塑性材料的有限元分析
- 格式:ppt
- 大小:755.50 KB
- 文档页数:59
理想塑性材料厚壁圆筒解析解与数值解对比研究文章针对理想塑性材料特性,选取厚圆筒壁进行了解析解与数值解对比分析。
通过对比发现,有限元解和理论解相差很小;当筒体内部处于塑性状态,外层处于弹性状态,当压力卸除后,筒体内层塑性区将有残余变形存在,而外层弹性区受到内层塑性区残余变形的阻擋而不能完全恢复,结果使内层塑性区受到外层弹性区的压缩而产生残余压应力,而外层弹性区由于收缩受到阻挡而产生残余拉应力。
标签:理想塑性材料;厚圆筒壁;解析解;数值解1 计算工况受均匀内压(p=12.5kg/cm)作用的理想塑性材料厚壁圆筒,其几何参数为:内径Ri=10cm,外径Re=20cm;材料参数为:E=86666.7kg/cm2,v=0.3,?滓s=17.32kg/cm2的理想塑性材料。
厚壁筒计算模型长度取H=20cm,在子午面上沿径向划分八个以上的八结点等参单元。
从初始状态开始,历经加载(内压到达p=12.5kg/cm)、然后完全卸载(p=0)。
这一过程之后,求厚壁筒内的残余应力沿径向r的应力(?滓r,?滓?兹)分布曲线。
2 数值解计算模型建立有限元模型,在子午面上沿径向划分10个八结点等参单元。
划分单元以及结点如图1所示。
3 计算结果及对比将该厚壁圆筒的几何参数代入理论解析解中可以得到,弹性极限载荷为7.4873kg/cm,塑性极限载荷理论解为Pp=13.8629kg/cm,塑性半径为15.03cm。
在题目中给出的均匀内压是12.5kg/cm,达不到塑性极限,但是超过弹性极限荷载,所以厚壁圆筒的一部分处于塑性状态,一部分处于弹性状态。
通过计算结果可以发现第5个单元完全进入塑性,第6个单元都没有进入塑性,所以,近似认为第5第6个单元交界处为塑性分界面,塑性半径为15cm。
通过有限元计算,加载、卸载后的结果如表1所示。
通过以上的比较可以看出,有限元解和理论解相差很小。
当筒体内部处于塑性状态,外层处于弹性状态,当压力卸除后,筒体内层塑性区将有残余变形存在,而外层弹性区受到内层塑性区残余变形的阻挡而不能完全恢复,结果使内层塑性区受到外层弹性区的压缩而产生残余压应力,而外层弹性区由于收缩受到阻挡而产生残余拉应力。
塑性成形过程中的有限元法金属塑性成形技术是现代化制造业中金属加工的重要方法之一。
它是金属材料在模具和锻压设备作用下发生变形,获得所需要求的形状、尺寸和性能的制件的加工过程。
金属成形件在汽车、飞机仪表、机械设备等产品的零部件中占有相当大的比例。
由于其具有生产效率高,生产费用低的特点,适合于大批量生产,是现代高速发展的制造业的重要成形工艺。
据统计,在发达国家中,金属塑性成形件的产值在国民经济中的比重居行业之首,在我国也占有相当大的比例。
随着现代制造业的快速发展,对塑性成形工艺分析和模具设计提出了更高的要求。
如果工艺分析不完善、模具设计不合理或选材不当,产品将不符合质量要求,导致大量不良品和废品,增加模具的设计制造时间和成本。
为了防止缺陷,提高产品质量,降低产品成本,国内外许多大公司、企业、高校和研究机构对塑料成型件的性能进行了大量的理论分析、实验研究和数值计算,通过对成形过程中应力应变分布及变化规律的研究,试图找出各零件在产品成形过程中遵循的共同规律和机械失效所反映的共同特征。
由于影响塑性成形过程的因素很多,一些因素,如摩擦和润滑、变形过程中材料的本构关系等,还没有被人们充分理解和掌握。
因此,到目前为止,还无法对各种材料和形状零件的成形过程做出准确的定量判断。
由于大变形机理非常复杂,塑性成形研究领域一直是一个充满挑战和机遇的领域。
一般来说,产品研究与开发的目标之一就是确定生产高质量产品的优化准则,而不同的产品要求不同的优化准则,建立适当的优化准则需要对产品制造过程的全面了解。
如果不掌握诸如摩擦条件、材料性能、工件几何形状、成形力等工艺参数对成形过程的影响,就不可能正确地设计模具和选择加工设备,更无法预测和防止缺陷的生成。
