广东省中山市普通高中高考数学三轮复习冲刺模拟试题: (9)
- 格式:doc
- 大小:349.81 KB
- 文档页数:6
广东省中山市普通高中2018届高考数学三轮复习冲刺模拟试题(10) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(广东省中山市普通高中2018届高考数学三轮复习冲刺模拟试题(10))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为广东省中山市普通高中2018届高考数学三轮复习冲刺模拟试题(10)的全部内容。
高考数学三轮复习冲刺模拟试题10立体几何01一、选择题1 .已知正四棱柱ABCD-A 1B 1C l D 1中,AA 1=2AB ,E 是AA 1的中点,则异面直线DC 1与BE 所成角的余弦值为( )A .15B .1010C .31010 D .352 .某几何体的三视图如图所示,则它的体积是( )A .283π-B .83π- C .82π-D .23π3 .几何体的三视图如图所示,则该几何体的体积为( )A .223π+B .423π+C .2323π+D .2343π+4 .已知三棱锥S ABC -的所有顶点都在球O 的球面上,ABC ∆是边长为1的正三角形,SC 为球O 的直径,且2SC =,则此棱锥的体积为 ( )A .26B .36C .23D 225 .设b a ,是两条直线,βα,是两个平面,则b a ⊥的一个充分条件是( )A .βαβα⊥⊥,//,b aB .βαβα//,,⊥⊥b aC .βαβα//,,⊥⊂b aD .βαβα⊥⊂,//,b a6 .如图,E 、F 分别是三棱锥P —ABC 的棱AP 、BC 的中点,PC=10,AB=6,EF=7,则异面直线AB 与PC 所成的角为( ) ( )A .90°B .60°C .45°D .30°二、填空题7 .某几何体的三视图如图所示,则该几何体的体积为__________.8 .一个几何体的三视图如上图所示,且其侧视图为正三角形,则这个几何体的体积为。
2024年高考第三次模拟考试
高三数学(广东专用)
(考试时间:120分钟试卷满分:150分)
注意事项:
1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.
2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效.
3.回答第Ⅱ卷时,将答案写在答题卡上.写在本试卷上无效.
4.测试范围:高考全部内容
5.考试结束后,将本试卷和答题卡一并交回.
一、单项选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题
目要求的)
2168πcm
C.3
部选对的得6分,部分选对的得部分分,有选错的得0分)
⎫
对称
⎪
⎭
单调递减
与平面ABP夹角的余弦值.
2 21
y
b
+=的焦距为2,1F 的周长为8.。
广东省中山市普通高中2018届高考数学三轮复习冲刺模拟试题(8) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(广东省中山市普通高中2018届高考数学三轮复习冲刺模拟试题(8))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为广东省中山市普通高中2018届高考数学三轮复习冲刺模拟试题(8)的全部内容。
高考数学三轮复习冲刺模拟试题08数列02三、解答题1.已知A(,),B (,)是函数的图象上的任意两点(可以重合),点M 在 直线上,且. (1)求+的值及+的值 (2)已知,当时,+++,求;(3)在(2)的条件下,设=,为数列{}的前项和,若存在正整数、,使得不等式成立,求和的值.2.设等差数列的首项及公差d 都为整数,前n 项和为S n 。
(1)若,求数列的通项公式;(2)若求所有可能的数列的通项公式。
3.设等比数列{}n a 的前n 项和为n S ,已知122()n n a S n N *+=+∈.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)在n a 与1n a +之间插入n 个数,使这2n +个数组成公差为n d 的等差数列,设数列1n d ⎧⎫⎪⎨⎬⎪⎭⎩的前n 项和n T ,证明:1516n T <。
4.已知数列{a n }中,a 1=1,若2a n+1—a n =)2n )(1n (n 2-n ++,b n =a n —)1n (n 1+(1)求证:{ b n }为等比数列,并求出{a n }的通项公式; (2)若C n =nb n +)1n (n 1+,且其前n 项和为T n ,求证:T n <3。
5.已知数列{}n a 的前n 项和11()22n n n S a -=--+(n 为正整数)(Ⅰ)令2nn n b a =,求证:数列{}n b 是等差数列,并求数列{}n a 的通项公式;(Ⅱ)令121,n n n n n C a T C C C n +==+++,试比较n T 与521nn +的大小,并予以证明6.已知数列}{n a 满足()2,34,3,1*1121≥∈-===-+n N n a a a a a n n n ,(1)证明:数列}{1n n a a -+是等比数列,并求出}{n a 的通项公式(2)设数列}{n b 的前n 项和为n S ,且对任意*N n ∈,有1222211+=+++n na b a ba b nn 成立,求n S7.设数列{}na 的前n 项和为n S 。
