2017~2018武汉市硚口区八年级上册期中数学试卷及试卷分析(含答案)
- 格式:doc
- 大小:458.00 KB
- 文档页数:11
2017-2018学年新人教版八年级上期中数学试卷及答案2017-2018学年新人教版八年级(上)期中数学试卷时间:120分钟分值:100分一、选择题:本大题共10小题,每小题3分,共30分。
将答案填在表格内。
1.在下列各电视台的台标图案中,是轴对称图形的是()A.B.C.D.2.以下列各组线段为边,能组成三角形的是()A.2cm,3cm,5cmB.3cm,3cm,6cmC.5cm,8cm,2cmD.4cm,5cm,6cm3.已知直角三角形中30°角所对的直角边为2cm,则斜边的长为()A.2cmB.4cmC.6cmD.8cm4.如图所示,∠B=∠D=90°,BC=CD,∠1=40°,则∠2=()A.40°B.50°C.45°D.60°5.如图,把长方形ABCD沿EF对折后使两部分重合,若∠AEF=110°,则∠1=()A.30B.35C.40°D.50°6.一个三角形三个内角之比为1:3:5,则最小的角的度数为()A.20°B.30°C.40°D.60°7.下列图形中有稳定性的是()A.正方形B.长方形C.直角三角形D.平行四边形8.正n边形的内角和等于1080°,则n的值为()A.7B.8C.9D.109.AC=A′C′,在△ABC与△A′B′C′中,已知∠A=∠A′,下列说法错误的是()A.若添加条件AB=A′B′,则△ABC与△A′B′C′全等B.若添加条件∠C=∠C′,则△ABC与△A′B′C′全等C.若添加条件∠B=∠B′,则△ABC与△A′B′C′全等D.若添加条件BC=B′C′,则△ABC与△A′B′C′全等10.如图,∠A=15°,AB=BC=CD=DE=EF,则∠DEF等于()A.90°B.75°C.70°D.60°二、填空题:本大题共8小题,每小题2分,共16分。
2018-2019 学年湖北省武汉市硚口区八年级(上)期中数学试卷副标题题号 一二三总分得分一、选择题(本大题共 10 小题,共 30.0 分)1.低碳环保理念深入人心,共享单车已成为出行新方式.下列共享单车图标,是轴对称图形的是()A. B.C. D.2. 下列长度的三条线段能组成三角形的是()A. 3,4,8B. 5, 6, 11C. 6, 6,6D. 9, 9, 193. 若某多边形从一个顶点一共可引出4 条对角线,则这个多边形是()A. 五边形B. 六边形C. 七边形D. 八边形4. 如图, △ABC ≌△DEF ,则 ∠E 的度数为()A. 80°B. 40°C. 62°D. 38°5. 平面直角坐标系中点(-2, 1)关于 y 轴对称的点的坐标为( )A. (-2,-1)B.(,)C. (-1 , )D.(,)2 12 1 -26.如图,已知 ∠CAB=∠DAB ,则添加下列一个条件不能使 △ABC ≌△ABD 的是()A. AC=ADB. BC=BDC. ∠C=∠DD. ∠ABC=∠ABD7.如图,在△ABC 中,DE 垂直平分 BC 交 AB 于点 E ,若 BD =5,A.18B.21C.26D.288.如图, AD 是△ABC 的中线, E 是 AD 上一点, BE 交 AC 于F,若 EF=AF , BE=7.5 , CF =6,则 EF 的长度为()A.2.5B.2C.1.5D.19.如图,BP 是∠ABC 的平分线, AP ⊥BP 于 P,连接 PC,若△ABC 的面积为 1cm2,则△PBC 的面积为()2A.0.4cmB.0.5cm2C.0.6cm2D.不能确定10.如图, AD 为等边△ABC 的高, E、F 分别为线段 AD、AC上的动点,且 AE=CF,当 BF+CE 取得最小值时,∠AFB=()A.112.5 °B.105 °C.90°D.82.5 °二、填空题(本大题共 6 小题,共18.0 分)11.如图,为了使一扇旧木门不变形,木工师傅在木门的背后加钉了一根木条,这样做的道理是 ______.12.若一个多边形的每个外角都为36 °,则这个多边形的内角和是 ______ °.13.用一条长 18cm 的细绳围成一个等腰三角形,若有一边长是 8cm,则所围成等腰三角形的底边长为 ______cm.14.已知一张三角形纸片 ABC(如图甲),其中 AB =AC.将纸片沿过点 B 的直线折叠,使点 C 落到 AB 边上的 E 点处,折痕为 BD (如图乙).再将纸片沿过点 E 的直线折叠,点 A 恰好与点 D 重合,折痕为 EF(如图丙).原三角形纸片 ABC 中,∠ABC的大小为 ______°.15.如图,△ABC 中,∠ACB=90 °,CD 是高,若∠A=30 °,BD=1,则 AD=______ .16.如图,在 Rt△ABC 中,∠C=90 °,以△ABC 的一边为边画等腰三角形,使得它的第三个顶点在△ABC 的其他边上,则可以画出的不同的等腰三角形的个数最多为 ______.三、解答题(本大题共8 小题,共72.0 分)17.如图,∠B=40°,∠A+10°=∠1,∠ACD=65°.求证:AB∥CD.18.如图,点 E、 F 在 BC 上, BE=CF, AB=DC ,∠B=∠C,AF 与 DE 交于点 G,求证: GE=GF.19.如图.△ABC 中, CA=CB. D 是 AB 的中点.∠CED=∠CFD =90°, CE=CF ,求证:∠ADF =∠BDE .ABC的顶点坐标分别为A23 B 11),C20. 如图,在平面直角坐标系中,△(,),(,(2, 1).(1)画出△ABC 关于 x 轴对称的△A1B1C1,并写出点 A1的坐标为 ______;(2)将△ABC 向左平移 4 个单位长度得到△A2B2C2,直接写出点 C2的坐标为 ______;( 3)直接写出点 B 关于直线n(直线 n 上各点的纵坐标都为-1)对称点 B′的坐标为 ______;( 4)在 y 轴上找一点P,使 PA+PB 的值最小,标出 P 点的位置.(保留画图痕迹)21.