在传统工艺分析和模具设计中,主要还是依靠工程类比和设计经验,经过反复试模修模,调整工艺参数以期望消除成形过程中的产品缺陷如失稳起皱、充填不满、局部破裂等。
仅仅依靠类比和传统的经验工艺分析和模具设计方法已无法满足高速发展的现代金属加工工业的要求。
有限元分析实例范文假设我们正在设计一个桥梁结构,希望通过有限元分析来评估其受力情况和设计是否合理。
首先,我们需要将桥梁结构进行离散化,将其分为许多小的有限元单元。
每个有限元单元具有一定的材料性质和几何形状。
接下来,我们需要确定边界条件和加载条件。
例如,我们可以在桥梁两端设置固定边界条件,然后通过加载条件模拟车辆的载荷。
边界条件和加载条件的选择需要根据实际情况和设计要求来确定。
然后,我们需要选择适当的有限元模型和材料模型。
有限元模型选择的好坏将直接影响分析结果的准确性。
材料模型需要根据材料的弹性和塑性性质来选择合适的模型。
接下来,我们可以使用有限元软件将桥梁结构的离散化模型输入计算。
有限元软件将自动求解结构的受力平衡方程,并得出结构的应力和位移分布。
通过分析这些结果,我们可以评估桥梁结构的强度、刚度和稳定性等性能。
最后,根据有限元分析结果进行设计优化。
如果发现一些部分的应力过大,我们可以对设计进行调整,例如增加材料厚度或增加结构的增强筋。
通过不断优化设计,我们可以得到一个满足强度和刚度要求的桥梁结构。
需要注意的是,有限元分析只是工程设计中的一个工具,分析结果需要结合实际情况和工程经验来进行判断。
有限元分析的准确性也取决于离散化的精度、边界条件和材料模型等的选择。
总之,有限元分析是一种重要的工程分析方法,可以用于评估结构的受力情况和设计是否合理。
通过有限元分析,我们可以优化结构的设计,提高结构的性能和安全性。
希望以上例子对你对有限元分析有所了解。
四大强度理论1、最大拉应力理论(第一强度理论)(材料脆性断裂的强度理论):这一理论认为引起材料脆性断裂破坏的因素是最大拉应力,无论什么应力状态,只要构件内一点处的最大拉应力σ1达到单向应力状态下的极限应力σb,材料就要发生脆性断裂。
于是危险点处于复杂应力状态的构件发生脆性断裂破坏的条件是:σ1=σb。
σb/s=[σ]所以按第一强度理论建立的强度条件为:σ1≤[σ]。
2、最大伸长线应变理论(第二强度理论)(材料塑性屈服的强度理论):这一理论认为最大伸长线应变是引起断裂的主要因素,无论什么应力状态,只要最大伸长线应变ε1达到单向应力状态下的极限值εu,材料就要发生脆性断裂破坏。
εu=σb/E;ε1=σb/E。
由广义虎克定律得:ε1=[σ1-u(σ2+σ3)]/E所以σ1-u(σ2+σ3)=σb。
按第二强度理论建立的强度条件为:σ1-u(σ2+σ3)≤[σ]。
3、最大切应力理论(第三强度理论):这一理论认为最大切应力是引起屈服的主要因素,无论什么应力状态,只要最大切应力τmax达到单向应力状态下的极限切应力τ0,材料就要发生屈服破坏。
τmax=τ0。
轴向拉伸斜截面上的应力公式可知τ0=σs/2(σs——横截面上的正应力)由公式得:τmax=τ1s=(σ1-σ3)/2。
所以破坏条件改写为σ1-σ3=σs。
按第三强度理论的强度条件为:σ1-σ3≤[σ]。
4、形状改变比能理论(第四强度理论)(最大歪形能理论):这一理论认为形状改变比能是引起材料屈服破坏的主要因素,无论什么应力状态,只要构件内一点处的形状改变比能达到单向应力状态下的极限值,材料就要发生屈服破坏。
发生塑性破坏的条件为:所以按第四强度理论的强度条件为:sqrt(σ1^2+σ2^2+σ3^2-σ1σ2-σ2σ3-σ3σ1)<[σ]Von mise应力Von Mises 应力是基于剪切应变能的一种等效应力其值为(((a1-a2)^2+(a2-a3)^2+(a3-a1)^2)/2)^0.5 其中a1,a2,a3分别指第一、二、三主应力,^2表示平方,^0.5表示开方。
机械设计中有限元分析的几个关键问题机械设计中的有限元分析是一种常用的分析工具,可以用来评估和优化机械结构的性能和可靠性。