高考数学三轮复习冲刺模拟试题05三角函数02三、解答题 1. 已知函数.(1)求函数图象的对称轴方程; (2)求的单调增区间.(3)当时,求函数的最大值,最小值.2. 如图,在平面直角坐标系中,以轴为始边作两个锐角,它们的终边分别与单位圆交于两点.已知的横坐标分别为.(1)求的值; (2)求的值.3.设函数22()(sin cos )2cos (0)f x x x x ωωωω=++>的最小正周期为23π. (Ⅰ)求ω的值; (Ⅱ)求()f x 在区间-63ππ⎡⎤⎢⎥⎣⎦,上的值域; (Ⅲ)若函数()y g x =的图像是由()y f x =的图像向右平移2π个单位长度得到,求()y g x =的单调增区间.4.在△ABC 中,a,b,c 分别为角A,B,C 的对边,A 为锐角,已知向量→p =(1,3cos 2A ),→q =(2sin 2A,1-cos2A),且→p ∥→q .(1)若a 2-c 2=b 2-mbc,求实数m 的值;(2)若a=3,求△ABC 面积的最大值,以及面积最大是边b,c 的大小.5.设函数22()cos()2cos ,32xf x x x R π=++∈.(Ⅰ) 求()f x 的值域;(Ⅱ) 记△ABC 的内角A 、B 、C 的对边长分别为a 、b 、c,若()1f B =,1b =,3c =求a 的值.6.已知向量⎪⎭⎫⎝⎛-=-=21,cos 3),1,(sin x b x a ,函数()x f +=)(·2-a (1)求函数)(x f 的最小正周期T 及单调减区间(2)已知c b a ,,分别是△ABC 内角A,B,C 的对边,其中A 为锐角,4,32==c a 且1)(=A f ,求A,b 和△ABC 的面积S7.已知函数1sin cos )2sin sin 32()(2+⋅-=xx x x x f .(Ⅰ)求()f x 的定义域及最小正周期; (Ⅱ)求()f x 在区间[,]42ππ上的最值.8. (本小题满分13分)在△ABC 中,A ,C 为锐角,角A ,B ,C 所对应的边分别为a ,b ,c ,且3102=,5cos A sinC 。
广东省中山市普通高中高考数学三轮复习冲刺模拟试题(19)导数02三、解答题 1.已知函数(为自然对数的底数). (1)求的最小值;(2)设不等式的解集为,若,且,求实数的取值范围 (3)已知,且,是否存在等差数列和首项为公比大于0的等比 数列,使得?若存在,请求出数列的通项公式.若不存在,请说明理由.2.已知函数(). (1)若,试确定函数的单调区间;(2)若函数在其图象上任意一点处切线的斜率都小于,求实数的取值范围. (3)若,求的取值范围.3.已知函数()()()R a ax x x ax x f ∈--++=2312ln 23(Ⅰ)若2=x 为()x f 的极值点,求实数a 的值;(Ⅱ)若()x f y =在[)+∞,3上为增函数,求实数a 的取值范围;(Ⅲ)当21-=a 时,方程()()x b x x f +-=-3113有实根,求实数b 的最大值.4.已知函数f(x )=2ln x +ax 2-1(a ∈R)(1)求函数f(x)的单调区间; (2)若a=1,分别解答下面两题,(i)若不等式f(1+x)+f(1-x)<m 对任意的0<x<1恒成立,求m 的取值范围; (ii)若x 1,x 2是两个不相等的正数,且f(x 1)+f(x 2)=0,求证x 1+x 2>2.5.已知函数)ln()(a x x x f +-=的最小值为0,其中0>a .(1)求a 的值(2)若对任意的),0[+∞∈x ,有2)(kx x f ≤成立,求实数k 的最小值 (3)证明∑=∈<+--ni N n n i 1*)(2)12ln(1226.已知函数()()2ln f x x a x x =+--在0x =处取得极值.(1)求实数a 的值; (2)若关于x 的方程()52f x x b =-+在区间[]0,2上恰有两个不同的实数根,求实数b 的取值范围;(3)证明:对任意的正整数n ,不等式()23412ln 149n n n +++++>+都成立.7. (本小题满分14分)设函数2()=+(+1)f x x bln x ,其中b≠0。
高考数学三轮复习冲刺模拟试题01集合一、选择题1 .已知集合,,则( ) A .B .C .D . 2 .设集合{1}A x x a x R =-<∈,,B={x|1<x<5,x ∈R},若A ⋂B=φ,则实数a 的取值范围是 ( )A .{a|0≤a ≤6}B .{a|a ≤2,或a ≥4}C .{a|a ≤0,或a ≥6}D .{a|2≤a ≤4}3 .已知集合2A={|log <1},B={x|0<<c}x x x ,若=A B B U ,则c 的取值范围是( ) A .(0,1]B .[1,+)∞C .(0,2]D .[2,+)∞二、填空题 4 .若不等式4+-2+1x m x≥对一切非零实数x 均成立,记实数m 的取值范围为M .已知集合{}=A x x M ∈,集合{}2=--6<0B x R x x ∈,则集合=A B I ___________.5 .设集合是A={32|()=83+6a f x x ax x -是(0,+∞)上的增函数},5={|=,[-1,3]}+2B y y x x ∈,则()R A B I ð= ;6 .试题)己知集合222{|28},{|240}x x A x B x x mx -=<=+-<, 若{|11},{|43}A B x x A B x x =-<<=-<<I U ,则实数m 等于__________ .7 .设集合{}1,R A x x a x =-<∈,{}15,R B x x x =<<∈,若∅=B A I ,则实数a 取值范围是___________.三、解答题8 .已知={()|1},B={()|3,0x 3}2A x,y y =-x +mx -x,y x+y =≤≤,若AB ⋂是单元素集,求实数m 的取值范围.参考答案一、选择题1. 【答案】B【解析】{(3)0}{03}P x x x x x =-<=<<,={2}{22}Q x x x x <=-<<,所以{02}(0,2)P Q x x =<<=I , 选B. 2. 【答案】C【解析】{1}{11}A x x a x R x a x a =-<∈==-<<+,,因为=A B φI ,所以有15a -≥或11a +≤,即6a ≥或0a ≤,选C.3. 【答案】D 【解析】2{log 1}{01}A x x x x =<=<<.因为A B B =U ,所以A B ⊆.所以1c ≥,即[1,)+∞,选B.二、填空题 4. {}-1<3x x ≤;5. 【答案】(,1)(4,)-∞+∞U 【解析】2()=2466f 'x x ax -+,要使函数在(0,)+∞上是增函数,则2()=24660f 'x x ax -+>恒成立,即14a x x <+,因为11444x x x x +≥⨯=,所以4a ≤,即集合{4}A a a =≤.集合5={|=,[-1,3]}+2B y y x x ∈{15}y x =≤≤,所以{14}A B x x ⋂=≤≤,所以()=R A B I ð(,1)(4,)-∞+∞U .6. 【答案】32222{|28}{|230}{13}x x A x x x x x x -=<=--<=-<<,因为{|11},{|43}A B x x A B x x =-<<=-<<I U ,所以由数轴可知{|41}B x x =-<<,即4,1-是方程2240x mx +-=的两个根,所以4123m -+=-=-,解得32m =。
