(工艺技术)拉深盒型件拉深工艺
- 格式:doc
- 大小:336.07 KB
- 文档页数:14
方盒形拉深件的工艺性分析
方盒形拉深件是一种常用的金属加工工艺,用于制造各种形状的容器、外壳和零部件等。
其工艺性分析主要包括以下几个方面:
1. 材料选择:方盒形拉深件通常采用金属材料进行制造,如钢材、铝材等。
在选择材料时需要考虑材料的可加工性、强度、硬度和耐腐蚀性等性能,以满足产品的使用要求。
2.模具设计:方盒形拉深件的成形需要使用模具进行,模具的设计和制造对产品质量和工艺性有着重要影响。
模具设计需要考虑产品形状、尺寸、壁厚和材料特性等因素,以确保产品成形的精度和一致性。
3.拉深工艺参数:方盒形拉深件的加工过程需要控制好拉深工艺参数,包括下料尺寸、板材表面的润滑剂选择、压力和速度等。
这些参数的选择和调整能够影响产品的成形质量、表面质量和机械性能。
4.成形工艺:方盒形拉深件的成形工艺包括下料、冲裁、拉伸、回弹和修整等几个步骤。
在操作过程中需要注意控制好每个步骤的工艺要求和工艺参数,避免出现裂纹、变形或者表面质量不良等问题。
5.产品质量控制:方盒形拉深件的质量要求通常包括尺寸精度、表面质量和机械性能等方面。
在加工过程中需要控制好每个环节的工艺参数,及时发现并解决质
量问题,确保产品达到客户的要求。
总之,方盒形拉深件的工艺性分析需要综合考虑材料、模具设计、工艺参数和工艺过程等因素,以确保产品质量和工艺性能的要求。
更好地应用于实际生产中,提高方盒形拉深件的制造效率和质量。
拉深工艺及拉深模具的设计拉深工艺是一种常见的金属加工方法,用于将平面金属材料加工成具有凹凸形状的器件或零件。
它通常涉及到将金属板材通过拉伸的方式使其变形,以达到所需的形状和尺寸。
而拉深模具则是用于支撑和引导金属板材在拉深过程中发生变形的工具。
拉深工艺的设计需要考虑多个因素,包括材料的性质、板材的厚度和尺寸、拉深的形状和深度等。
首先,根据所需拉深的形状设计模具的结构和形状,并确定所需的深度和尺寸。
其次,需要选择合适的材料和工艺参数,以确保金属材料在拉深过程中能够保持良好的塑性变形能力,并且不会发生过度拉伸、断裂或破裂。
此外,还需要考虑到加工效率和成本等因素,以优化拉深工艺的设计。
拉深模具的设计是实现拉深工艺的关键。
它通常由多个部分组成,包括上模板、下模板、导柱、导套、导向装置、弹簧等。
上模板和下模板是用于支撑金属板材并施加压力的主要部分,它们的形状和结构决定了拉深的形状和深度。
导柱和导套用于引导上模板的移动,以确保拉深的精度和稳定性。
导向装置用于确保上模板和下模板的对位精度,避免偏移和倾斜。
而弹簧则用于提供足够的弹性力,以使上模板在拉深过程中能够平稳地移动。
在拉深模具的设计过程中,需要考虑到多个因素。
首先,需要进行模具的结构和形状设计,确保其能够满足所需拉深的形状和深度。
其次,需要选择合适的材料,以确保模具具有足够的强度和硬度。
同时,还需要进行模具的冷却设计,以提高模具的寿命和加工效率。
此外,需要进行模具的装配和调试,确保其能够正常使用并满足要求的加工精度和质量。
总之,拉深工艺及拉深模具的设计需要考虑到多个因素,包括材料的性质、工艺参数、加工效率和成本等。
通过合理的设计和优化可以实现高效、精确和稳定的拉深加工。