如图,在 Rt△ABC 中,∠ABC=90 °,延长 AB 至 E,使AE=AC,过 E作 EF⊥AC于 F,EF交 BC于 G.(1)求证: BE=CF ;(2)若∠E=40°,求∠AGB 的度数.22.如图,在等边△ABC 中, D 是 AB 上一点, E 是 BC 延长线上一点, AD=CE, DE 交AC 于点 F.( 1)求证: DF =EF ;( 2)过点 D 作 DH ⊥AC 于点 H,求.23.如图,已知 AC=BC,点 D 是 BC 上一点,∠ADE =∠C.(1)如图 1,若∠C=90°,∠DBE =135°,求证:① ∠EDB=∠CAD,② DA =DE ;(2)如图 2,若∠C=40°, DA=DE ,求∠DBE 的度数;( 3)如图 3,请直接写出∠DBE 与∠C 之间满足什么数量关系时,总有DA =DE 成立.24.在平面直角坐标中,等腰 Rt△ABC 中,AB=AC,∠CAB=90 °,A( 0,a),B( b,0).( 1)如图 1,若+( a-2)2=0 ,求△ABO 的面积;( 2)如图 2,AC 与 x 轴交于 D 点,BC 与 y 轴交于 E 点,连接 DE ,AD=CD,求证:∠ADB =∠CDE ;(3)如图 3,在( 1)的条件下,若以 P( 0,-6)为直角顶点, PC 为腰作等腰Rt△PQC,连接 BQ,求证: AP ∥BQ.答案和解析1.【答案】A【解析】解:A 、是轴对称图形.故选项正确;B、不是轴对称图形.故选项错误;C、不是轴对称图形.故选项错误;D、不是轴对称图形.故选项错误.故选:A.根据轴对称图形的概念求解.此题主要考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,两边图象折叠后可重合.2.【答案】C【解析】解:由3,4,8,可得3+4<8,故不能组成三角形;由5,6,11,可得6+5=11,故不能组成三角形;由 6,6,6,可得 6+6>6,故能组成三角形;由 9,9,19,可得 9+9< 19,故不能组成三角形;故选:C.三角形两边之和大于第三边,在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.本题主要考查了三角形三边关系,判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.3.【答案】C【解析】解:∵多边形从一个顶点出发可引出 4 条对角线,∴n-3=4,解得 n=7.即这个多边形是七边形,故选:C.根据从 n 边形的一个顶点可以作对角线的条数为(n-3),求出边数即可得解.本题考查了多边形的对角线的公式,牢记公式是解题的关键.4.【答案】D【解析】解:∵△ABC ≌△DEF,∠A=80°,∠C=62°,∴∠F=∠C=62°,∠D=∠A=80 °,∴∠E=180 °-∠D-∠F=180 °-80 °-62 °=38 °,故选:D.根据全等三角形的性质得出∠F=∠C=62°,∠D= ∠A=80°,根据三角形的内角和定理求出∠E 的度数即可.本题考查了对全等三角形的性质,三角形的内角和定理的应用,注意:全等三角形的对应边相等,对应角相等.5.【答案】B【解析】解:点(-2,1)关于y 轴的对称点的坐标是(2,1),故选:B.根据关于 y 轴对称点的坐标特点:横坐标互为相反数,纵坐标不变;即点(x,y)关于 y 轴的对称点的坐标是(-x ,y).此题主要考查了关于 x 轴、y 轴对称的点的坐标规律,比较容易,关键是熟记规律:(1)关于x 轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.(2)关于y 轴对称点的坐标特点:横坐标互为相反数,纵坐标不变.6.【答案】B【解析】解:A 、∵在△ABC 和△ABD 中∴△ABC ≌△ABD (SAS),正确,故本选项错误;B、根据 BC=BD ,AB=AB 和∠CAB= ∠DAB 不能推出两三角形全等,错误,故本选项正确;C、∵在△ABC 和△ABD 中∴△ABC ≌△ABD (AAS ),正确,故本选项错误;D、∵在△ABC 和△ABD 中∴△ABC ≌△ABD (ASA ),正确,故本选项错误;故选:B.全等三角形的判定定理有SAS,ASA ,AAS ,SSS,已知有∠DAB= ∠CAB 和隐含条件 AB=AB ,看看再添加的条件和以上两个条件是否符合全等三角形的判定定理即可.本题考查了全等三角形的判定定理,注意:全等三角形的判定定理有SAS,ASA ,AAS ,SSS.7.【答案】B【解析】解:∵DE 是线段 BC 的垂直平分线,∴BE=CE,BC=2BD=10 ,即BE+AE=CE+AE=AB ,∵△ABC 的周长为 31,∴∴△ACE 的周长 =AB+AC=31-10=21 .故选:B.先根据 DE 是线段 BC 的垂直平分线得出 BE=CE,即BE+AE=CE+AE=AB ,再由△ACE 的周长 =AB+AC 即可求出答案.本题考查的是线段垂直平分线的性质,即线段的垂直平分线上的点到线段的两个端点的距离相等.8.【答案】C【解析】解:如图,延长 AD ,使DG=AD ,连接 BG,∵AD 是△ABC 的中线∴BD=CD ,且DG=AD ,∠ADC= ∠BDG∴△ADC ≌△GDB (SAS)∴AC=DG=CF+AF=6+AF ,∠DAC= ∠G∵EF=AF,∴∠DAC= ∠AEF∴∠G=∠AEF= ∠BEG∴BE=BG=7.5∴6+AF=BG=7.5∴AF=1.5=EF故选:C.延长 AD ,使DG=AD ,连接 BG,由“SAS”可证△ADC ≌△GDB ,可得AC=DG=CF+AF=6+AF ,∠DAC= ∠G,由等腰三角形的性质可得 BE=BG=7.5 ,即可求 EF的长.本题考查了全等三角形的判定和性质,等腰三角形的性质,添加恰当辅助线构造全等三角形是本题的关键.9.