高考数学三轮复习冲刺模拟试题13解析几何02三、解答题1.已知中心在坐标原点,焦点在x 轴上的椭圆过点3)P ,且它的离心率21=e . (Ⅰ)求椭圆的标准方程;(Ⅱ)与圆22(1)1x y -+=相切的直线t kx y l +=:交椭圆于N M ,两点,若椭圆上一点C 满足OC ON OM λ=+,求实数λ的取值范围.2.椭圆E:22a x +22by =1(a>b>0)离心率为23,且过P(6,22).(1)求椭圆E 的方程; (2)已知直线l 过点M(-21,0),且与开口朝上,顶点在原点的抛物线C 切于第二象限的一点N,直线l 与椭圆E 交于A,B 两点,与y 轴交与D 点,若→AD =λ→AN ,→BD =μ→BN ,且λ+μ=25,求抛物线C 的标准方程.OxyMN3.已知一条曲线C 在y 轴右边,C 上每一点到点F(1,0)的距离减去它到y 轴的距离的差都是1.(Ⅰ)求曲线C 的方程;(Ⅱ)是否存在正数m,对于过点M(m,0)且与曲线C 有两个交点A,B 的任一直线,都有FA FB ⋅﹤0?若存在,求出m 的取值范围;若不存在,请说明理由.4.设点P 是曲线C:)0(22>=p py x 上的动点,点P 到点(0,1)的距离和它到焦点F 的距离之和的最小值为45 (1)求曲线C 的方程(2)若点P 的横坐标为1,过P 作斜率为)0(≠k k 的直线交C 与另一点Q,交x 轴于点M,过点Q 且与PQ 垂直的直线与C 交于另一点N,问是否存在实数k,使得直线MN 与曲线C 相切?若存在,求出k 的值,若不存在,说明理由.5.已知椭圆2222:1(0)x y C a b a b +=>>的离心率为12,直线l 过点(4,0)A ,(0,2)B ,且与椭圆C 相切于点P .(Ⅰ)求椭圆C 的方程;(Ⅱ)是否存在过点(4,0)A 的直线m 与椭圆C 相交于不同的两点M 、N ,使得23635AP AM AN =⋅?若存在,试求出直线m 的方程;若不存在,请说明理由.6.设椭圆)0(1:2222>>=+b a by a x C 的左、右焦点分别为12,F F ,上顶点为A ,在x 轴负半轴上有一点B ,满足112BF F F =,且2AF AB ⊥. (Ⅰ)求椭圆C 的离心率;(Ⅱ)D 是过2F B A 、、三点的圆上的点,D 到直线033:=--y x l 的最大距离等于 椭圆长轴的长,求椭圆C 的方程;(Ⅲ)在(Ⅱ)的条件下,过右焦点2F 作斜率为k 的直线l 与椭圆C 交于N M 、两点,线段MN 的中垂线 与x 轴相交于点)0,(m P ,求实数m 的取值范围.1F 2F xy AOB7.已知双曲线的中心在原点,对称轴为坐标轴,一条渐近线方程为x y 34=,右焦点)0,5(F ,双曲线的实轴为21A A ,P 为双曲线上一点(不同于21,A A ),直线P A 1,P A 2分别与直线59:=x l 交于N M ,两点 (1)求双曲线的方程;(2)FN FM ⋅是否为定值,若为定值,求出该值;若不为定值,说明理由.8.(本小题满分13分)如图F 1、F 2为椭圆1:2222=+by a x C 的左、右焦点,D 、E 是椭圆的两个顶点,椭圆的离心率23=e ,2312-=∆DEF S .若点),(00y x M 在椭圆C 上,则点),(0by a x N 称为点M 的一个“椭点”,直线l 与椭圆交于A 、B 两点,A 、B 两点的“椭点”分别为P 、Q.(1)求椭圆C 的标准方程;(2)问是否存在过左焦点F 1的直线l ,使得以PQ 为直径的圆经过坐标原点?若存在,求出该直线的方程;若不存在,请说明理由.参考答案三、解答题1.解:(Ⅰ) 设椭圆的标准方程为)0(12222>>=+b a by a x由已知得:2222243112a b c a c a b ⎧+=⎪⎪⎪=⎨⎪⎪=-⎪⎩解得 2286a b ⎧=⎪⎨=⎪⎩所以椭圆的标准方程为: 22186x y += (Ⅱ) 因为直线l :y kx t =+与圆22(1)1x y -+=相切所以22112(0)1t kt k t t k+-=⇒=≠+把t kx y +=代入22186x y +=并整理得: 222(34)8(424)0k x ktx t +++-=┈7分 设),(,),(2211y x N y x M ,则有 221438k ktx x +-=+ 22121214362)(k tt x x k t kx t kx y y +=++=+++=+ 因为,),(2121y y x x OC ++=λ, 所以,⎪⎪⎭⎫⎝⎛++-λλ)43(6,)43(822k t k ktC 又因为点C 在椭圆上, 所以,222222222861(34)(34)k t t k k λλ+=++ 222222221134()()1t kt tλ⇒==+++ 因为 02>t 所以 11)1()1(222>++tt 所以 202λ<<,所以 λ的取值范围为 (20)(0,2)2. 【解析】解. (1)2311-222b e e a b a ===∴=,,,222214x y b b+=代入椭圆方程得:,222440x y b +-=化为 点P(6,22)在椭圆E 上222624028b b a +-=∴==,,22182x y ∴+=椭圆E 方程为,(2)设抛物线C 的方程为20y ax a =>(),直线与抛物线C 切点为 200(,)x ax ,200002,2,2()y ax l ax l ax ax x x '=∴=-直线的斜率为的方程为y- 0000002211(,0),2(),(,)022l ax ax x N x ax x -∴-=--∴<直线过在第二象限,解得01x =-,(1,)N a ∴-,l 直线的方程为:2y ax a =--代入椭圆方程并整理得:2222(116)16480(1)a x a x a +++-=1122(,)(,)A x y B x y 设、则12x x 、是方程(1)的两个根,221212224816116116a a x x x x a a --=+=++则,由λ=,μ=,111x x +=λ,221x x +=μ 21212122121212281611174x x x x x x a x x x x x x a λμ++++===+++++-+ 52λμ+=∴,228165742a a +=-,解得330,66a a a =±>∴=,223,236y x x y ∴==抛物线C 的方程为其标准方程为3.