复变函数课后答案
- 格式:docx
- 大小:37.52 KB
- 文档页数:4
第一章习题详解1. 求下列复数z 的实部与虚部,共轭复数、模与辐角: 1)i231+ 解:()()()132349232323231231ii i i i i -=+-=-+-=+ 实部:133231=⎪⎭⎫⎝⎛+i Re 虚部:132231-=⎪⎭⎫⎝⎛+i Im共轭复数:1323231ii +=⎪⎭⎫⎝⎛+ 模:1311323231222=+=+i辐角:πππk arctg k arctg k i i Arg 23221331322231231+⎪⎭⎫ ⎝⎛-=+-=+⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+arg 2) ii i --131 解:()()()2532332113311131312i i i i i i i i i i i i i i -=-+-=++---=+-+-=--实部:23131=⎪⎭⎫⎝⎛--i i i Re 虚部:25131-=⎪⎭⎫⎝⎛--i i i Im共轭复数:253131ii i i +=⎪⎭⎫⎝⎛-- 模:234434253131222==+=--iii 辐角:πππk arctg k arctg k i i i i i i Arg 235223252131131+⎪⎭⎫ ⎝⎛-=+⎪⎪⎪⎭⎫ ⎝⎛-=+⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛--arg3)()()ii i 25243-+解:()()()22672267272625243ii ii ii i --=-+=--=-+ 实部:()()2725243-=⎪⎭⎫⎝⎛-+i i i Re虚部:()()1322625243-=-=⎪⎭⎫⎝⎛-+i i i Im 共轭复数:()()226725243ii i i +-=⎪⎭⎫⎝⎛-+ 模:()()2925226272524322=⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=-+ii i辐角:()()ππk arctg k arctg i i i Arg 272622722625243+⎪⎭⎫ ⎝⎛=+⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛-+ 4) i ii +-2184解:i i i i ii 31414218-=+-=+-实部:()14218=+-i i i Re 虚部:()34218-=+-i i i Im 共轭复数:()i i i i 314218+=+- 模:1031422218=+=+-i ii辐角:()()πππk arctg k arctg k i i i i ii Arg 23213244218218+-=+⎪⎭⎫⎝⎛-=++-=+-arg2. 当x 、y 等于什么实数时,等式()i iy i x +=+-++13531成立?解:根据复数相等,即两个复数的实部和虚部分别相等。
第一章习题解答(一)1.设z ,求z 及Arcz 。
解:由于3iz e π-==所以1z =,2,0,1,3Arcz k k ππ=-+=±。
2.设121z z =,试用指数形式表示12z z 及12z z 。
解:由于6412,2i i z e z i e ππ-==== 所以()64641212222i i iiz z e eee πππππ--===54()146122611222ii i i z e e e z e πππππ+-===。
3.解二项方程440,(0)z a a +=>。
解:12444(),0,1,2,3k ii za e aek πππ+====。
4.证明2221212122()z z z z z z ++-=+,并说明其几何意义。
证明:由于2221212122Re()z z z z z z +=++2221212122Re()z z z z z z -=+-所以2221212122()z z z z z z ++-=+其几何意义是:平行四边形对角线长平方和等于于两边长的和的平方。
5.设z 1,z 2,z 3三点适合条件:0321=++z z z ,1321===z z z 。
证明z 1,z 2,z 3是内接于单位圆1=z 的一个正三角形的顶点。
证 由于1321===z z z,知321z z z ∆的三个顶点均在单位圆上。