第六节盒形件的拉深盒形件属于非轴对称零件,它包括方形盒件,矩形盒件和椭圆形盒件等,根据矩形盒几何形状的特点,可以将其侧壁分为长度是 A-2r与B-2r的两对直边部分及四个半径为的圆角部分(图 4–74)。
压变形性质与直壁圆筒件有相同之处亦有不同之处。
相同之处是在变形区都是在径向拉应力与切向拉应力的作用下产生拉深变形,而存在着变形区产生的拉应力与传力区的承载能力之间的关系问题。
不同之处是盒形件的应力状态和所产生的拉深变形在周边上的分布是不均匀的,由次而引起一系列和圆桶形件成型不同的特点。
根据盒形件能否一次拉深成形将盒形件分为两类,凡是能一次拉深成形的盒形件称为低盒形件;凡是需经多次拉深才能成形的盒形件称为高盒形件。
两类盒形件拉深时的变形特点是有差别的,因此工艺过程设计和模具设计中需要解决的问题和方法也不尽相同。
一、盒形件的拉深1. 变形特点1)盒形件一次拉深成形时,零件表面网络格发生了明显变化(图 4–74),由此表明凸缘变形区直边部分发生了横向压缩变形,使圆角处的应变强化得到缓和,从而降低了圆角部分传力区的轴向拉应力,相对提高了传力区的承载能力。
2)盒形件拉深时,凸缘变形区圆角处的拉深阻力大于直边的拉深阻力圆角处的变形过程度大于直边处的变形程度。
因此,变形区内金属质点的位移量直边处大于圆角处,导致了这两处的位移速度的不同,而毛坯的这两部分又是联系在一起的整体,变形时必然相互牵制,这种位移速度差会引起剪切力,这种剪切力称为位移速度诱发剪应力。
虽然,诱发剪切力在两处交界面达到最大值,并由此向直径和圆角处的中心线逐渐减小。
变形区内应力状态与剪切力分布情况可定性的用图4–75示意。
由图 4–75可知,圆角部分传力区内轴向拉应力减小了一个剪应力值,从而也相对地提高了传力区的承载能力。
由于上述原因,盒形件成形极限高于直径为2r的圆筒形件的成形极限。
图4-75 变形区内应力状态3)图 4-75所示的剪应力形成的弯矩引起变形区平面内的弯曲变形,从而使变形区变得相当复杂。
华中科技大学材料学院盒形件加工工艺及模具设计班级:XXXXXXX学生姓名:X X X学号:XXXXXXX时间:2015年1月1、零件工艺性分析 (1)2、工艺方案的确定 (1)3、工艺计算 (3)3.1拉深部分工艺计算 (3)3.2落料时冲裁工艺计算 (8)4、冲压设备的选用 (12)5、落料拉深模主要零部件计算 (13)5.1落料凹模设计计算 (13)5.2拉深凸模设计计算 (14)5.3固定板设计计算 (15)5.4卸料结构计算 (16)5.5压边圈设计计算 (17)5.6凸凹模设计计算 (18)5.7其它零件设计和选用 (18)5.8模具闭合高度计算 (23)6、模具总装图的绘制 (24)7、结束语 (24)8、参考文献 (25)1、零件工艺性分析1.1零件结构图示图1.1:加工零件图1.2零件结构分析工件为矩形盒形件,零件形状简单,要求为外形尺寸;尺寸为长、宽、高分别为45mm ,27mm ,20mm ;料后t=0.4mm ,没有厚度方向上不变的要求;底部圆角半径p r =3mm ,矩形四个角处圆角半径为r =4mm ,满足拉深工艺对形状和圆角半径的要求。
1.3材料性能分析零件所用材料为H68M ,拉伸性能好,易于成形。
1.4精度等级分析公等级定为IT14级。
满足普通冲压工艺对精度等级的要求。
2、工艺方案的确定由上分析,该零件为矩形盒形件,可采用拉深成形。