本题主要考查直线与抛物线的位置关系,抛物线的性质等基础知识,同时考查推理运算的能力.解:(I)设P ),(y x 是直线C 上任意一点,那么点P(y x ,)满足:)0(1)1(22>=-+-x x y x化简得)0(42>=x x y(II)设过点M(m,0))0(>m 的直线l 与曲线C 的交点为A(11,y x ),B(22,y x ) 设l 的方程为m ty x +=,由⎩⎨⎧=+=x42y mty x 得0442=--m ty y ,0)(162>+=∆m t .于是⎩⎨⎧-==+m y y t y y 442121 ①又),1(),,1(2211y x y x -=-=01)()1)(1(021********<+++-=+--⇔<⋅y y x x x x y y x x②又42y x =,于是不等式②等价于⋅421y 01)44(422212122<++-+y y y y y 01]2)[(4116)(2122121221<+-+-+⇔y y y y y y y y ③由①式,不等式③等价于22416t m m <+- ④对任意实数t,24t 的最小值为0,所以不等式④对于一切t 成立等价于0162<+-m m ,即223223+<<-m由此可知,存在正数m,对于过点M(m ,0)且与曲线C 有A,B 两个交点的任一直线,都有0<⋅FB FA ,且m 的取值范围是)223,223(+-4.解:(1)依题意知4521=+p ,解得21=p ,所以曲线C 的方程为2x y = (2)由题意设直线PQ 的方程为:1)1(+-=x k y ,则点⎪⎭⎫ ⎝⎛-0,11k M 由⎩⎨⎧=+-=21)1(xy x k y ,012=-+-k kx x ,得()2)1(,1--k k Q , 所以直线QN 的方程为)1(1)1(2+--=--k x kk y 由⎪⎩⎪⎨⎧=+--=--22)1(1)1(x y k x kk y ,0)1(11122=--+-+k k x k x得⎪⎪⎭⎫ ⎝⎛⎪⎭⎫⎝⎛----211,11k k k k N所以直线MN 的斜率为k k k k k k k k k MN2211111111⎪⎭⎫ ⎝⎛---=⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛--= 过点N 的切线的斜率为⎪⎭⎫ ⎝⎛--k k 112 所以⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛--k k k k k 112112,解得251±-=k 故存在实数k=251±-使命题成立. 5. (Ⅰ)由题得过两点(4,0)A ,(0,2)B 直线l 的方程为240x y +-=.因为12c a =,所以2a c =,3b c =. 设椭圆方程为2222143x y c c +=,………2分由2222240,1,43x y x y c c+-=⎧⎪⎨+=⎪⎩消去x 得,224121230y y c -+-=.又因为直线l 与椭圆C 相切,所以 ………4分………6分………8分又直线:240l x y +-=与椭圆22:143x y C +=相切,由22240,1,43x y x y +-=⎧⎪⎨+=⎪⎩解得31,2x y ==,所以3(1,)2P …………10分则2454AP =. 所以3645813547AM AN ⋅=⨯=. 又22221122(4)(4)AM AN x y x y ⋅=-+-+2222221122(4)(4)(4)(4)x k x x k x =-+--+-212(1)(4)(4)k x x =+--21212(1)(4()16)k x x x x =+-++22222641232(1)(416)3434k k k k k -=+-⨯+++2236(1).34k k =++ 所以223681(1)347k k +=+,解得24k =±.经检验成立. 所以直线m 的方程为24)4y x =±-.………14分 6. 【解】(Ⅰ)连接1AF ,因为2AF AB ⊥,211F F BF =,所以112AF F F =,即2a c =,故椭圆的离心率21=e (其他方法参考给分) (Ⅱ)由(1)知,21=a c 得a c 21=于是21(,0)2F a , 3(,0)2a B -,Rt ABC ∆的外接圆圆心为11(,0)2F a -),半径21||2r F B a ==D 到直线033:=--y x l 的最大距离等于2a ,所以圆心到直线的距离为a ,所以a a =--2|321|,解得2,1,3a c b =∴==所求椭圆方程为13422=+y x . (Ⅲ)由(Ⅱ)知)0,1(2F , l :)1(-=x k y⎪⎩⎪⎨⎧=+-=134)1(22y x x k y 代入消y 得 01248)43(2222=-+-+k x k x k 因为l 过点2F ,所以0∆>恒成立设),(11y x M ,),(22y x N 则2221438k k x x +=+,121226(2)34ky y k x x k-+=+-=+ MN 中点22243(,)3434k kk k -++ 当0k =时,MN 为长轴,中点为原点,则0m =当0k ≠时MN 中垂线方程222314()3434k k y x k k k +=--++. 