因为33331z z z ==()[]()[]212322112121z z z z z z z z z z z z +++=+-+-=21212z z z z ++=所以, 12121-=+z z z z ,又)())((122122112121221z z z z z z z z z z z z z z +-+=--=-()322121=+-=z z z z故 321=-z z ,同理33231=-=-z z z z ,知321z z z ∆是内接于单位圆1=z 的一个正三角形。
习题一答案1. 求下列复数的实部、虚部、模、幅角主值及共轭复数:(1)132i+ (2)(1)(2)i i i --(3)131i i i-- (4)8214i i i -+-解:(1)1323213iz i -==+, 因此:32Re , Im 1313z z ==-,1232, arg arctan , 3131313z z z i ==-=+(2)3(1)(2)1310i i iz i i i -+===---, 因此,31Re , Im 1010z z =-=,1131, arg arctan , 3101010z z z i π==-=--(3)133335122i i iz i i i --=-=-+=-, 因此,35Re , Im 32z z ==-,34535, arg arctan , 232i z z z +==-=(4)82141413z i i i i i i =-+-=-+-=-+因此,Re 1, Im 3zz =-=,10, arg arctan3, 13z z z i π==-=--2. 将下列复数化为三角表达式和指数表达式: (1)i (2)13i -+ (3)(sin cos )r i θθ+(4)(cos sin )r i θθ- (5)1cos sin (02)i θθθπ-+≤≤解:(1)2cossin22iii e πππ=+=(2)13i -+23222(cos sin )233i i e πππ=+=(3)(sin cos )r i θθ+()2[cos()sin()]22ir i reπθππθθ-=-+-=(4)(cos sin )r i θθ-[cos()sin()]i r i re θθθ-=-+-=(5)21cos sin 2sin 2sin cos 222i i θθθθθ-+=+ 22sin [cossin]2sin 2222ii eπθθπθπθθ---=+=3. 求下列各式的值:(1)5(3)i - (2)100100(1)(1)i i ++-(3)(13)(cos sin )(1)(cos sin )i i i i θθθθ-+-- (4)23(cos5sin 5)(cos3sin 3)i i ϕϕϕϕ+-(5)3i (6)1i +解:(1)5(3)i -5[2(cos()sin())]66i ππ=-+-5552(cos()sin())16(3)66i i ππ=-+-=-+(2)100100(1)(1)i i ++-50505051(2)(2)2(2)2i i =+-=-=-(3)(13)(cos sin )(1)(cos sin )i i i i θθθθ-+--2[cos()sin()](cos sin )332[cos()sin()][cos()sin()]44i i i i ππθθππθθ-+-+=-+--+-2[cos()sin()](cos2sin 2)1212i i ππθθ=-+-+(2)122[cos(2)sin(2)]21212ii eπθππθθ-=-+-=(4)23(cos5sin 5)(cos3sin 3)i i ϕϕϕϕ+- cos10sin10cos19sin19cos(9)sin(9)i i i ϕϕϕϕϕϕ+==+-+- (5)3i 3cossin22i ππ=+11cos (2)sin (2)3232k i k ππππ=+++31, 02231, 122, 2i k i k i k ⎧+=⎪⎪⎪=-+=⎨⎪-=⎪⎪⎩(6)1i +2(cossin )44i ππ=+ 4112[cos (2)sin (2)]2424k i k ππππ=+++48482, 02, 1i i e k e k ππ⎧=⎪=⎨⎪-=⎩4. 设121, 3,2iz z i +==-试用三角形式表示12z z 与12z z解:12cossin, 2[cos()sin()]4466z i z i ππππ=+=-+-,所以12z z 2[cos()sin()]2(cos sin )46461212i i ππππππ=-+-=+,12z z 1155[cos()sin()](cos sin )2464621212i i ππππππ=+++=+ 5. 解下列方程: (1)5()1z i += (2)440 (0)z a a +=>解:(1)51,z i += 由此2551k i z i ei π=-=-, (0,1,2,3,4)k =(2)4444(cos sin )za a i ππ=-=+11[cos (2)sin (2)]44a k i k ππππ=+++,当0,1,2,3k =时,对应的4个根分别为:(1), (1), (1), (1)2222a a a ai i i i +-+--- 6. 证明下列各题:(1)设,zx iy =+则2x y z x y+≤≤+证明:首先,显然有22z x y x y =+≤+;其次,因222,x y x y +≥固此有2222()(),x y x y +≥+ 从而222x y z x y +=+≥。
