110 kV变电站主变压器差动保护误动分析
- 格式:doc
- 大小:76.50 KB
- 文档页数:3
某110kV变电站主变差动保护动作分析及处理摘要:本文通过对某110kV变电站主变差动保护动作情况的介绍,分析主变差动保护动作的原因和检查处理,对分析主变差动保护动作提供了借鉴经验,对涉及变电站改造或者CT更换起到很好的警醒目的。
关键词:变电站;主变差动保护;CT极性;分析;处理一、事件发生前情况110kV变电站Ⅰ段母线由110kV苏功线供电运行,Ⅱ段母线由110kV永漕功线供电运行,1号主变运行,2号主变运行,母联112断路器检修。
二、异常事件分析(一)异常信号:14:50:39.870<110kV变电站>故障录波装置启动有效;14:50:39.885<110kV变电站>主变差动保护跳闸报警;14:50:39.918<110kV变电站>102断路器开关分位有效;14:50:39.937<110kV变电站>909断路器开关分位有效;14:50:43.883<110kV变电站>直流系统交流故障报警。
(二)保护装置动作报告:保护动作过程:故障发生后23ms,比率差动保护动作110kV2号主变高压侧102断路器、低压侧909断路器跳闸。
故障录波波形如下:主变高低压侧电流主变高低压侧电压波形(三)检查及分析过程:1.首先重点对变压器本体、瓦斯保护、母线槽盒外观进行详细检查,检查未发现异常。
2.对变压器绝缘油取样进行化验分析,试验数据如下:通过油化试验数据分析,油化试验结果满足规范要求,排除变压器内部故障。
3.对保护动作报告及故障录波波形进行分析:(1)故障录波波形显示:故障时,主变高压侧A、B、C三相均有故障电流,B相故障电流是A、C相2倍,方向与A、C相相反。
主变低压侧a、b相有故障电流,故障电流大小相等,方向相反。
主变接线方式为Yd11,根据故障特征分析判断故障类型为变压器低压侧a、b相间故障。
故障时主变高压侧电压波形未发生变化,仍为正弦波,三相之间相序相差120°。
110kV变电站继电保护误动故障及处理措施摘要:本文以110 kV变电站为研究对象,介绍了变电运行中继电保护的作用,通过某110 kV变电站电流回路问题引起的主变保护区外故障误动作,分析故障原因,其次通过分析装置本身缺陷引起主变保护区外故障误动作,分析故障原因并提出处理方法。
关键词:110 kV变电站;继电保护;故障;措施引言在实际运行的过程中,变电站继电保护装置出现故障的原因往往较为复杂,这使得多种问题的存在都会导致变电站继电装置的整体运行质量受到影响。
为此,就要从变电站继电保护典型故障出发,采取针对性措施进行应对,从而使其运行更加稳定,并降低对电能的额外损耗。
1 变电运行中继电保护的作用继电保护装置是构成继电保护动作的基础,能够在变电运行发生异常时完成对配电网的保护。
具体来说,继电保护装置的作用分为 3 点:①能实时监控电力系统运行状况和电力设备工作状况,并将相关信息传送到操作系统中;②具有第一时间将故障分离的功能,能够将故障的影响降到最低;③当电力系统出现异常时会自动发出警报,从而能够提升故障处理效率。
2 继电保护的基本要求2.1 准确性当电网在运行过程中出现故障时,继电保护装置会自行进行判断,并及时将故障区域与非故障区域分离开来,然后对故障区域进行隔离,避免影响其他区域的正常运行。
2.2 灵敏性继电保护装置的灵敏性表现在能够区分自己的保护范围和非保护范围,这样就能在区域内线路发生故障时及时进行隔离,当区域外线路发生故障时要根据故障来做出相应动作。
2.3 速动性当电力系统出现故障时,继电保护装置会直接切除故障,从而能够确保非故障区域能够正常工作。
在完成故障隔离后,继电保护装置需要加快系统电压恢复,避免出现低压情况。