【答案】B【解析】解:如图,延长 AP 交 BC 于 E,∵AP⊥BP,∴∠APB=∠EPB=90°,∴△ABP ≌△EBP(ASA ),∴AP=PE,∴S△ABP=S△EBP,S△ACP=S△ECP,∴S△=S△= ×1=0.5(cm 2),PBC ABC故选:B.延长AP 交 BC 于 E,根据已知条件证得 ABP EBP,根据全等三角形的性△≌△质得到 AP=PE,得出S△=S△,S△=S△,推出 S△= S△,代ABP EBP ACP ECP PBC ABC入求出即可.本题考查了全等三角形的性质和判定,三角形的面积的应用,注意:等底等高的三角形的面积相等.10.【答案】B【解析】解:如图,作CH⊥BC,且CH=BC ,连接 BH 交 AD 于 M ,连接 FH,∵△ABC 是等边三角形,AD ⊥BC,∴AC=BC ,∠DAC=30°,∴AC=CH ,∵∠BCH=90°,∠ACB=60°,∴∠ACH=90°-60 °=30 °,∴∠DAC= ∠ACH=30°,∵AE=CF,∴△AEC ≌△CFH,∴CE=FH,BF+CE=BF+FH ,∴当 F 为 AC 与 BH 的交点时,如图 2,BF+CE 的值最小,此时∠FBC=45°,∠FCB=60°,∴∠AFB=105 °,故选:B.如图,作辅助线,构建全等三角形,证明△AEC≌△CFH,得CE=FH,将 CE 转化为 FH,与BF 在同一个三角形中,根据两点之间线段最短,确定点 F 的位置,即 F 为 AC 与 BH 的交点时,BF+CE 的值最小,求出此时∠AFB=105°.此题考查全等三角形的性质和判定、等边三角形的性质、最短路径问题,关键是作出辅助线,当BF+CE 取得最小值时确定点 F 的位置,有难度.11.【答案】利用三角形的稳定性【解析】解:这样做的道理是利用三角形的稳定性.三角形具有稳定性,其它多边形不具有稳定性,把多边形分割成三角形则多边形的形状就不会改变.本题考查三角形稳定性的实际应用,三角形的稳定性在实际生活中有着广泛的应用,如钢架桥、房屋架梁等,因此要使一些图形具有稳定的结构,往往通过连接辅助线转化为三角形而获得.12.【答案】1440【解析】解:∵此正多边形每一个外角都为 36°,360°÷36°=10,∴此正多边形的边数为 10.则这个多边形的内角和为(10-2)×180°=1440°.故答案为:1440.本题首先根据多边形外角和定理,即任意多边形外角和为 360°,可求出此正多边形的边数为 10.然后再根据三角形的内角和定理求出它的内角和.本题主要考查了多边形内角和及外角和定理,任何多边形的外角和是360°.13.【答案】2或8【解析】解:①当 8cm 为底边时,设腰长为 xcm,则 2x+8=18,解得:x=5,5,5,8 能构成三角形,此时底边为 8cm;②当 8cm 为腰长时,设底边长为 ycm,则 y+8×2=18,解得:y=2,8,8,2 能构成三角形,此时底边为 2cm故答案为 2或 8.由用一条长为 18cm 的细绳围成一个等腰三角形,其中有一边为 8cm,可以分别从① 若 8cm 为底边长,② 若 8cm 为腰长时,去分析,然后根据三角形的三边关系判定是否能组成三角形,继而可求得答案.此题考查了等腰三角形的性质与三角形的三边关系.此题比较简单,解题的关键是注意分类讨论思想的应用.14.【答案】72【解析】解:设∠A=x ,根据翻折不变性可知∠A= ∠EDA=x ,∠C=∠BED=∠A+ ∠EDA=2x ,∵AB=AC ,∴∠ABC= ∠C=2x,∵∠A+ ∠ABC+ ∠C=180 °,∴5x=180 °,∴x=36 °,∴∠ABC=72°故答案为 72设∠A=x ,根据翻折不变性可知∠A= ∠EDA=x ,∠C=∠BED= ∠A+ ∠EDA=2x ,利用三角形内角和定理构建方程即可解决问题.本题考查翻折变换、等腰三角形的性质等知识,解题的关键是学会用方程的思想思考问题,属于中考常考题型.15.【答案】3【解析】解:∵△ABC 中,∠ACB=90°,∠A=30°,∴∠B=60 °,∵CD 是高,∴∠CDB=90°,∴∠BCD=30°,∵BD=1,∵在△ACB 中,∠ACB=90°,∠A=30 °,∴AB=2BC=4 ,∴AD=AB-BD=4-1=3 ,故答案为:3.求出∠BCD=30°,根据含 30°角的直角三角形的性质求出 BC=2,求出AB=4 ,即可得出答案.本题考查了三角形的内角和定理,含30 度角的直角三角形的性质的应用,解此题的关键是得出 BC=2BD 和 AB=2BC ,难度适中.16.【答案】7个【解析】解:如图:可以画出 7 个等腰三角形;故答案为 7.①以 B 为圆心,BC 长为半径画弧,交 AB 于点 D,△BCD 就是等腰三角形;②以 A 为圆心,AC 长为半径画弧,交 AB 于点 E,△ACE 就是等腰三角形;③以 C 为圆心,BC 长为半径画弧,交 AC 于点 F,△BCF 就是等腰三角形;④以 C 为圆心,BC 长为半径画弧,交 AB 于点 K ,△BCK 就是等腰三角形;⑤作 AB 的垂直平分线交 AC 于 G,则△AGB 是等腰三角形;⑥作 BC 的垂直平分线交 AB 于 I,则△BCI 和△ACI 是等腰三角形.本题考查了等腰三角形的判定的应用,主要考查学生的理解能力和动手操作能力.17.【答案】证明:∵∠B+∠1+∠A=180°,∠B=40°,∠A+10°=∠1,∴40 °+∠A+10 °+∠A=180 °,∴∠A=65 °,∵∠ACD=65 °,∴∠ACD=∠A,∴AB∥CD .【解析】根据三角形内角和定理求出∠A ,进而求出∠ACD= ∠A ,根据平行线的判定得出即可.本题考查了平行线的判定,三角形的内角和定理的应用,能灵活运用定理进行推理是解此题的关键.18.【答案】证明:∵BE=CF,∴BE+EF=CF +EF,∴BF=CE,在△ABF 和△DCE 中∴△ABF ≌△DCE( SAS),∴∠GEF=∠GFE ,∴EG=FG .【解析】求出 BF=CE,根据 SAS 推出△ABF ≌△DCE,得对应角相等,由等腰三角形的判定可得结论.本题考查了全等三角形的判定与性质,等腰三角形的判定,熟练掌握三角形全等的判定方法是解题的关键.19.