为确定拉深工艺方案,先计算拉深次数及相关工艺尺寸。
2.1修边余量 工件相对高度0h 20==5r 4,则依据下表可知修边余量 0h=~h =0.0420=0.8mm ∆⨯(0.030.05)。
工件相对高度△h 2.5~6 7~17 18~44 45~100工件修边余量h0 (0.03~0.05)h0(0.03~0.05)h0 (0.03~0.05)h0 (0.03~0.05)h0表2.1:无凸缘盒形件的修边余量表 2.2相关工艺尺寸计算毛坯相对厚度t 0.4100100 1.48b 27⨯=⨯=; 矩形盒形件相对半径r 4==0.148b 27; 矩形盒形件拉深响度高度0h +h h 20+0.8===0.77b b 27∆;2.3判断拉深次数根据相关工艺尺寸计算结果,由下图可知,应选择一次拉深成形即可。
拉深盒型件拉深工艺引言拉深技术(Deep drawing)是一种常用的金属成形工艺,广泛应用于各种盒型件的制造中。
拉深盒型件能够满足不同行业的需求,例如汽车零部件、电器外壳、容器等。
本文将详细介绍拉深盒型件的拉深工艺流程,包括材料选择、模具设计、拉深过程控制等方面内容。
1. 材料选择在拉深盒型件的制造中,常用的材料包括冷轧钢板、不锈钢、铝合金等。
不同的材料具有不同的性能和适用范围,因此在选择材料时应考虑以下几个因素:•材料的可塑性:材料必须具有良好的可塑性,能够在拉深过程中充分变形,以适应盒型件的形状需求。
•材料的强度:材料必须具有足够的强度,能够承受盒型件的工作载荷,并保持其结构的稳定性。
•材料的耐腐蚀性:根据具体使用环境的要求,选择具有良好耐腐蚀性的材料,以延长盒型件的使用寿命。
2. 模具设计模具的设计是拉深工艺中十分重要的一环。
一个合理设计的模具能够保证拉深过程的稳定性和成品的质量。
模具设计应考虑以下几个因素:•盒型件的形状和尺寸:根据盒型件的形状和尺寸要求,确定模具的结构和尺寸,以确保拉深盒型件的准确性和一致性。
•模具的材料选择:模具通常采用高强度、高硬度的材料,如工具钢。
选择合适的模具材料可以增加模具的使用寿命和抗磨耗性。
•模具的润滑与冷却:为了减少摩擦和热量积聚,需要在模具表面涂覆润滑剂,并设置冷却系统,以确保模具的稳定工作和成品的质量。
3. 拉深过程控制拉深过程中的控制是确保产品质量的关键。
合理的拉深过程控制可以预防一些常见的问题,例如皱纹、裂纹和破裂等。
以下是一些常用的拉深过程控制方法:•拉深力的控制:根据盒型件的形状和尺寸,合理调整拉深力,以避免过度应力导致拉深失效。
•润滑效果的控制:合适的润滑剂类型和涂覆方式可以减少摩擦,防止盒型件与模具之间的粘连,从而提高产品的表面质量。
•模具温度的控制:通过控制冷却系统的温度,可以有效地降低模具和盒型件的温度,从而减少热裂纹的发生。
•拉深速度的控制:拉深速度的选择要根据材料的可塑性和盒型件的复杂程度来确定,以保证拉深过程的稳定性和成品的质量。
盒形件盒形件属于非旋转体零件,包括方形盒、矩形盒和椭圆形盒等。
与旋转体零件的拉深相比,盒形件拉深时,毛坯的变形分布要复杂得多。
盒形件拉深变形特点从几何形状的特点,矩形盒状零件可以划分为2个长度为(A-2r)和2个长度为(B—2r)的直边,加4个半径为r 的1/4圆筒部分组成(图4.4.1)。
若将圆角部分和直边部分分开考虑,则圆角部分的变形相当于直径为2r、高为h的圆筒件的拉深,直边部分的变形相当于弯曲。