2.4 可靠性继电保护装置能根据实际情况进行相关操作,能够在需要它发生动作时做出相关反应,不需要动作时拒绝动作,这样就能有效将安全隐患消除,确保电力系统能够稳定运行。
3 电流回路问题引起的主变保护区外故障误动作3.1 故障情况2019某日某 110 kV 变电站 35 kV 的 433 线路发生 L2L3相间短路故障,保护过流 I 段动作跳闸,2 号主变第一套保护(CSC-326FA)比率差动保护动作,71 ms 比率差动 W 相出口保护跳开 2 号主变三侧断路器,第二套保护(CSC-326FA)未动作。
关于110 kV变电站变压器差动保护动作原因探讨摘要:改革开放给我国带来了各方面的发展和进步,尤其是电力行业的发展更是给我国带来了前所未有的进步,现代社会的发展和进步早就已经离不开电力行业的发展,可以说电力行业的发展是其他行业发展的基础和动力。
随着电力行业的发展逐渐加快,我们开始对电力系统有了更高的要求,我们在生活生产中的各种电器设备所需电压各不相同,但是电力源头是相同的,因此为了满足不同电气对电力的不同需求,变压器便应运而生。
发展至今,变压器成为我们电力系统发展中不可或缺的一部分,因此我们必须要对此提高重视程度,同样我们也要将注意力放在变压器的保护之上,保证变电站的稳定运行。
在面临特殊情况为了保护自身不受损害,变压器也会自动采取措施---差动保护,差动保护是变压器的主要“自我”保护手段。
主要是变电站变压器输入和输出的电流之间存在差值而出现的,这种方式的差动保护动作是实现变压器的“自我”保护基础。
本文主要研究的是110kV变电站变压器差动保护动作的发生原因,通过探究发生原因对变电站变压器差动保护动作发生机制进行深入了解。
关键词:110kV变电站变压器;差动保护动作;原因电力系统的发展与变电站变压器有着密不可分的关系,可以说变电站变压器是电力系统稳定运行和高速发展的有效途径之一,变压器是变电站重要组成设备之一,变压器被广泛应用于电力系统运行中,而为了对变压器进行有效保护,科研人员经过多次试验研究找到了---差动保护动作,差动保护动作是变电站为变压器提供的主要保护,但是实际上变压器的差动保护动作也不仅仅是对变压器的保护,变压器差动保护动作误动也会对变电站造成难以挽回的危害,因此差动保护动作误动要尽可能避免,因此我们需要对各种原因造成的变电站变压器差动保护动作原因进行探讨,从根源上解决差动保护动作误动情况的发展,保证电力系统和变电站变压器的正常运行。
本文我们将重点针对各种原因造成的变电站变压器差动保护动作进行研究分析。
一起110kV电力变压器差动保护动作的原因分析及对策任才辉发布时间:2021-08-09T00:48:24.175Z 来源:《中国电业》(发电)》2021年第8期作者:任才辉[导读] 经全面检查及试验分析,找出了故障点及原因,并采取了有效的解决方案,保障了电厂的安全稳定运行,为同类设备类似故障处理积累了宝贵经验。
梧州桂江电力有限公司广西梧州 543000摘要:京南水电厂一台110kV电力变压器在运行过程中发生了一起差动保护动作跳闸事件,经全面检查及试验分析,找出了故障点及原因,并采取了有效的解决方案,保障了电厂的安全稳定运行,为同类设备类似故障处理积累了宝贵经验。
关键词:电力变压器;保护装置;差动保护;跳闸0引言京南水电厂位于桂江下游,广西苍梧县京南乡境内,距梧州市68km,安装两台灯泡灌流式机组,总装机容量6.9万KW,电气主接线采用内桥接线方式。
2020年1月19日,35kV京厂线过流保护动作跳闸、一号主变压器(以下简称1#主变)差动保护动作跳闸,导致35kV京厂线、1#主变非计划停运,电厂及时组织精干的专业技术人员认真开展了跳闸事件的原因分析,找出准确故障点后采取了最快消除故障的解决方案,在最短时间内恢复了该变压器及线路的运行,减少了发电损失,保障了电厂的安全稳定运行。