【答案】证明:如图,在 Rt△ECD 和 Rt△FCD 中,,∴Rt△ECD≌Rt△FCD ,∴∠CDF =∠CDE ,∵CA=CB ,D 是 AB 的中点,∴CD ⊥AB,∴∠CDA=∠CDB =90 °,∴∠ADF =∠BDE .【解析】连接 CD,证得△ECD≌△FCD,得出∠CDF=∠CDE,利用等腰三角形的“三线合一”得出∠CDA= ∠CDB=90°,进一步求得结论即可.此题考查三角形全等的判定与性质,等腰三角形的性质,掌握三角形的判定方法是解决问题的关键.20.【答案】(2,-3)(-2,1)(1,-3)【解析】解:(1)如图所示,△A 1B1C1即为所求,点 A 1的坐标为(2,-3),故答案为:(2,-3).(2)如图所示,△A 2B2C2即为所求,点 C2的坐标为(-2,1),故答案为:(-2,1).(3)由题意知直线 n 的解析式为 y=-1,则点 B 关于直线 n 的对称点 B′的坐标为(1,-3),故答案为:(1,-3).(4)如图所示,点 P 即为所求.(1)根据轴对称的定义作出点 A ,B,C 关于 x 轴的对称点,再顺次连接即可得;(2)根据平移变换的定义作出点 A ,B,C 向左平移 4 个单位得到的对应点,再顺次连接可得;(3)先得出直线 n 的解析式,再作出点 B 关于直线 n:y=-1 的对称点,据此可得;(4)连接 A 2B 与 y 轴交点就是 P 点.此题主要作图-轴对称变换与平移变换,关键是正确确定组成图形的关键点的对称点位置及轴对称变换的性质.21.【答案】证明:(1)∵∠ABC =90°,EF⊥AC,∴∠ABC=∠AFE=90 °在△AEF 与△ACB 中,∴△AEF ≌△ACB(AAS)∴AF=AB,∴BE=CF ;(2)∵△ABC≌△AFE ,∴AB=AF,在 Rt△AGF 和 Rt△AGB 中,∴Rt△AFG≌Rt△ABG( HL )在 Rt△BEG 中,∠BGE=90°-∠E=50°,∴∠BGF=130 °,∵Rt△AGF≌Rt△AGB,∴∠AGB=∠AGF = ∠BGF=65 °.【解析】(1)首先证明△ABC ≌△AFE ,推出AB=AF ,即可解决问题.(2)在Rt△BEG 中,∠BGE=90° -∠E=50°,推出∠BGF=130°,由Rt△AGF≌Rt△AGB ,推出∠AGB= ∠AGF=∠BGF即可解决问题.本题考查全等三角形的判定和性质、直角三角形的性质等知识,解题的关键是熟练掌握全等三角形的判定和性质,属于中考常考题型.22【. 答案】证明:(1)过点D作DG∥BC交AC于点G,∴∠ADG=∠B,∠AGD=∠ACB,∠FDG =∠E,∵△ABC 是等边三角形,∴AB=AC,∠B=∠ACB=∠A=60 °,∴∠A=∠ADG=∠AGD =60 °,∴△ADG 是等边三角形,∴DG =AD ,∵AD =CE,∴DG =CE,在△DFG 与△EFC 中∴△DFG ≌△EFC ( AAS),∴DF =EF ;(2)∵△ADG 是等边三角形, AD =DG DH ⊥AC,∴AH =HG = AG,又∵△DFG ≌△EFC ,∴GF =FC = GC∴HF =HG +GF= AG+ GC= AC,∴【解析】(1)过点 D 作 DG∥BC 交 AC 于点 G,根据全等三角形的判定和性质解答即可;(2)根据等边三角形的性质和全等三角形的性质解答即可.此题考查全等三角形的判定和性质、等腰三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会利用参数解决问题,属于中考压轴题23.【答案】(1)证明:①∵∠ADE =∠C,∴∠CAD=180 °-∠C-∠ADC,∠EDB=180 °-∠ADE -∠ADC,∴∠CAD=∠EDB ;∵∠C=90 °,∴∠CFD =∠CDF =45 °,∴∠AFD =135 °=∠DBE ,∵AC=BC ,∴AC -CF=BC-CD,即: AF=BD ,由①知:∠CAD=∠BDE ,∴△AFD ≌△DBE ( ASA),∴DA =DE ;( 2)方法一:如图2,在 AC 上截取 AG=DB ,连接 GD (在 AC 上截取 CG=CD,连接GD ),∵AC=BC ,∴AC -AG=BC-BD 即: CG=CD ,∴∠CGD=∠CDG ==70 °,∵DA =DE ,∠CAD =∠EDB (已证), AG=DB ,∴△AGD≌△DBE ( SAS),∴∠AGD=∠DBE =110 °;方法二:如图3,延长 DB 到点 H 使 DH=AC,连接 EH ,∵∠CAD=∠BDE , AD=DE ,∴△ACD≌△DHE ( SAS),∴∠C=∠H =40 °, CD =EH ,∵AC=BC =DH ,∴CD =BH =EH ,∴∠HBE=∠HEB =70 °,∴∠DBE=110 °;(3)当∠DBE=90°+ ∠C 时,总有 DA=DE 成立;理由是:如图3,在 AC 上截取 CF =CD ,连接 DF ,则∠CDF =∠CFD ,设∠CDF =x,△CDF 中,∠C+∠CDF +∠CFD =180 °,∴∠C+x+x=180 °,x==90 °-,同理得△AFD ≌△DBE( SAS),∴∠AFD =∠DBE =∠C+∠CDF =∠C+x=∠C+90 °- ∠C,∴∠DBE=90 °+ ∠C.【解析】(1)① 根据三角形的内角和及平角的定义可得结论;②如图 1,作辅助线,构建等腰直角三角形,利用 ASA 证明△AFD ≌△DBE (ASA ),可得结论;(2)方法一:如图 2,同理作辅助线,证明△AGD ≌△DBE (SAS),得∠AGD= ∠DBE=110°;方法二:如图 2,延长 DB 到点 H 使 DH=AC ,连接 EH,证明△ACD ≌△DHE(SAS),得∠C=∠H=40°,CD=EH,再根据已知证明 CD=BH=EH ,可得结论;(3)同理作辅助线,证明△AFD ≌△DBE (SAS),根据三角形的外角和三角形内角和定理可得结论.