但实际上圆角部分和直边部分是联系在一起的整体,因此盒形件的拉深又不完全等同于简单的弯曲和拉深复合,有其特有的变形特点,这可通过网格试验进行验证。
图4.4.1 盒形件拉深变形特点拉深前,在毛坯的直边部分画出相互垂直的等距平行线网格,在毛坯的圆角部分,画出等角度的径向放射线与等距离的同心圆弧组成的网格。
变形前直边处的横向尺寸是等距的,即ΔL1=ΔL2=ΔL3,纵向尺寸也是等距的,拉深后零件表面的网格发生了明显的变化(如图4.4.1所示) 。
这些变化主要表现在:⑴直边部位的变形直边部位的横向尺寸ΔL1,ΔL2,ΔL3变形后成为ΔL1′,ΔL2′,ΔL3′,间距逐渐缩小,愈靠直边中间部位,缩小愈少,即ΔL1>ΔL1′>ΔL2′>ΔL3′。
纵向尺寸△h1,△h2,△h3变形后成为△h1′,△h2′,△h3′,间距逐渐增大,愈靠近盒形件口部增大愈多,即△h1<△h1′<△h2′<△h3′。
可见,此处的变形不同于纯粹的弯曲。
(2) 圆角部位的变形 ??拉深后径向放射线变成上部距离宽,下部距离窄的斜线,而并非与底面垂直的等距平行线。
同心圆弧的间距不再相等,而是变大,越向口部越大,且同心圆弧不位于同一水平面内。
因此该处的变形不同于纯粹的拉深。
从以上可知,由于有直边的存在,拉深时圆角部分的材料可以向直边流动,这就减轻了圆角部分的变形,使其变形程度与半径r相同,高度h相等的圆筒形件比较起来要小。
同时表明圆角部分的变形也是不均匀的,即圆角中心大,相邻直边处变形小。
从塑性变形力学观点看,由于减轻了圆角部分材料的变形程度,需要克服的变形抗力也相应减小,危险断面破裂的可能性也减小。
盒形件的拉深特点如下:图4.4.2 盒形件拉深时的应力分布(1)凸缘变形区内,径向拉应力σ1的分布不均匀(如图4—37),圆角部分最大,直边部分最小。
即使在角部,平均拉应力σ1m也远小于相应圆筒形件的拉应力。
因此,就危险断面处的载荷来说,盒形件拉深要小得多。
所以,对于相同材料,盒形件拉深的最大成形相对高度要大于相同半径的圆筒形零件。
切向压应力σ3的分布也不均匀,圆角最大,直边最小。
因此拉深变形时材料的稳定性较好,凸缘不易起皱。
(2)由于直边和圆角变形区内材料的受力情况不同,直边处材料向凹模流动的阻力要远小于圆角处。
并且直边处材料的径向伸长变形小,而圆角处材料的径向伸长变形大,从而使变形区内两处材料的位移量亦不同。
(3)直边部分和圆角部分相互影响的程度,随盒形件形状不同而异。
当其相对圆角半径r/B越小,也就是直边部分所占的比例大,则直边部分对圆角部分的影响越显著。
当r/B=0时,盒形件实际上已成为圆形件,上述变形差别也就不再存在了。
当相对高度H/B越大,在相同的r下,圆角部分的拉深变形大,转移到直边部分的材料越多,则直边部分也必定会多变形,所以圆角部分的影响也就越大。
随着零件的r/B和H/B的不同,则盒形件毛坯的计算和工序计算的方法也就不同。
盒形零件拉深毛坯的形状与尺寸确定盒形件毛坯确定的原则是:保证毛坯的面积应等于加上修边余量后的零件表面积。
另外,由于盒形件拉深时周边的变形不均匀,且圆角部分材料在变形中要转移到直边的特点,应按面积相等的原则,把毛坯形状和尺寸进行修正,使毛坯轮廓成光滑的曲线,在拉深以后尽可能保证零件口部高度的一致性。