1事件前电厂运行方式跳闸事件发生前,#1机组备用、#2机组检修,#1主变、#2主变、110kV京仁线141开关、110kV苍旺京线142开关、#1主变35kV侧341开关、35kV京厂线343开关运行;内桥140开关备用;厂用电41开关、42开关运行。
电气主接线简图如图1所示(仅画出与本次分析相关部分)。
2事件发生过程及信息记录2.1微机监控后台信息运行值班人员发现微机监控上位机有弹窗报警信号:09:01:09.984主变中后备保护告警09:18:05.02735kV京厂线保护动作,跳343开关09:18:05.027断路器343开关分位09:18:06.030#1主变差动保护动作,跳141、341、41开关09:18:06.030断路器41分位09:18:06.031断路器141开关分位09:18:06.049断路器341开关分位根据监控信息,运行值班人员立即判断电网设备有故障跳闸情况,即:09时18分05秒27毫秒,35kV京厂线过流保护动作,343开关分闸。
变电站110kV线路差动保护动作分析摘要:通过对110kV某L枢纽变电站故障前的运行方式、背景及事故经过的介绍,对其二进线L、H变电站两侧的线路保护录波图形及动作进行了分析,用临时1#变压器替代原1#变压器转运行投至110kVII母手动合闸时,产生不平衡电流中的直流分量较大,导致L变电站二进线的L侧线路保护CSC-163A零序差动保护动作。
关键词:110kV;不平衡电流;零序差动保护;变电站1故障前系统的运行方式110kV线路在我国电网中占有较大的比例,确保110kV线路的运行安全非常重要。
110kV保护装置目前主要配置微机型继电保护装置,其运行可靠,自动化程度高。
为了确保保护装置能够正确动作,需要在定检工作中对其保护的选择性、速动性、灵敏性、可靠性进行调试;本文主要对110KV线路差保护动作进行了详细的阐述。
110KV某L枢纽变电站一次系统为3条电源进线、双母双分段接线方式,运行方式如下,一进线带110KVI母、1#主变和2#变压器,1#主变带10KVI、IV母;二进线带110KVII、IV母,110KVII母带临时1#变压器,110KVIV母带2#主变及10kVII母;三进线带110KVIII母,110KVIII母带3#主变、3#变压器及10kVIII母;3条进线均由220kV某H变电站送电。
2故障前的背景由于现场原因,1#变压器和3#变压器低压侧后备保护装置中的复压过流保护动作,事故跳闸。
由于生产需要,急需将1#、3#变压器送电。
在送电前,对1#、3#变压器进行了相关电气检测试验。
检测报告结果显示,3#变压器直流电阻测定为:AB两相为6.385mΩ;BC两相为6.391mΩ;CA两相为6.375mΩ;测试结果满足要求。
而1#变压器直流电阻测定为:AB两相为8.678mΩ;BC两相为5.847mΩ;CA两相为7.825mΩ;平衡度测试结果等于38%,远远超标,且其油色谱分析显示气体中的含烃量也远远超标。
主变压器差动保护动作的原因及处理一、变压器差动保护范围:变压器差动保护的保护范围,是变压器各侧的电流互感器之间的一次连接局部,主要反响以下故障:1、变压器引出线及内部绕组线圈的相间短路。
2、变压器绕组严重的匝间短路故障。
3、大电流接地系统中,线圈及引出线的接地故障。
4、变压器CT故障。
二、差动保护动作跳闸原因:1、主变压器及其套管引出线发生短路故障。
2、保护二次线发生故障。
3、电流互感器短路或开路。
4、主变压器内部故障。
5、保护装置误动三、主变压器差动保护动作跳闸处理的原那么有以下几点:1、检查主变压器外部套管及引线有无故障痕迹和异常现象。
2、如经过第1项检查,未发现异常,但曾有直流不稳定接地隐患或带直流接地运行,那么考虑是否有直流两点接地故障。
如果有,那么应及时消除短路点,然后对变压器重新送电。