令0y =,43143222+=+=∴k k k m 230k >,2144k +>, 可得410<<∴m 综上可知实数m 的取值范围是1[0,)47. (1)221916x y -= (2)1209(3,0),(3,0),(5,0)(,),(,)5A A F P x y M y -设11024(3,),(,)5A P x y A M y ∴=+ 因为1,,A P M 三点共线002424(3)05515yx y y y x ∴+-=∴=+ 924(,)5515y M x ∴+,同理96(,)5515yN x --1624166(,),(,)55155515y yFM FN x x ∴=-=--+-2225614425259y FM FN x ⋅=-⋅-221699y x =- 0FM FN ∴⋅=8.解:(1)由题意得23==a c e ,故ab ac 21,23==,231)231(412)23(21)(2122-=-⨯=⨯-=⨯-⨯=∆a a a a b c a S DEF , 故42=a ,即a=2,所以b=1,c=3,故椭圆C 的标准方程为1422=+y x .百度文库 - 让每个人平等地提升自我- 11 - (2)①当直线l 的斜率不存在时,直线l 的方程为3-=x联立⎪⎩⎪⎨⎧=+-=14322y x x 解得⎪⎩⎪⎨⎧=-=213y x 或⎪⎩⎪⎨⎧-=-=213y x ,不妨令)21,3(),21,3(---B A , 所以对应的“椭点”坐标)21,23(),21,23(---Q P .而021≠=⋅OQ OP . 所以此时以PQ 为直径的圆不过坐标原点. ②当直线l 的斜率存在时,设直线l 的方程为)3(+=x k y联立⎪⎩⎪⎨⎧=++=14)3(22y x x k y ,消去y 得:041238)14(2222=-+++k x k x k 设),(),,(2211y x B y x A ,则这两点的“椭点”坐标分别为),2(),,2(2211y x Q y x P ,由根与系数的关系可得:14382221+-=+k k x x ,144122221+-=k k x x 若使得以PQ 为直径的圆经过坐标原点,则OP ⊥OQ ,而),2(),,2(2211y x y x ==,因此0=⋅, 即042221212121=+=+⨯y y x x y y x x 即141222+-k k =0,解得22±=k 所以直线方程为2622+=x y 或2622--=x y。
高考数学三轮复习冲刺模拟试题19导数02三、解答题 1.已知函数(为自然对数的底数). (1)求的最小值;(2)设不等式的解集为,若,且,求实数的取值范围 (3)已知,且,是否存在等差数列和首项为公比大于0的等比 数列,使得?若存在,请求出数列的通项公式.若不存在,请说明理由.2.已知函数(). (1)若,试确定函数的单调区间;(2)若函数在其图象上任意一点处切线的斜率都小于,求实数的取值范围. (3)若,求的取值范围.3.已知函数()()()R a ax x x ax x f ∈--++=2312ln 23(Ⅰ)若2=x 为()x f 的极值点,求实数a 的值;(Ⅱ)若()x f y =在[)+∞,3上为增函数,求实数a 的取值范围;(Ⅲ)当21-=a 时,方程()()x b x x f +-=-3113有实根,求实数b 的最大值.4.已知函数f(x )=2ln x +ax 2-1(a ∈R)(1)求函数f(x)的单调区间; (2)若a=1,分别解答下面两题,(i)若不等式f(1+x)+f(1-x)<m 对任意的0<x<1恒成立,求m 的取值范围; (ii)若x 1,x 2是两个不相等的正数,且f(x 1)+f(x 2)=0,求证x 1+x 2>2.5.已知函数)ln()(a x x x f +-=的最小值为0,其中0>a .(1)求a 的值(2)若对任意的),0[+∞∈x ,有2)(kx x f ≤成立,求实数k 的最小值 (3)证明∑=∈<+--ni N n n i 1*)(2)12ln(1226.已知函数()()2ln f x x a x x =+--在0x =处取得极值.(1)求实数a 的值; (2)若关于x 的方程()52f x x b =-+在区间[]0,2上恰有两个不同的实数根,求实数b 的取值范围;(3)证明:对任意的正整数n ,不等式()23412ln 149n n n+++++>+L 都成立.7. (本小题满分14分)设函数2()=+(+1)f x x bln x ,其中b≠0。
高考数学三轮复习冲刺模拟试题03函数02二、填空题1.定义一种运算,令,且,则函数的最大值是______.2.设函数______.3.函数f(x)的定义域为D,若对于任意的x 1,x 2∈D,当x 1<x 2时都有f(x 1)≤f(x 2),则称函数f(x)为D 上的非减函数.设f(x)为定义在[0,1]上的非减函数,且满足一下三个条件: (1)f(0)=0; (2)f(1-x)+f(x)=1 x ∈[0,1]; (3)当x ∈[0,31]时,f(x)≥23x 恒成立,则f(73)+f(95)= . 4.设f (x )=⎩⎪⎨⎪⎧lg x ,x >0,10x,x ≤0,则f (f (-2))=________.5.已知函数y mx =的图像与函数11x y x -=-的图像没有公共点,则实数m 的取值范围是6.已知a>0,且a ≠1,若函数2(-2+3)()=lg xx f x a 有最大值,则不筹式2(-5+7)>0a log x x 的解集为 ;7.函数f(x)=a x+2+x a 的值域为_________.8.已知函数f (x )=⎩⎨⎧>≤--.1,log 1,1)2(x x ,x x a a若f (x )在(-∞,+∞)上单调递增,则实数a 的取值范围为________。