第一章习题解答(一)1.设z ,求z 及Arcz 。
解:由于3i z e π-==所以1z =,2,0,1,3Arcz k k ππ=-+=± 。
2.设121z z =,试用指数形式表示12z z 及12z z 。
解:由于6412,2i i z e z i e ππ-==== 所以()64641212222i i iiz z e eee πππππ--===54()146122611222ii i i z e e e z e πππππ+-===。
3.解二项方程440,(0)z a a +=>。
解:12444(),0,1,2,3k ii z a e aek πππ+====。
4.证明2221212122()z z z z z z ++-=+,并说明其几何意义。
证明:由于2221212122Re()z z z z z z +=++2221212122Re()z z z z z z -=+-所以2221212122()z z z z z z ++-=+其几何意义是:平行四边形对角线长平方和等于于两边长的和的平方。
5.设z 1,z 2,z 3三点适合条件:0321=++z z z ,1321===z z z 。
证明z 1,z 2,z 3是内接于单位圆1=z 的一个正三角形的顶点。
证 由于1321===z z z,知321z z z ∆的三个顶点均在单位圆上。
因为33331z z z ==()[]()[]212322112121z z z z z z z z z z z z +++=+-+-=21212z z z z ++=所以, 12121-=+z z z z ,又)())((122122112121221z z z z z z z z z z z z z z +-+=--=-()322121=+-=z z z z故 321=-z z ,同理33231=-=-z z z z ,知321z z z ∆是内接于单位圆1=z 的一个正三角形。
复变函数(第五版)课后答案余家荣版课后习题答案⾼等教育出版社第⼀章课后题答案与解析复变函数(第五版)课后答案 余家荣 版 课后习题答案 ⾼等教育出版社 第⼀章 课后题答案与解析复变函数(第五版)课后答案 第⼀章课后答案复变函数 余家荣 版 课后习题答案复变函数 ⾼等教育出版社 课后题答案与解析引⾔第⼀章 复数及复平⾯ 课后习题答案§ 1.复数及其⼏何表⽰§ 2.复平⾯的拓扑习题⼀第⼆章 复变函数 课后题答案§ 1.解析函数§ 2.初等函数习题⼆第三章 复变函数的积分 答案与解析§ 1.柯西定理§ 2.柯西公式习题三第四章 级数 习题答案与解析§ 1.级数和序列的基本性质§ 2.泰勒展式§ 3.洛朗展式习题四第五章 留数 课后题答案§ 1.⼀般理论§ 2.留数计算的应⽤习题五第六章 保形映射 课后习题答案§ 1.单叶解析函数的映射性质§ 2.分式线性函数及其映射性质§ 3.黎曼定理习题六第七章 解析开拓 课后答案§ 1.解析开拓概念§ 2.多⾓形映射公式习题七第⼋章 调和函数§ 1.调和函数及其性质§ 2.狄利克雷问题习题⼋附录⼀ 集与逻辑记号1.集的初步概念2.函数与映射3.逻辑记号习题附录⼆ 若尔当定理附录三 同调与同伦形式的柯西定理1.链与闭链·指标2.同调形式的柯西定理3.同伦形式的柯西定理附录四 整函数的⽆穷乘积展式与亚纯函数的部分分式展式1.⽆穷乘积2.整函数的⽆穷乘积展式3.亚纯函数的部分分式展式附录五 黎曼映射定理与边界对应定理的证明1.正规族2.黎曼映射定理续证3.边界对应定理的证明附录六 多复变函数1.解析函数2.幂级数3.柯西公式与泰勒展式4.幂级数的值分布部分习题答案及说明。
复变函数论课后题答案 (第四版钟玉泉)复变函数论课后题答案 (第四版钟玉泉)一、选择题1. B2. D3. A4. C5. B6. A7. D8. B9. C10. A二、填空题1. 解析函数2. 极限3. 全纯函数4. 实部5. 可微6. 黎曼-一般黎曼条件7. 柯西-黎曼方程8. 积分路径无关9. 简单闭合路径10. 等速圆三、简答题1. 复数的实部和虚部分别由实部和虚部函数来得到。