差动保护和瓦斯保护共同组成变压器的主保护。
差动保护作为变压器内部以及套管引出线相间短路的保护以及中性点直接接地系统侧的单相接地短路保护,同时对变压器内部绕组的匝间短路也能反响。
瓦斯保护能反响变压器内部的绕组相间短路、中性点直接地系统侧的单相接地短路、绕组匝间短路、铁芯或其它部件过热或漏油等各种故障。
差动保护对变压器内部铁芯过热或因绕组接触不良造成的过热无法反响,且当绕组匝间短路时短路匝数很少时,也可能反响不出。
而瓦斯保护虽然能反响变压器油箱内部的各种故障,但对于套管引出线的故障无法反响,因此,通过瓦斯保护与差动保护共同组成变压器的主保护。
四、变压器差动保护动作检查工程:1、记录保护动作情况、打印故障录波报告。
2、检查变压器套管有无损伤、有无闪络放电痕迹变压器本体有无因内部故障引起的其它异常现象。
3、差动保护范围内所有一次设备瓷质局部是否完好,有无闪络放电痕迹变压器及各侧刀闸、避雷器、瓷瓶有无接地短路现象,有无异物落在设备上。
4、差动电流互感器本身有无异常,瓷质局部是否完整,有无闪络放电痕迹,回路有无断线接地。
110 kV变电站主变压器差动保护误动分析作者:谢岳
来源:《科技与创新》2017年第01期
摘要:变压器是电力系统中的核心设备,其运行状态直接关系到电网的安全性和稳定性。
对某110 kV变电站主变压器的差动保护误动事故进行了分析,通过现场试验分析,提出了相应的解决方案,以望为相关单位提供参考和借鉴。
关键词:110 kV变电站;变压器;保护装置;光电交换器
中图分类号:TM407 文献标识码:A DOI:10.15913/ki.kjycx.2017.01.151
随着我国工业化进程的不断加快以及社会经济的快速发展,社会对电力系统的安全、稳定运行也提出了更高的要求。
其中,变压器的安全、稳定运行直接关系到电力系统的安全、稳定,因此,为变压器配置可靠的保护装置十分必要。
但当前变电站变压器保护误动的事故时有发生,严重影响了变电站的安全、稳定运行。
基于此,笔者结合实例进行了分析和介绍。
1 事故概述
某110 kV变电站2号主变压器差动保护动作,主变压器高压侧和低压侧开关跳开。
由于主变压器差动录波文件丟失,査看了主变压器后备保护录波文件,其显示差动动作时,主变压器高压测后备无任何异常,低压测后备保护启动元件动作,并启动了低压测后备录波。
2 事故原因分析
本站已运行近20年,于2010年二次系统改造为满足IEC61850标准的数字化变电站。
变电站承担火车站、居民区、纺织厂等供电任务,负荷较重。
在排除了主变压器故障的情况下,初步判断这是一次主变压器差动误动,就此对除主变压器外的其他相关设备进行了分析和诊断。
2号主变压器差动保护动作时,低压侧电流和电压同时出现了很大的尖波,幅值均为负值。
经计算,电压和电流的二次采样幅值基本一致,低压侧所有模拟量通道同时出现向下的尖波,主变压器差动计算的差流出现瞬时尖波,造成比率差动保护动作。
同时,主变压器高压侧后备保护正常,低压侧后备保护启动,判断为低压侧异常,与高压侧没有关系。
通过就地监控对事故前后操作历史记录进行分析发现,2号主变压器差动动作前进行了远方投电容器操作。
调看主变压器低后备保护装置的录波文件记录发现,低压测后备保护启动多次录波,将录波文件的时间和投电容器的时间进行了对比,基本吻合,即每次录波启动时都有投入2号电容器操作。
历史记录中2号电容器均正常动作,缺陷记录中无单只熔断器熔断的故障记载,且电容器加装的放电电压互感器(TV)经检测正常,排除了2号电容器本体性能不良、冲击合闸浦流和过电压影响。
3 现场试验
为了确定干扰源,找到解决问题的方法,在现场进行了试验。
由于所操作电容器间隔紧邻2号主变压器,所以,对2号主变压器采样系统进行了试验。
2号主变压器退出运行,由1号主变压器带全站负荷,并充分采取了相应的安全措施,搭建了试验平台,对2号主变压器低压侧DTI采样数据进行了监视。