9.定义:如果函数)(x f y =在定义域内给定区间b][,a 上存在)(00b x a x <<,满足ab a f b f x f --=)()()(0,则称函数)(x f y =是b][,a 上的“平均值函数”,0x 是它的一个均值点,如4x y =是]1,1[-上的平均值函数,0就是它的均值点.现有函数1)(2++-=mx x x f 是]1,1[-上的平均值函数,则实数m 的取值范围是 .10.已知x R ∀∈,(1+)=(1-)f x f x ,当1x ≥时,()=(1)f x ln x+,则当<1x 时,()=f x .11.已知函数2=+-1+2y x ax a [0,+)∞,则a 的取值范围是 .12.函数212()=log (-2-3)f x x x 的单调递减区间为 .13.已知+1)=1f x x -,则()=f x (x ∈ ).14.若12(log (2+1)f x x ,则()f x 的定义域为 .15.已知函数3111,0,362()21,,112x x f x x x x ⎧⎡⎤-+∈⎪⎢⎥⎣⎦⎪=⎨⎛⎤⎪∈ ⎥⎪+⎝⎦⎩ ,函数π()sin()22,(0)6=-+>g x a x a a ,若存在[]12,0,1x x ∈,使得12()()f x g x =成立,则实数a 的取值范围是____________.16.定义在)1,1(-上的函数⎪⎪⎭⎫ ⎝⎛--=-xy y x f y f x f 1)()(,当)0,1(-∈x 时0)(>x f .若)0(,21,11151f R f Q f f P =⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛+⎪⎭⎫⎝⎛=,则P ,Q,R 的大小关系为_____________.三、解答题17.对于函数()f x 若存在0x R ∈,00()=f x x 成立,则称0x 为()f x 的不动点.已知2()=(1)-1(0)f x ax b x b a +++≠(1)当=1,=-2a b 时,求函数(f x )的不动点;(2)若对任意实数b ,函数()f x 恒有两个相异的不动点,求a 的取值范围;(3)在(2)的条件下,若=()y f x 图象上A 、B 两点的横坐标是函数()f x 的不动点,且A 、B 两点关于直线2121y kx a =++对称,求b 的最小值.18.已知函数()f x 对任意实数,x y 恒有()()()f x y f x f y +=+,且当x >0时,()0f x <又(1)2f =-.(1)判断()f x 的奇偶性;(2)求证:()f x 是R 上的减函数; (3)求()f x 在区间[-3,3]上的值域;(4)若x R ∀∈,不等式2()2()()4f ax f x f x -<+恒成立,求a 的取值范围.参考答案二、填空题 1. 【答案】54【解析】令,则∴由运算定义可知,∴当1sin 2x =,即6x π=时,该函数取得最大值54. 由图象变换可知,所求函数的最大值与函数在区间上的最大值相同.2. 【答案】52【解析】令1x =-得(1)(1)(2)f f f =-+,即1(2)(1)(1)2(1)212f f f f =--==⨯=。
高考数学三轮复习冲刺模拟试题09直线、圆锥曲线一、选择题1 若抛物线x y =2上一点P 到准线的距离等于它到顶点的距离,则点P 的坐标为( )A 12(,44±B 12(,84±C 12(,44D 12(842 椭圆1244922=+y x 上一点P 与椭圆的两个焦点1F 、2F 的连线互相垂直, 则△21F PF 的面积为( ) A 20 B 22 C 28 D 243 若点A 的坐标为(3,2),F 是抛物线x y 22=的焦点,点M 在 抛物线上移动时,使MA MF +取得最小值的M 的坐标为( ) A ()0,0 B ⎪⎭⎫⎝⎛1,21 C ()2,1 D ()2,2 4 与椭圆1422=+y x 共焦点且过点(2,1)Q 的双曲线方程是( ) A 1222=-y x B 1422=-y x C 13322=-y x D 1222=-y x 5 若直线2+=kx y 与双曲线622=-y x 的右支交于不同的两点,那么k 的取值范围是( ) A (315,315-) B (315,0) C (0,315-) D (1,315--) 6.直线2x =2212y x +=的位置关系为A .相离B .相切C .相交D .不确定 7.抛物线2y x =的切线中,与直线240x y -+=平行的是A .230x y -+=B .230x y --=C .210x y -+=D .210x y --=8.若双曲线2221613x y p-=的左焦点在抛物线22y px =的准线上,则p 的值为A .2B .3C .4D .429.过椭圆22221(0)4x y a a a+=>的一个焦点F 作直线交椭圆于,P Q 两点,若线段FP 和FQ 的长分别为,p q ,则11p q+=A .4a B .12aC .4aD .2a 10.若直线:1(0)l y kx k =+≠被椭圆22:14x y E m +=截得的弦长为d ,则下列被椭圆E 截得的弦长不是d 的直线是A .10kx y ++=B .10kx y --=C .10kx y +-=D .0kx y += 11.直线1y kx =+与椭圆2215x y m+=恒有公共点,则m 的取值范围是A .(0,1]B .(0,5)C .[1,5)(5,)+∞D .[1,5) 12.设1F ,2F ,为双曲线2214x y -=的两焦点,点P 在双曲线上,且满足122F PF π∠=,则△12F PF 的面积是A .1B 5C .2D 5二、填空题13AB 是抛物线2y x =的一条弦,若AB 的中点到x 轴的距离为1,则弦AB 的长度的最大值为 . .14.设双曲线221916x y -=的右顶点为A ,右焦点为F ,过F 且平行于双曲线的一条渐近线的直线与双曲线交于点B ,则△AFB 的面积为 . .15.过椭圆22143x y +=的一个焦点且与它的长轴垂直的弦长等于 .16.过抛物线24y x =的焦点F 做垂直于x 轴的直线,交抛物线,A B 两点,则以AB 为直径的12.若直线y kx =与双曲线22194x y -=相交,则k 的取值范围为 ..三、解答题17.已知抛物线x y 42=,焦点为F ,顶点为O ,点P 在抛物线上移动,Q 是OP 的中点,M是FQ 的中点,求点M 的轨迹方程.(12分)18.P 为椭圆192522=+y x 上一点,1F 、2F 为左右焦点,若︒=∠6021PF F(1) 求△21PF F 的面积;(2) 求P 点的坐标.19.(本小题满分12分)已知:圆C :x 2+y 2-8y +12=0,直线l :ax +y +2a =0.(1)当a为何值时,直线l与圆C相切;(2)当直线l与圆C相交于A、B两点,且AB=22时,求直线l的方程.20.已知动圆过定点F(0,2),且与定直线L:y=-2相切.