毛坯的形状和尺寸应根据零件的相对圆角半径r/B和相对高度H/B的值来进行设计,因这两个参数决定了圆角部分材料向直边部分转移的程度和直边高度的增加量。
1.低盒形件毛坯尺寸与形状的确定( H≤0.3B,B为盒形件的短边长度)所谓低盒形件是指可以一次拉深成形或虽然要两次拉深,但第二次拉深工序仅用来整形以减小壁部转角及底部圆角的盒形件。
对于r/B小的低盒形件,其变形时只有少量材料转移到直边相邻部位。
拉深时直边部分可认为是简单弯曲变形,按弯曲展开;圆角部分只拉深变形,按圆筒形拉深展开;再用光滑曲线进行修正即得毛坯,该类零件常用图 4.4.3 所示的作图法。
计算步骤如下:图4.3.3 低矩形盒毛坯作图法(1)按弯曲计算直边部分展开长度l0l0=H+0.57rp (4 .4.1)式中,H=H0+△H (不修边时,不加△H),修边余量见表4.4.1。
(2)将圆角部分当作直径为d=2r,高度为H的圆筒形件展开,其半径为:(4.4.2)当r=rp时,有(4.4.2)(3)通过作图用光滑曲线连接直边和圆角部分,即得毛坯的形状和尺寸。
具体作图步骤如下:以ab线段中点c向圆弧R作切线,再以R为半径作圆弧与直边及切线相切,相切后毛坯补充的面积+f与切除的面积-f近似相等。
此方法,在模具设计合理时,拉深件高度尺寸精度要求不高,不需进行修边即可满足零件要求时可不加切边余量△h。
表4.4.1矩形盒切边余量△H(mm)(2)多次拉深高盒形件毛坯形状和尺寸的确定该类零件的变形特点是在多次拉深过程中,直边与圆角部分的变形相互渗透,其圆角部分将有大量材料转移到直边部分。
毛坯尺寸仍根据工件表面积与毛坯表面积相等的原则计算。
当零件为正方盒形且高度比较大,需要多道工序拉深时,图4.4.4,可采用圆形毛坯,其直径为:(4.4.3)公式中的符号见图4.4.4 。
当r=rp时:(4.4.4)对高度和圆角半径都比较大的长方形盒形件,如图 4.4.5 所示。
将尺寸看作由两个宽度为 B 的半方形盒和中间为(A-B) 的直边部分连接而成,这样,毛坯的形状就是由两个半圆弧和中间两平行边所组成的长圆形,长圆形毛坯的圆弧半径为:图 4.4.4 方盒件毛坯的形状与尺寸图 4.4.5 高盒形件的毛坯形状与尺寸Rb=D/2式中 D 是宽为 B 的方形件的毛坯直径,按式 (4.4.3) 计算。
Rb的圆心距短边的距离为 B/2 。
则长圆形毛坯的长度为:(4.4.5)长圆形毛坯的宽度为:(4.4.6)然后用 R=K/2 过毛坯长度两端作弧,既与 Rb弧相切,又与两长边的展开直线相切,则毛坯的外形即为一长圆形盒形件多次拉深的工艺计算1.盒形件初次拉深的成形极限在盒形件的初次拉深时,圆角部分侧壁内的拉应力大于直边部分。
因此,盒形件初次拉深的极限变形程度受到圆角部分侧壁传力区强度的限制,这一点和圆筒形件拉深的情况是十分相似的。
但是,由于直边部分对圆角部分拉深变形的减轻作用和带动作用,都可以使圆角部分危险断面的拉应力有不同程度的降低。
因此,盒形件初次拉深可能成形的极限高度大于圆筒形零件。
盒形件的相对圆角半径r/B越小(图4.4.1),直边部分对圆角部分的影响越强,极限变形程度的提高越显著;反之,r/B越大,直边部分对圆角部分的影响越小,而且当 r/B =0.5时,盒形件变成圆筒形件,其极限变形程度也必然等于圆筒形件。
盒形件初次拉深的极限变形程度,可以用盒形件的相对高度H/r来表示。