本题是三角形的综合题,考查了全等三角形的判定,考查了全等三角形对应边、对应角相等的性质,本题中作辅助线证明 AFD ≌△DBE 是解题的关键.【答案】解:( 1)∵+(a-2)2=0,24.∴2a-b=0, a-2=0,解得, a=2, b=4 ,∴A( 0, 2), B( 4, 0),∴OA=2, OB=4 ,∴△ABO 的面积 = ×2×4=4;(2)作 AF平分∠BAC 交 BD 于 F 点,∵AB=AC,∠CAB =90 °,∴∠C=∠ABC=∠DAF =∠BAF=45 °,∵∠CAE+∠BAO=∠ABF+∠BAO=90 °,∴∠CAE=∠ABF ,在△ACE 和△BAF 中,,∴△ACE≌△BAF (ASA),∴CE=AF ,在△CED 和△AFD 中,,∴△CED≌△AFD ( SAS)∴∠CDE=∠ADB ;(3)过 C 点作 CM ⊥y 轴于 M 点,过 D 点作 DN ⊥y 轴于 N 点,则∠AMC =∠BOA=90°,∵∠CAM+∠BAO=∠ABO+∠BAO=90 °,∴∠CAM=∠ABO,在△ACM 和△BAO 中,,∴△ACM ≌△BAO( AAS),∴CM =AO=2,AM =BO=4,∵A( 0, 2), P( 0, -6),∴AP=8,∴PM =AP-AM =4,在△PCM 和△QPN 中,,△PCM ≌△QPN (AAS),∴NQ=PM =4,∴四边形 ONQB 为平行四边形,∴AP∥BQ.【解析】(1)根据绝对值和偶次方的非负性求出 a,b,根据三角形的面积公式计算;(2)作AF 平分∠BAC 交 BD 于 F 点,分别证明△ACE≌△BAF ,△CED≌△AFD ,根据全等三角形的性质证明;(3)过 C 点作 CM ⊥y 轴于 M 点,过 D 点作 DN ⊥y 轴于 N 点,证明△ACM ≌△BAO ,根据全等三角形的性质得到 CM=AO=2 ,AM=BO=4 ,证明四边形 ONQB 为平行四边形,得到答案.本题考查的是全等三角形的判定和性质,非负数的性质,掌握全等三角形的判定定理和性质定理是解题的关键.。
武汉市重点中学八年级上学期期中考试数学试卷(一)一、选择题1、一个多边形的内角和是外角和的2倍,则这个多边形是()A、四边形B、五边形C、六边形D、八边形2、张明的父母打算购买一种形状和大小都相同的正多边形瓷砖来铺地板,为了保证铺地板时既没缝隙,又不重叠,则所购瓷砖形状不能是()A、正三角形B、正方形C、正六边形D、正八边形3、如图,将Rt△ABC(其中∠B=34°,∠C=90°)绕A点按顺时针方向旋转到△AB1C1的位置,使得点C,A,B1在同一条直线上,那么旋转角最小等于()A、56°B、68°C、124°D、180°4、若三角形两边的长分别为7cm和2cm,第三边为奇数,则第三边的长为()A、3B、5C、7D、95、能使两个直角三角形全等的条件是()A、斜边相等B、两直角边对应相等C、两锐角对应相等D、一锐角对应相等6、点P(2,﹣3)关于x轴的对称点是()A、(﹣2,3)B、(2,3)C、(﹣2,3)D、(2,﹣3)7、已知:△ABC中,AB=AC=x,BC=6,则腰长x的取值范围是()A、0<x<3B、x>3C、3<x<6D、x>68、如图,已知BE,CF分别为△ABC的两条高,BE和CF相交于点H,若∠BAC=50°,则∠BHC为()A、160°B、150°C、140°D、130°9、如图,把一块直角三角板的直角顶点放在直尺的一边上,如果∠1=35°,那么∠2是()°.A、55B、35C、65D、2510、如图,已知△ABC,求作一点P,使P到∠A的两边的距离相等,且PA=PB,下列确定P点的方法正确的是()A、P是∠A与∠B两角平分线的交点B、P为∠A的角平分线与AB的垂直平分线的交点C、P为AD、AB两边上的高的交点E、P为AF、AB两边的垂直平分线的交点11、小亮在镜中看到身后墙上的时钟如下,你认为实际时间最接近8:00的是()A、B、C、D、12、如图,△ABC内有一点D,且DA=DB=DC,若∠DAB=20°,∠DAC=30°,则∠BDC的大小是()A、100°B、80°C、70°D、50°13、在等腰△ABC中,AB=AC=9,BC=6,DE是AC的垂直平分线,交AB、AC于点D、E,则△BDC的周长是()A、6B、9C、12D、1514、一根直尺EF压在三角板30°的角∠BAC上,与两边AC,AB交于M、N.那么∠CME+∠BNF是()A、150°B、180°C、135°D、不能确定15、如图,AD是△ABC中∠BAC的平分线,DE⊥AB于点E,DF⊥AC交AC于点F.S=7,△ABCDE=2,AB=4,则AC长是()A、4B、3C、6D、5二、解答题16、已知:如图,AB∥ED,点F、点C在AD上,AB=DE,AF=DC.求证:BC=EF.17、如图,已知DE∥BC,CD是∠ACB的平分线,∠B=70°,∠ACB=50°,求∠EDC 和∠BDC的度数.18、如图所示,AD,AE是三角形ABC的高和角平分线,∠B=36°,∠C=76°,求∠DAE的度数.19、如图,有一长方形纸片ABCD,AB=10,AD=6,将纸片折叠,使AD边落在AB 边上,折痕为AE,再将△AED以DE为折痕向右折叠,AE与BC交于点F,求△CEF的面积.20、如图,在△ABD和△ACD中,已知AB=AC,∠B=∠C,求证:AD是∠BAC的平分线.21、如图,在△ABC中,D为BC的中点,DE⊥BC交∠BAC的平分线AE于E,EF⊥AB 于F,EG⊥AC交AC延长线于G.求证:BF=CG.22、如图,已知锐角△ABC中,AB、AC边的中垂线交于点O(1)若∠A=α(0°<α<90°),求∠BOC;(2)试判断∠ABO+∠ACB是否为定值;若是,求出定值,若不是,请说明理由.23、某公司有2位股东,20名工人、从2006年至2008年,公司每年股东的总利润和每年工人的工资总额如图所示.(1)填写下表:长,那么到哪一年,股东的平均利润是工人的平均工资的8倍?24、在△ABC中,AC=BC,∠ACB=90°,点D为AC的中点.