实部函数是通过将复数的虚部置零得到。
虚部函数是通过将复数的实部置零得到。
2. 解析函数是指在一个区域内处处可导的函数。
全纯函数是指处处可导的复数函数。
3. 构造一个有界区域,包含有限个奇点,并使该区域与其他奇点不相交。
在奇点上,确保函数无界。
4. 通过直接计算导数或利用柯西-黎曼方程来证明。
五、计算题1. 解:根据题意,由柯西-黎曼方程可得:∂u/∂x = ∂v/∂y∂u/∂y = -∂v/∂x由第一式可得∂u/∂x = -2y积分得:u = -2xy + f(y)对u求偏y导数得:∂u/∂y = -2x + f'(y)由第二式可得∂u/∂y = -(-4y) = 4y所以,-2x + f'(y) = 4yf'(y) = 4y + 2x对f'(y)积分得:f(y) = 2xy + xy^2 + g(x)综上所述,u = -2xy + 2xy + xy^2 + g(x)= xy^2 + g(x)故解为 f(z) = xy^2 + g(x) + i(2xy + f(y))2. 根据题意,f'(z) = u_x + iv_x = 4x^3 - 12xy^2 + 6x + 2y - 4xyi 对z积分得:f(z) = x^4 - 6x^2y^2 + 6xy + 2xy + C= x^4 - 6x^2y^2 + 8xy + C故解为 f(z) = x^4 - 6x^2y^2 + 8xy + C六、证明题待补充完整。
复变函数课后答案
复变函数是数学中的一个重要的分支,它将实变函数的概念引入到复数域中。
复变函数的研究对于科学和工程领域有着广泛的应用,因此学习复变函数是数学学生的必修课程之一。
在学习过程中,课后习题是一个不可或缺的重要环节。
本文将为读者提供复变函数课后答案,希望可以帮助大家在学习上得到更好的理解和掌握。
一、Cauchy-Riemann方程
Cauchy-Riemann方程是研究复变函数的基础。
它是一个关于函数的实部和虚部的偏微分方程组。
具体而言,设
$f(z)=u(x,y)+iv(x,y)$是一个复变函数,其中$x,y\in\mathbb{R}$是实数,$z=x+iy$是一个复数,那么Cauchy-Riemann方程可以表示为:
$$
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y},\quad
\frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}
$$
当且仅当复变函数满足Cauchy-Riemann方程时,它才是解析的。
此外,如果$f(z)$是解析的,则它在一个开放的区域内是无限可微的。
这是我们在复分析中经常使用的重要性质。
二、复积分
复积分是计算复变函数的积分的一种方法。
与实变函数中的积分不同的是,复变函数的积分是在复平面上的路径上取值的。
具
体而言,设$f(z)$是一个在复平面上连续的函数,$C$是一条连接$z_0$和$z_1$的可求长曲线,则$f(z)$沿着$C$的积分定义为:
$$
\int_Cf(z)dz=\int_C [u(x,y)dx-v(x,y)dy]+i\int_C [u(x,y)dy+v(x,y)dx] $$
其中,$u(x,y)$和$v(x,y)$分别是$f(z)$的实部和虚部。
如果
$\int_Cf(z)dz=0$,则称$f(z)$沿着$C$是可积的。
三、Laurent级数
在复分析中,我们经常需要将一个复变函数表示为一个Laurent 级数的形式,这个级数包含一部分关于$z$的负次幂,并且它可以用于计算发生奇点的复变函数。
对于一个在点$a$处的复变函数$f(z)$,它的Laurent级数可以表示为:
$$
f(z)=\sum_{n=-\infty}^{\infty}a_n(z-a)^n
$$
其中,$a_n=\frac{1}{2\pi i}\oint_C\frac{f(z)}{(z-a)^{n+1}}dz$,$C$是一个以点$a$为圆心的简单正向封闭曲线。
根据公式,我们可以递推求出$a_n$的每个系数,从而得到$f(z)$的Laurent级数展开式。
四、复变函数的应用
复变函数在科学和工程中有广泛的应用。
它可以用于解决复杂的物理问题,例如流体动力学、电动力学和量子力学。
此外,复变函数还被广泛应用于图形学、信号处理和通信工程等领域。
在
金融领域,复变函数也被用于分析股票价格和利率变化的时间序列。
五、总结
本文为大家提供了复变函数课后答案,这些问题涵盖了课本中的重点内容。
通过课后习题的练习,我们可以更好地理解和掌握复变函数的基本概念和技巧。
复变函数是一门重要的数学分支,应用广泛,是需要我们认真学习和掌握的一门课程。