由平板毛坯一次拉深可能冲压成的盒形件的最大相对高度决定于盒形件的尺寸r/B、t/B和板材的性能,其值可查表4.4.2。
当盒形件的相对厚度较小t/B<0.01,而且A/B≈1时,取表中较小的数值;当盒形件的相对厚度较大,即t/B>0.015,而且A/B≥2时,取表中较大的数值。
表4.42中数据适用于拉深用软钢板。
表4.4.2盒形件初次拉深的最大相对高度若盒形件的相对高度H/r不超过表4.4.2中所列的极限值,则盒形件可以用一道拉深工序冲压成功,否则必须采用多道工序拉深的方法进行加工。
2.方形盒拉深工序形状和尺寸确定(图4.4.6)采用直径为D0的圆形毛坯,中间工序都拉深成圆筒形的半成品,在最后一道工序才拉深成方形盒的形状和尺寸。
由于最后一道工序从圆形拉深为方形,材料的变形程度大而不均匀,特别是在方形圆角处,必然受到该处材料成形极限的限制。
计算时,应采用从n-1道工序,即倒数第二次拉深开始,确定拉深半成品件的工序直径。
D n-1=1.41B-0.82r+2δ(4.4.7)式中: D n-1—n-1道拉深工序所得圆筒形件半成品的直径(mm);B—方形盒的内表面宽度(mm);r—方形盒角部的内圆角半径(mm);δ—方形盒角部壁间距离(mm)。
该值直接影响毛坯变形区拉深变形程度是否均匀的最重要参数。
一般取δ=(0.2~0.25)r。
图4.4.6 方形盒多工序拉深的半成品形状和尺寸由于其它各道工序为圆筒形,所以可参照圆筒形零件的工艺计算方法,来确定其它各道工序尺寸。
计算时由内向外反向计算,即D n-2=Dn-1/mn-1以此类推,直到算出的直径D≥D0为止。
式中,拉深系数mn-1由表4.2.4确定。
3.长方形盒拉深工序形状和尺寸的确定长方形盒的拉深方法与正方形盒相似,中间过渡工序可拉深成椭圆形或长圆形,在最后一次拉深工序中被拉深成所要求的形状和尺寸,如图4.4.7所示。
其计算与作图同样由n-1道(倒数第二次拉深)工序开始,由内向外计算。
计算时可把矩形盒的两个边视为4个方形盒的边长,在保证同一角部壁间距离δ时,可采用由4段圆弧构成的椭圆形筒,作为最后一道工序拉深前的半成品毛坯(是n-1道拉深所得的半成品 ) 。
其长轴与短轴处的曲率半径分别用R a(n-1)和R b(n-1)表示,并用下式计算:图4.4.7 高长方形盒多工序拉深的半成品形状和尺寸图4.4.8 n-1道工序凸模形状(1)(n-1)道拉深工序的半成品是椭圆形,其曲率半径用下式计算:R a(n-1)=0.707A-0.41r+δ(4.4.8)R b(n-1)=0.707B-0.41r+δ(4.4.9)式中,圆弧R a(n-1)和R b(n-1)的圆心,由图4.4.7中的尺寸关系确定,分别为A/2和B/2。
(2)(n-1)道工序椭圆形半成品件的长、短边与高度尺寸为An-1=2Rb(n-1)+(A-B)(4.4.10)Bn-1=2Ra(n-1)-(A-B) (4.4.11)Hn-1≈0.88H (4.4.12)H为含修边余量在内的盒形件高度。
(3)(n-2)道工序仍然是椭圆形半成品,其形状和尺寸的确定方法如下:①计算壁间距a和b是为了控制从(n-2)道工序拉深至(n-1)道工序的变形程度:(4.4.13)即a=(0.18~0.33)Ra(n-1) (4.4.14)b=(0.18~0.33)Rb(n-1) (4.4.15)②由a、b找出图上的M及N点。