进行有限元分析时需要注意一些关键问题,以确保分析的准确性和可靠性。
下面将介绍几个与有限元分析相关的关键问题。
是网格划分的问题。
有限元分析是基于将待分析的结构离散化为小的有限元单元来进行的,因此网格划分对于分析的准确性和计算效率起着至关重要的作用。
在进行网格划分时,需要注意保持单元之间的一致性和连续性,合理安排单元尺寸,尽量减少网格的畸变和奇异性。
对于复杂结构,还需要注意在关键部位增加足够的单元,以保证准确分析该部位的应力和变形。
是边界条件的设定问题。
在进行有限元分析时,需要明确定义结构的边界条件,即结构与外界的约束关系。
边界条件的设定直接影响分析的结果,因此需要根据实际情况合理设定。
对于静态问题,边界条件通常包括结构的约束和外载荷,需要根据结构的实际约束情况确定。
而对于动态问题,还需要考虑结构的初始条件和动态载荷,以及与结构相连接的其他部件的相互作用。
第三个关键问题是材料力学性质的模型选择。
有限元分析中常用的材料力学模型有线性弹性模型、非线性弹性模型、塑性流动模型等。
在选择材料模型时,需要根据材料的实际性质来确定。
对于大变形、高强度和高温等情况,可能需要采用非线性模型。
而对于金属材料的塑性分析,可能需要采用塑性流动模型。
选择合适的材料模型可以提高分析的准确性和可靠性。
另外一个关键问题是质量检查和网格收敛性分析。
质量检查是指对网格进行质量评估,主要包括网格形状、单元质量、网格畸变等方面的评估。
合理的网格质量对于分析的准确性起着重要的作用,因此在进行有限元分析之前,需要对网格进行质量检查,修复低质量的单元或进行网格优化。
还需要对分析结果进行网格收敛性分析,即通过逐步细化网格,观察分析结果是否收敛。
只有在分析结果收敛时才能认为分析是可靠的。
最后一个关键问题是结果的解释和验证。
有限元分析得到的结果需要进行解释和验证,以确保分析结果的可靠性。
塑性线性有限元分析及在工程上的应用塑性线性有限元分析(Plastic Linear Finite Element Analysis)是一种常用于工程实践中的数值模拟方法,用于评估结构体的塑性变形和破坏行为。
本文将介绍塑性线性有限元分析的基本原理、模拟流程以及在工程上的应用。
一、塑性线性有限元分析的基本原理塑性线性有限元分析是将结构体离散化为有限数目的小单元,通过数值计算方法模拟结构体的力学行为。
在塑性线性有限元分析中,结构体的材料行为被假设为线弹性(即,应力与应变之间存在线性关系),而结构体的几何非线性行为由材料的硬化模型和塑性流规则描述。
在进行塑性线性有限元分析之前,首先需要对结构体进行离散化。
常用的离散化方法包括三角形离散化和四边形离散化。
接下来,在每个小单元中,通过有限元理论计算单元的刚度矩阵。
刚度矩阵描述了单元的应力分布和应变能量分布。
然后,根据材料的线弹性本构关系,将初始加载的载荷应用于结构体。
在每个加载步骤中,计算结构体的应力分布和应变能量分布,然后更新结构体的几何形状。
在每个步骤中,根据塑性流规则计算塑性应变,并根据材料的硬化模型更新材料的本应变。
最后,通过求解结构体的静力平衡方程,计算结构体的响应。
可以使用一系列求解技术提高计算的效率和准确性,如迭代方法、加速技术和松弛技术。
二、塑性线性有限元分析的模拟流程塑性线性有限元分析的模拟流程包括以下几个步骤:1. 构建有限元模型:根据实际结构体的几何形状和边界条件,使用有限元网格生成技术构建有限元模型。
常见的有限元网格生成技术包括四边形单元和三角形单元。
2. 定义材料模型:根据结构体的材料性质,选择适当的本构模型描述材料的力学行为,如线弹性模型、塑性模型和硬化模型。
3. 定义约束条件:根据结构体的实际情况,定义适当的边界条件和加载条件。
边界条件包括固定边界和非固定边界,加载条件包括恒定加载和变加载。
4. 执行塑性线性有限元分析:开始塑性线性有限元分析,通过求解静力平衡方程,在每个加载步骤中更新结构体的几何形状和材料的本应变,计算结构体的响应。
