连续函数及其导数,将微分方程转化为代数方程组。
从而可以利用计算机进行数值求解。
二、部分求和有限差分法的理论与实施在传统有限差分法的基础上,部分求和技术的引入,有效提升了数值计算的稳定性和精确度。
(1)部分求和技术的理念部分求和技术(PS-FDM)在于对邻近的离散点进行部分求和处理,减少高频数值震荡,这对于模拟高频率的地震波尤其有效。
(2)实施方案实施部分求和有限差分法时,构建精确的离散网格是首要步骤。
之后,确定合适的时间步长和空间步长,依靠合适的算法框架,将求和处理的策略嵌入其中。
三、地震模型下的波传播分析运用部分求和有限差分法对实际地震模型进行分析,可以模拟出地震波在不同地质结构中的传播效果。
(1)模型设定根据地质数据建立地震模型,包括地层的分布、物理属性以及断层等结构特征。
(2)波场模拟通过部分求和有限差分法模拟不同类型地震波的传播过程,提取波场数据。
(3)结果分析与应用最终得到的波场数据可以用于评估地震对建筑结构的影响,或用于地震预警系统。
通过对波场模拟结果的详细分析,可以优化地震模型,提高地震预测的准确性。
延续前文的论述,对部分求和有限差分法(PS-FDM)的理论框架进行了详细展开,本节将着重讲述该方法的具体实施步骤,以及如何针对地震模型进行高效的波传播模拟。