(1)如图1,E为线段DC上任意一点,将线段DE绕点D逆时针旋转90°得到线段DF,连接CF,过点F作FH⊥FC,交直线AB于点H.判断FH与FC的数量关系并加以证明;(2)如图2,若E为线段DC的延长线上任意一点,(1)中的其他条件不变,你在(1)中得出的结论是否发生改变,直接写出你的结论,不必证明.答案解析部分一、<b >选择题</b>1、【答案】C【考点】多边形内角与外角【解析】【解答】解:设所求正n边形边数为n,由题意得(n﹣2)•180°=360°×2解得n=6.则这个多边形是六边形.故选:C.【分析】此题可以利用多边形的外角和和内角和定理求解.2、【考点】平面镶嵌(密铺)【解析】【解答】解:A、正三角形的每个内角是60°,6个能密铺;B、正方形的每个内角是90°,4个能密铺;C、正六边形的每个内角是120°,能整除360°,3个能密铺;D、正八边形的每个内角为180°﹣360°÷8=135°,不能整除360°,不能密铺.故选D.【分析】平面图形镶嵌的条件:判断一种图形是否能够镶嵌,只要看一看拼在同一顶点处的几个角能否构成周角.若能构成360°,则说明能够进行平面镶嵌;反之则不能.3、【答案】C【考点】旋转的性质【解析】【解答】解:∵∠B=34°,∠C=90°∴∠BAC=56°=180°﹣56°=124°∴∠BAB1即旋转角最小等于124°.故选C.【分析】找到图中的对应点和对应角,根据旋转的性质作答.4、【答案】C【考点】三角形三边关系【解析】【解答】解:∵7+2=9,7﹣2=5,∴5<第三边<9,∵第三边为奇数,∴第三边长为7.故选C.【分析】根据三角形任意两边之和大于第三边,任意两边之差小于第三边求出第三边的范围,再根据第三边为奇数选择.5、【考点】直角三角形全等的判定【解析】【解答】解:A选项,无法证明两条直角边对应相等,因此A错误.C、D选项,在全等三角形的判定过程中,必须有边的参与,因此C、D选项错误.B选项的根据是全等三角形判定中的SAS判定.故选:B.【分析】要判断能使两个直角三角形全等的条件首先要看现在有的条件:一对直角对应相等,还需要两个条件,而AAA是不能判定三角形全等的,所以正确的答案只有选项B了.6、【答案】B【考点】关于x轴、y轴对称的点的坐标【解析】【解答】解:点P(2,﹣3)关于x轴的对称点坐标为:(2,3).故选:B.【分析】根据平面直角坐标系中对称点的规律解答.7、【答案】B【考点】三角形三边关系,等腰三角形的性质【解析】【解答】解:在△ABC中,AB=AC=x,BC=6.根据三角形三边关系得:AB+AC>BC,即x+x>6,解得x>3.故选:B.【分析】此题可根据三角形三边关系两边之和大于第三边得出.8、【答案】D【考点】三角形的外角性质【解析】【解答】解:∵BE为△ABC的高,∠BAC=50°,∴∠ABE=90°﹣50°=40°,∵CF为△ABC的高,∴∠BFC=90°,∴∠BHC=∠ABE+∠BFC=40°+90°=130°.故选D.【分析】先根据直角三角形两锐角互余求出∠ABE,再根据三角形外角性质即可求出∠BHC的度数.9、【答案】A【考点】平行线的性质【解析】【解答】解:如图,∵∠1=35°,∴∠3=90°﹣∠1=55°,∵直尺两边平行,∴∠2=∠3=55°(两直线平行,同位角相等).故选:A.【分析】先根据直角定义求出∠1的余角,再利用两直线平行,同位角相等即可求出∠2的度数.10、【答案】B【考点】角平分线的性质,线段垂直平分线的性质【解析】【解答】解:∵点P到∠A的两边的距离相等,∴点P在∠A的角平分线上;又∵PA=PB,∴点P在线段AB的垂直平分线上.即P为∠A的角平分线与AB的垂直平分线的交点.故选B.【分析】根据角平分线及线段垂直平分线的判定定理作答.11、【答案】D【考点】生活中的轴对称现象【解析】【解答】解:根据平面镜成像原理可知,镜中的像与原图象之间实际上只是进行了左右对换,由轴对称知识可知,只要将其进行左可翻折,即可得到原图象,实际时间为8点的时针关于过12时、6时的直线的对称点是4点,那么8点的时钟在镜子中看来应该是4点的样子,则应该在C和D选项中选择,D更接近8点.故选D.【分析】此题考查镜面对称,根据镜面对称的性质,在平面镜中的钟面上的时针、分针的位置和实物应关于过12时、6时的直线成轴对称.12、【答案】A【考点】三角形内角和定理,三角形的外角性质【解析】【解答】解:延长BD交AC于E.∵DA=DB=DC,∴∠ABE=∠DAB=20°,∠ECD=∠DAC=30°.又∵∠BAE=∠BAD+∠DAC=50°,∠BDC=∠DEC+∠ECD,∠DEC=∠ABE+∠BAE,∴∠BDC=∠ABE+∠BAE+∠ECD=20°+50°+30°=100°.故选A.【分析】如果延长BD交AC于E,由三角形的一个外角等于与它不相邻的两个内角的和,得∠BDC=∠DEC+∠ECD,∠DEC=∠ABE+∠BAE,所以∠BDC=∠ABE+∠BAE+∠ECD,又DA=DB=DC,根据等腰三角形等边对等角的性质得出∠ABE=∠DAB=20°,∠ECD=∠DAC=30°,进而得出结果.13、【答案】D【考点】线段垂直平分线的性质,等腰三角形的性质【解析】【解答】解:∵DE是AC的垂直平分线,∴AD=CD,∴△BDC的周长是:BD+CD+BC=BD+AD+BC=AB+BC,∵AB=AC=9,BC=6,∴△BDC的周长是:AB+BC=9+6=15.故选D.【分析】由DE是AC的垂直平分线,即可证得AD=CD,即可得△BDC的周长是AB 与BC的和,又由AB=AC=9,BC=6,即可求得答案.14、【答案】A【考点】角的计算【解析】【解答】解:根据图象,∠CME+∠BNF=∠AMN+∠ANM,∵∠A=30°,∴∠CME+∠BNF=180°﹣∠A=150°.故选A.【分析】根据∠CME与∠BNF是△AMN另外两个角,利用三角形的内角和定理即可求解.15、【答案】B【考点】三角形的面积,角平分线的性质【解析】【解答】解:∵AD是△ABC中∠BAC的平分线,DE⊥AB于点E,DF⊥AC 交AC于点F,∴DF=DE=2.