硕士学位论文纯钛塑性变形行为的晶体塑性有限元模拟THE FINITE ELEMENT SIMULATION ON PLASTIC BEHAVIOR OF PURETITANIUM黄晓华2010年7月国内图书分类号:TG113.12 学校代码:10213国际图书分类号: 669.017.3 密级:公开工学硕士学位论文纯钛塑性变形行为的晶体塑性有限元模拟硕 士 研 究 生: 黄晓华导 师: 来忠红 副教授申 请 学 位: 工学硕士学 科、专 业: 材 料 学所 在 单 位: 材料科学与工程学院答 辩 日 期: 2010年7月授予学位单位: 哈尔滨工业大学Classified Index: TG113.12U.D.C: 669.017.3Dissertation for the Master Degree in Engineering THE FINITE ELEMENT SIMULATION ON PLASTIC BEHAVIOR OF PURETITANIUMCandidate:Huang XiaohuaSupervisor:Associate Prof. Lai Zhonghong Academic Degree Applied for:Master of Engineering Speciality:Materials ScienceAffiliation:School of Materials Science and EngineeringDate of Defence:July, 2010Degree-Conferring-Institution:Harbin Institute of Technology哈尔滨工业大学工学硕士学位论文摘要本文采用晶体塑性有限元(Crystal Plasty Finite Element Method,CP-FEM)为基础,结合Voronoi图表技术建立了包含纯钛材料基本参数的单晶体和多晶体塑性变形有限元模型,从细观角度研究了晶体的变形行为。
ANSYS塑性分析指南引言:塑性分析是材料力学中的一个重要研究内容,它可以用来研究材料在外力作用下的塑性变形和破坏行为。
ANSYS作为一种常用的有限元分析软件,可以进行复杂结构的塑性分析。
本文将提供一份ANSYS塑性分析的指南,以帮助读者了解塑性分析的基本原理和使用ANSYS进行塑性分析的基本流程。
一、塑性分析的基本原理塑性分析基于塑性力学理论,其基本原理包括:弹性和塑性本构关系、流动规则和判据准则。
弹性和塑性本构关系是描述材料在加载作用下的应力应变关系的数学表达式。
流动规则是描述材料的变形行为的数学表达式,它代表了材料的塑性流动过程。
判据准则用于判断材料是否发生应力屈服或破坏。
二、ANSYS塑性分析的基本步骤1.建立有限元模型:首先根据实际结构建立有限元模型,在ANSYS软件中进行网格划分,选择适当的元素类型和网格密度。
2.设定材料本构关系:根据实际材料的力学性能,设定材料的弹性和塑性本构关系,在ANSYS中选择相应的材料模型,并设定材料的本构参数。
3.定义边界条件:根据实际结构的边界条件,定义结构的约束和加载方式,在ANSYS中设定相应的节点约束和荷载。
4.运行塑性分析:利用ANSYS提供的塑性分析功能运行分析,得到结构的应力、应变和变形等结果。
5.结果分析和后处理:根据分析结果,评估结构的安全性和可靠性,进行优化设计。
利用ANSYS提供的后处理工具进行结果的可视化和数据的提取。
三、ANSYS塑性分析的扩展功能除了基本的塑性分析功能,ANSYS还提供了一些扩展功能,以满足复杂结构的塑性分析需求。
以下是其中的几个扩展功能:1.动态塑性分析:用于研究结构在动态载荷作用下的塑性响应,如爆炸、冲击等。
2.温度场塑性分析:用于研究材料在高温环境下的塑性行为。
3.多尺度塑性分析:用于研究材料的微观塑性行为,并将其引入宏观塑性分析中。
4.非线性大变形塑性分析:用于研究结构在大变形和塑性变形条件下的力学行为。