(1)求动圆圆心的轨迹C的方程;(2)若AB是轨迹C的动弦,且AB过F(0,2),分别以A、B为切点作轨迹C的切线,设两切线交点为Q,证明:AQ⊥BQ.21.已知圆(x-2)2+(y-1)2=203,椭圆b2x2+a2y2=a2b2(a>b>0)的离心率为22,若圆与椭圆相交于A、B,且线段AB是圆的直径,求椭圆的方程.22.抛物线的顶点在原点,它的准线过双曲线22221x ya b-=的一个焦点,且与双曲线实轴垂直,已知抛物线与双曲线的交点为32⎛⎝,.求抛物线与双曲线的方程.参考答案BDDAD ADCAD CA13.52 14.321515. 3 16.23()32-, 17.[解析]:设M (y x ,),P (11,y x ),Q (22,y x ),易求x y 42=的焦点F 的坐标为(1,0)∵M 是FQ 的中点,∴22122y y x x =+=⇒yy x x 21222=-=,又Q 是OP 的中点∴221212y y x x ==⇒yy y x x x 422422121==-==,∵P 在抛物线x y 42=上,∴)24(4)4(2-=x y ,所以M 点的轨迹方程为212-=x y .18. [解析]:∵a =5,b =3∴c =4 (1)设11||t PF =,22||t PF =,则1021=+t t ①2212221860cos 2=︒⋅-+t t t t ②,由①2-②得1221=t t3323122160sin 212121=⨯⨯=︒⋅=∴∆t t S PF F (2)设P ),(y x ,由||4||22121y y c S PF F ⋅=⋅⋅=∆得 433||=y 433||=∴y 433±=⇒y ,将433±=y 代入椭圆方程解得4135±=x ,)433,4135(P ∴或)433,4135(-P 或)433,4135(-P 或)433,4135(--P19、解:法一:设点M 的坐标为(x ,y),∵M 为线段AB 的中点,∴A 的坐标为(2x,0),B 的坐标为(0,2y). ∵l 1⊥l 2,且l 1、l 2过点P(2,4), ∴PA ⊥PB ,k PA ·k PB =-1. 而k PA =4-02-2x ,k PB =4-2y2-0,(x ≠1), ∴21-x ·2-y 1=-1(x ≠1). 整理,得x +2y -5=0(x ≠1).∵当x =1时,A 、B 的坐标分别为(2,0),(0,4), ∴线段AB 的中点坐标是(1,2),它满足方程 x +2y -5=0.综上所述,点M 的轨迹方程是x +2y -5=0.法二:设M 的坐标为(x ,y),则A 、B 两点的坐标分别是(2x,0),(0,2y),连结PM , ∵l 1⊥l 2,∴2|PM|=|AB|. 而22(2)(4)x y -+- 22(2)(2)x y +, ∴2222(2)(4)44x y x y -+-=+化简,得x+2y-5=0即为所求的轨迹方程.法三:设M 的坐标为(x ,y),由l 1⊥l 2,BO ⊥OA ,知O 、A 、P 、B 四点共圆, ∴|MO|=|MP|,即点M 是线段OP 的垂直平分线上的点. ∵k OP =4020--=2,线段OP 的中点为(1,2), ∴y-2=-12(x-1), 即x+2y-5=0即为所求.20、解:(1)依题意,圆心的轨迹是以F(0,2)为焦点,L :y =-2为准线的抛物线.因为抛物线焦点到准线距离等于4, 所以圆心的轨迹是x 2=8y.(2)证明:因为直线AB 与x 轴不垂直, 设AB :y =kx +2. A(x 1,y 1),B(x 2,y 2). 由⎩⎪⎨⎪⎧y =kx +2,y =18x 2,可得x 2-8kx -16=0,x 1+x 2=8k ,x 1x 2=-16. 抛物线方程为y =18x 2,求导得y ′=14x.所以过抛物线上A 、B 两点的切线斜率分别是k 1=14x 1,k 2=14x 2,k 1k 2=14x 1·14x 2=116x 1·x 2=-1. 所以AQ ⊥BQ. 21.解:∵e =ca=a 2-b 2a 2=22,∴a 2=2b 2. 因此,所求椭圆的方程为x 2+2y 2=2b 2,又∵AB 为直径,(2,1)为圆心,即(2,1)是线段AB 的中点, 设A(2-m,1-n),B(2+m,1+n),则⎩⎪⎨⎪⎧(2-m)2+2(1-n)2=2b 2,(2+m)2+2(1+n)2=2b 2,|AB|=2 203⇒⎩⎪⎨⎪⎧8+2m 2+4+4n 2=4b 2,8m +8n =0,2m 2+n 2=2203⇒⎩⎪⎨⎪⎧2b 2=6+m 2+2n 2,m 2=n 2=103,得2b 2=16.故所求椭圆的方程为x 2+2y 2=16.22解.抛物线的顶点在原点,它的准线过双曲线22221x y a b-=的一个焦点,且与双曲线实轴垂直,已知抛物线与双曲线的交点为32⎛ ⎝.求抛物线与双曲线的方程.解:由题意知,抛物线焦点在x 轴上,开口方向向右,可设抛物线方程为22(0)y px p =>, 将交点32⎛ ⎝,代入得2p =,故抛物线方程为24y x =,焦点坐标为(10),, 这也是双曲线的一个焦点,则1c =. 又点32⎛ ⎝,也在双曲线上,因此有229614a b -=. 又221a b +=,因此可以解得221344a b ==,,因此,双曲线的方程为224413y x -=.。
高考数学三轮复习冲刺模拟试题09
不等式
一、选择题
1 .设x,y 满足约束条件⎪⎩
⎪
⎨⎧≥≥≥≤0y ,0x 0y -x 02-y -x 3,若目标函数z=ax+by(a>0,b>0)的最大值为2,则
a 1+b
1
的最小值为 ( )
A .
6
25 B .
3
8 C .2 D .4
2 .
,,x y z 均为正实数,且22log x x =-,22log y y -=-,22log z z -=,则 ( )
A .x y z <<
B .z x y <<
C .z y x <<
D .y x z <<
3 .设动点),(y x P 满足⎪⎪⎩⎪
⎪⎨⎧≥≥≤+≤+0
0502402y x y x y x ,则y x z 25+=的最大值是
( )
A .50
B .60
C .70
D .100
4 .设3=2a log ,=2b ln ,1
2
=5
c -,则
( )
A .<<a b c
B .<<b c a
C .<<c a b
D .<<c b a
5 .