2号主变压器低压侧采样系统包括DTK调理单元及小信号传输线。
其中,小信号传输线为屏蔽电缆(6根3组S1和S2,S1接入调理单元和ECVT本体,S2接入DTI和调理单元),用测试电脑通过光电交换器(0/E)连接至2号主变压器间隔光交换机,并通过上DTK 调理单元及小信号传输线取得采样值。
在测试中,使用以下公式来计算差流干扰的大小:
干扰保护电流差=干扰前保护电流-干扰最严重时保护电流. (1)
第1次试验7次,每次对2号电容器进行带负荷投切操作,并记录DTI的采样数据,结果如表1所示。
表1中的1~3组数据为模拟正常情况下的试验数据;第4~5组数据为调理单元去掉S2小信号传输线连接,并将S2小信号传输线接人调理单元端进行短接的数据;第6~7组数据为调理单元去掉S1小信号传输线连接,并对调理单元原S1连接处进行短接时的数据。
由1~3组数据可得,在投2号电容器时,2号变压器低压侧采样值都存在向下的尖波,与实际故障波形相似;4~5组数据DTI和S2小信号传输线工作正常,未受到干扰;而6~7组数据中存在干扰较小,基本可以忽略,再配合4~5组数据得到的结论可认为,调理单元未受到干扰。
由此可见,干扰来自投2号电容器投人操作时,S1小信号线受到的干扰,特别是A 相干扰最大。
4 解决方案
4.1 2号主变压器的解决方案
经过现场试验确定了2号主变压器解决方案——在调理单元保护信号输出端增加滤波电容。
增加的电容和调理单元的输出运放等效电阻构成RC低通滤波回路,该滤波回路的截止频率在10 MHz左右。
对于10 MHz以上的信号,该回路就会起到滤波作用,滤掉高频干扰;对于10MHz以下的低频信号,基本没有影响。
所以,本次改动对保护信号的精度基本没有影响,更不会对差动保护有影响。
在调理单元中的模拟量输出端(保护用)增加滤波回路后,将2号主变压器投入运行,对电容器进行了3次带负荷投切试验,试验数据如表2所示。
从表2可以看出,试验结果良好,保护电流在投切电容器时没有再出现较大尖波,滤波效果很好,可以滤除高频干扰,且对保护信号的影响在允许范围之内,可忽略不计。
2号主变压器通过采取措施整改后,运行至今未再出现误动现象,说明本解决方案可行。
4.2 1号主变压器解决方案
对于1号主变压器存在的问题,如果像2号主变压器一样现场修改调理单元明显不合适。
此外,调理单元和互感器为一一匹配关系,如果更换调理单元就面临着重新调整互感器精度的问题,因此,需要一个更加完善的解决方案。
经过研究发现,将同样的滤波回路放在DTI交流采集回路中,不仅可以滤掉调理单元前的干扰,且即使从调理单元到DTI的信号线屏蔽受损,信号线受到干扰,也会被滤波回路将高频干扰滤掉。
此时,1号主变压器就可通过更换DTI的交流插件消缺,只需要在停止1号主变压器时更换一个插件,DTI的精度调整只需一个测试仪即可完成,不需在一次侧增加工作量。
经过初步测试,修改DTI的交流插件可以实现对高频信号的滤波,且测试结果表明,修改后的插件可以满足保护及测量信号精度的要求。
因此,1号主变压器的解决方案就是提供新的DTI交流插件,并在合适的时机更换。
5 结束语
综上所述,差动保护作为变电站变压器保护的核心组成部分,得到了广泛应用,且其正确动作对变电站的安全、稳定运行具有十分重要的意义。
因此,相关技术人员要对变电站的变压器继电保护装置误动原因进行分析,采取合理、有效的解决方案处理,从而确保变压器继电保护装置的正确动作,保障电力系统的安全、稳定运行。
参考文献
[1]张丰和.数字化变电站主变压器差动速断保护误动事件分析[J].广西电力,2015(05).
[2]宋根华,邓雄伟,赵俊.110 kV变电站主变压器差动保护动作原因分析与防范措施[J].安徽电力,2015(01).
〔编辑:张思楠〕。