又∵S△ABC =S△ABD+S△ACD, AB=4,∴7= ×4×2+ ×AC×2,∴AC=3.故选B.【分析】首先由角平分线的性质可知DF=DE=2,然后由S△ABC =S△ABD+S△ACD及三角形的面积公式得出结果.二、<b >解答题</b>16、【答案】证明:∵AB∥ED,∴∠A=∠D,又∵AF=DC,∴AC=DF.在△ABC与△DEF中,∴△ABC≌△DEF.∴BC=EF.【考点】全等三角形的判定与性质【解析】【分析】由已知AB∥ED,AF=DC可以得出∠A=∠D,AC=DF,又因为AB=DE,则我们可以运用SAS来判定△ABC≌△DEF,根据全等三角形的对应边相等即可得出BC=EF.17、【答案】解:∵CD是∠ACB的平分线,∠ACB=50°,∴∠BCD= ∠ACB=25°,∵DE∥BC,∴∠EDC=∠DCB=25°,∠BDE+∠B=180°,∵∠B=70°,∴∠BDE=110°,∴∠BDC=∠BDE﹣∠EDC=110°﹣25°=85°.∴∠EDC=25°,∠BDC=85°【考点】平行线的性质,三角形内角和定理【解析】【分析】由CD是∠ACB的平分线,∠ACB=50°,根据角平分线的性质,即可求得∠DCB的度数,又由DE∥BC,根据两直线平行,内错角相等,即可求得∠EDC的度数,根据两直线平行,同旁内角互补,即可求得∠BDE的度数,即可求得∠BDC的度数.18、【答案】解:∵∠B=36°,∠C=76°,∴∠BAC=180°﹣∠B﹣∠C=68°,∵AE是角平分线,∴∠EAC= ∠BAC=34°.∵AD是高,∠C=76°,∴∠DAC=90°﹣∠C=14°,∴∠DAE=∠EAC﹣∠DAC=34°﹣14°=20°【考点】三角形的角平分线、中线和高,三角形内角和定理【解析】【分析】由三角形内角和定理可求得∠BAC的度数,在Rt△ADC中,可求得∠DAC的度数,AE是角平分线,有∠EAC= ∠BAC,故∠DAE=∠EAC﹣∠DAC.19、【答案】解:如下图所示:由对称的性质可知:A′D′=A′D=AD=6,BD=10﹣6=4,∴AB=6﹣4=2.易证Rt△ADE∽Rt△ABF,∴∴BF= = =2∴S= AB•BF= ×2×2=2,△CEF即:△CEF的面积为2.【考点】翻折变换(折叠问题)【解析】【分析】由翻折变换(轴对称)的性质可知:AD=6,BD=10﹣6=4,AB=6﹣4=2,再证明Rt△ADE∽Rt△ABF,从而得出BF的长,由此可计算出△CEF的面积.20、【答案】证明:连接BC,∵AB=AC,∴∠ABC=∠ACB.∵∠ABD=∠ACD,∴∠DBC=∠DCB.∴BD=CD.在△ADB和△ADC中,,∴△ADB≌△ADC(SSS),∴∠BAD=∠CAD,即AD是∠BAC的平分线.【考点】角平分线的定义,全等三角形的判定与性质【解析】【分析】连接BC,由AB=AC得到∠ABC=∠ACB,已知∠ABD=∠ACD,从而得出∠DBC=∠DCB,即BD=CD,又因为AB=AC,AD=AD,利用SSS判定△ABD≌△ACD,全等三角形的对应角相等即∠BAD=∠CAD,所以AD是∠BAC的平分线.21、【答案】解:如图,连接BE、EC,∵ED⊥BC,D为BC中点,∴BE=EC,∵EF⊥AB EG⊥AG,且AE平分∠FAG,∴FE=EG,在Rt△BFE和Rt△CGE中,,∴Rt△BFE≌Rt△CGE(HL),∴BF=CG.【考点】全等三角形的判定与性质,角平分线的性质,线段垂直平分线的性质【解析】【分析】连接EB、EC,利用已知条件证明Rt△BEF≌Rt△CEG,即可得到BF=CG.22、【答案】(1)解:AB、AC边的中垂线交于点O,∴AO=BO=CO,∴∠OAB=∠OBA,∠OCA=∠OAC,∴∠AOB+∠AOC=(180°﹣∠OAB﹣∠OBA)+(180°﹣∠OAC﹣∠OCA),∴∠AOB+∠AOC=(180°﹣2∠OAB)+(180°﹣2∠OAC)=360°﹣2(∠OAB+∠OAC)=360°﹣2∠A=360°﹣2α,∴∠BOC=360°﹣(∠AOB+∠AOC)=2α(2)解:∠ABO+∠ACB为定值,∵BO=CO,∴∠OBC=∠OCB,∵∠OAB=∠OBA,∠OCA=∠OAC,∴∠OBC= (180°﹣2∠A)=90°﹣α,∵∠ABO+∠ACB+∠OBC+∠A=180°,∴∠ABO+∠ACB=180°﹣α﹣(90°﹣α)=90°【考点】线段垂直平分线的性质【解析】【分析】(1)根据线段垂直平分线的性质得到AO=BO=CO,根据等腰三角形的性质得到∠OAB=∠OBA,∠OCA=∠OAC,根据周角定义即可得到结论;(2)根据等腰三角形的性质得到∠OBC=∠OCB,于是得到∠OBC=90°﹣α,根据三角形的内角和即可得到结论.23、【答案】(1)解:工人的平均工资:2007年6250元,2008年7500元;股东的平均利润:2007年37500元,2008年50000元(2)解:设经过x年每位股东年平均利润是每位工人年平均工资的8倍.由图可知:每位工人年平均工资增长1250元,每位股东年平均利润增长12500元,所以:(5000+1250x)×8=25000+12500x,解得:x=6.2006+6=2012.答:到2012年每位股东年平均利润是每位工人年平均工资的8倍【考点】一元一次方程的应用【解析】【分析】(1)工人的平均工资=工人工资总额÷20,股东的平均利润=股东总利润÷2,结合图形分别计算,再填表即可;(2)由图可知:每位工人年平均工资增长1250元,每位股东年平均利润增长12500元,设经过x年每位股东年平均利润是每位工人年平均工资的8倍,列方程求解.24、【答案】(1)解:FH与FC的数量关系是:FH=FC.证明如下:延长DF交AB于点G,由题意,知∠EDF=∠ACB=90°,DE=DF,∴DG∥CB,∵点D为AC的中点,∴点G为AB的中点,且,∴DG为△ABC的中位线,∴ .∵AC=BC,∴DC=DG,∴DC﹣DE=DG﹣DF,即EC=FG.