9831
log ,log 3,24a b c ===,则,,a b c 的大小关系是
( )
A .a b c >>
B .b a c >>
C .a c b >>
D .b c a >>
6 .已知实数x y ,满足2203x y x y y +≥⎧⎪
-≤⎨⎪≤≤⎩
,
,,则2z x y =-的最小值是
( )
A .7
B .-5
C .4
D .-7
7 .若0,,>c b a 且324)(-=+++bc c b a a ,则c b a ++2的最小值为
( )
A .13-
B .13+
C .232+
D .232-
8 .设x ,y 满足⎪⎩
⎪
⎨⎧≤--≥-≥+22142y x y x y x ,则y x z +=
( )
A .有最小值2,最大值3
B .有最小值2,无最大值
C .有最大值3,无最小值
D .既无最小值,也无最大值
二、填空题
9.已知
的最小值是5,则z 的最大值是
______.
10.已知变量x,y 满足约束条件⎪⎩
⎪
⎨⎧≤-≥+≤142y x y x y ,则y x z +=3的最大值为__________.
11.已知函数2()()f x x ax b a b =++∈R ,的值域为[0)+∞,,若关于x 的不等式()f x c <的解
集为(6)m m +,,则实数c 的值为 .
12.若关于x 的不等式2
11
+()022
n x
x -≥对任意*n N ∈在(-,]x λ∈∞上恒成立,
则实 常数λ的取值范围是 ;
13.已知13
2log a
=,062b =.,43c =log ,则,,a b c 的大小关系为______________.
14.非负实数x,y 满足⎩⎨
⎧≤-+≤-+0
3042y x y x ,则3x y +的最大值为_______.
三、解答题
15.已知函数f (x )=x 2
+2x+a (共10分)
(1)当a=
2
1
时,求不等式f (x )>1的解集;(4分) (2)若对于任意x ∈[1,+∞),f (x )>0恒成立,求实数a 的取值范围;(6分)
参考答案
一、选择题 1. C 2. 【答案】A
【解析】因为,,x y z 均为正实数,所以22log 1x
x =->,即2log 1x <-,所以1
02
x <<。
212log ()2y y y -=-=,因为1
0()12
y <<,即20log 1y <-<,所以21log 0y -<<,
即112y <<。
212log ()2z z z -==,因为10()12z <<,所以20log 1z <<,即12z <<,所以x y z <<,选A.
3. 【答案】D
【解析】作出不等式组对应的可行域,由y
x z 25+=得,522z y x =-
+,平移直线522z y x =-+,由图象可知当直线522
z
y x =-+经过点(20,0)D 时,直线522
z
y x =-+的截距最大,此时z 也最大,最大为
52520100z x y =+=⨯=,选D.
4. 【答案】C
【解析】321log 2log 3=,21
ln 2log e =,1
255
-=。
2252log 3log 0e >>>>,
所以22
110log 3log 5e <
<<,即c a b <<。
选C. 5. 【答案】D
解:因为144999911log 9log 9log 9log 344====,所以993
log 3log 2
>,所以
c a >.881log 3log 32=
,881111
log 8log 84222
=⨯=,因为38>,所以
8811
log 3log 822
>,即b c >.所以,,a b c 的大小关系是b c a >>,选D. 6. 【答案】B
【解析】
由2z x y =-得,2y x z =-,做直线2y x =,平移直
线2y x z =-,由图象 可知当直线2y x z =-经过点B 时,直线的截距最大,此时2z x y =-最小,由23x y y +=⎧⎨=⎩得,1
3
x y =-⎧⎨=⎩,代入2z x y =-得最小值2235z x y =-=--=-,所
以选B.
7. D
8. 【答案】B
解:由y x z +=得y x z =-+.做出不等式对应的平面区域阴影部分,平移直线y x z =-+,
由图象可知当直线y x z =-+经过点C (2,0)时,直线的截距最小,此时z 最小,为202z x y =+=+=,无最大值,选B.
二、填空题 9. 【答案】10
【解析】由3z x y =+,则=3y x z -+,因为3z x y =+的最小值为5,所以
35z x y =+=,做出不等式对应的可行域,由图象可知当直线3z x y =+经过点C 时,直线的截距最小,所以直线CD 的直线方程为20x y c -++=,由35
2x y x +=⎧⎨
=⎩,解得
21x y =⎧⎨
=-⎩,代入直线20x y c -++=得5c =即直线方程为250x y -++=,平移直线
3z x y =+,当直线3z x y =+经过点D 时,直线的截距最大,此时z 有最大值,由
2504x y x y -++=⎧⎨+=⎩,得31x y =⎧⎨=⎩
,即D(3,1),代入直线3z x y =+得33110z =⨯+=。
10. 11 11. 9
12. 【答案】(,1]-∞-
【解析】2
11+
()022n x x -≥得211+()22n x x ≥,即211
+()22
n max x x ≥恒成立。
因为11()22n max =,即211+22x x ≥在(,]λ-∞恒成立,令21+2
y x x =,则22111+2416y x x x ==+-(),二次函数开口向上,且对称轴为1=4x -。
当1
4
x ≤-时,
函数单调递减,要使不等式恒成立,则有2
11+22λλ≥,解得1λ≤-。
当14
x >-,左边
的最小值在1=4x -处取得,此时2
1111+21686
x x =
-=-,不成立,综上λ的取值范围是1λ≤-,即(,1]-∞-。
13. 【答案】a c b
<<13
20a =<log ,0621b =>.,01c <<,所以a c b <<。
14. 【答案】9
解:设3z x y =+,则133z
y x =-
+.做出不等式组对应的平面区域为BCD .做直线1
3
y x =-,平移直线133z y x =-+由图象可知当直线133z y x =-+经过点C 时,直线的截
距最大,此时z 最大,由图象可知(0,3)C ,代入3z x y =+得3339z x y =+=⨯=.
三、解答题 15. (1)x 2
+2x+
2
1
>1 x 2
+2x-
2
1>0 2 x 2+4x-1>0
2分
{x|x>-1+
26或x<-1-2
6
}
2分
(2)x 2
+2x+a>0 ∀x ∈[1,+ ∞)恒
a>-x 2
-2x
1分
令g (x )=-x 2
-2x 当对称轴x=-1
2分
当x=1时,g m ax (x )=-3 2分
∴a>-3
1分。