∵∠EDF=90°,FH⊥FC,∴∠1+∠CFD=90°,∠2+∠CFD=90°,∴∠1=∠2.∵△DEF与△ADG都是等腰直角三角形,∴∠DEF=∠DGA=45°,∴∠CEF=∠FGH=135°,∴△CEF≌△FGH,∴CF=FH(2)解:FH与FC仍然相等.理由:由题意可得出:DF=DE,∴∠DFE=∠DEF=45°,∵AC=BC,∴∠A=∠CBA=45°,∵DF∥BC,∴∠CBA=∠FGB=45°,∴∠FGH=∠CEF=45°,∵点D为AC的中点,DF∥BC,∴DG= BC,DC= AC,∴DG=DC,∴EC=GF,∵∠DFC=∠FCB,∴∠GFH=∠FCE,在△FCE和△HFG中,∴△FCE≌△HFG(ASA),∴HF=FC【考点】全等三角形的判定与性质,三角形中位线定理【解析】【分析】(1)延长DF交AB于点G,根据三角形中位线的判定得出点G 为AB的中点,根据中位线的性质及已知条件AC=BC,得出DC=DG,从而EC=FG,易证∠1=∠2=90°﹣∠DFC,∠CEF=∠FGH=135°,由AAS证出△CEF≌△FGH.∴CF=FH.(2)通过证明△CEF≌△FGH(ASA)得出.武汉市重点中学八年级上学期期中考试数学试卷(二)一、精心选择1、在下列各电视台的台标图案中,是轴对称图形的是()A、B、C、D、2、下列说法正确的是()A、三角形三条高的交点都在三角形内B、三角形的角平分线是射线C、三角形三边的垂直平分线不一定交于一点D、三角形三条中线的交点在三角形内3、已知点A(x,4)与点B(3,y)关于y轴对称,那么x+y的值是()A、﹣1B、﹣7C、7D、14、正多边形的每个内角都等于135°,则该多边形是()A、正八边形B、正九边形C、正十边形D、正十一边形5、在正方形网格中,∠AOB的位置如图所示,到∠AOB两边距离相等的点应是()A、M点B、N点C、P点D、Q点6、如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是()A、CB=CDB、∠BAC=∠DACC、∠BCA=∠DCAD、∠B=∠D=90°7、如图,在△ABC中,AD为∠BAC的平分线,DE⊥AB于E,DF⊥AC于F,△ABC 的面积是28cm2, AB=20cm,AC=8cm,则DE的长是()A、4cmB、3cmC、2cmD、1cm8、如图,在四边形ABCD中,AD∥BC,∠C=90°,BC=CD=8,过点B作EB⊥AB,交CD于点E.若DE=6,则AD的长为()A、6B、8C、9D、10二、细心填空9、如图,已知△ABC≌△ADE,若AB=7,AC=3,则BE的值为________.10、一个等腰三角形的边长分别是4cm和7cm,则它的周长是________11、如图,在△ABC中,AB=AC,AB的垂直平分线交AC于D,交AB于E,若△ABC 的周长为22,BC=6,则△BCD的周长为________.12、如图,把一张长方形纸片ABCD沿EF折叠后,点A、B分别落在A1、B2的位置上,A1E与BC交于点O,若∠EFO=60°,则∠AEA1=________.13、在△ABC中,∠B、∠C的平分线相交于点O,∠BOC=115°,则∠A的度数是________.14、已知直线l经过点(0,2),且与x轴平行,那么点(6,5)关于直线l 的对称点为________15、如图,在△ABC中,AD是它的角平分线,AB:AC=8:5,则CD:BD=________.16、如图,在直角平面坐标系中,AB=BC,∠ABC=90°,A(3,0),B(0,﹣1),以AB为直角边在AB边的上方作等腰直角△ABE,则点E的坐标是________.三、用心解答17、电信部门要修建一个电视信号发射塔.如图所示,按照要求,发射塔到两个城镇A、B的距离必须相等,到两条高速公路m和n的距离也必须相等.发射塔应修建在什么位置?在图上标出它的位置.18、已知AB=AD,BC=DC.求证:AC平分∠BAD.19、已知:在△ABC中,AD⊥BC,BE平分∠ABC交AD于F,∠ABE=23°.求∠AFE的度数.20、如图,三角形纸片中,AB=8cm,BC=6cm,AC=5cm.沿过点B的直线折叠这个三角形,使点C落在AB边上的点E处,折痕为BD,求△ADE的周长.21、如图,已知∠A=90゜,AB=BD,ED⊥BC于D,求证:DE+CE=AC.22、如图,在△ABC和△ADE中,AC=AB,AE=AD,∠CAB=∠EAD=90°(1)求证:CE=BD;(2)求证:CE⊥BD.四、灵活应用23、已知点P为∠EAF平分线上一点,PB⊥AE于B,PC⊥AF于C,点M,N分别是射线AE,AF上的点,且PM=PN.(1)如图1,当点M在线段AB上,点N在线段AC的延长线上时,求证:BM=CN;(2)在(1)的条件下,直接写出线段AM,AN与AC之间的数量关系________;(3)如图2,当点M在线段AB的延长线上,点N在线段AC上时,若AC:PC=2:1,且PC=4,求四边形ANPM的面积.24、如图,点B(0,b),点A(a,0)分别在y轴、x轴正半轴上,且满足+(b2﹣16)2=0.(1)求A、B两点的坐标,∠OAB的度数;(2)如图1,已知H(0,1),在第一象限内存在点G,HG交AB于E,使BE为△BHG=3,的中线,且S△BHE①求点E到BH的距离;②求点G的坐标;(3)如图2,C,D是y轴上两点,且BC=OD,连接AD,过点O作MN⊥AD于点N,交直线AB于点M,连接CM,求∠ADO+∠BCM的值.答案解析部分一、<b >精心选择</b>1、【答案】C【考点】轴对称图形【解析】【解答】解:只有C沿某条直线折叠后直线两旁的部分能够完全重合,是轴对称图形,故选C.【分析】关于某条直线对称的图形叫轴对称图形.2、【答案】D【考点】三角形的角平分线、中线和高【解析】【解答】解:A、锐角三角形的三条高都在三角形内部;直角三角形有两条高与直角边重合,另一条高在三角形内部;钝角三角形有两条高在三角形外部,一条高在三角形内部.说法错误;B、三角形的角平分线是线段,错误;C、三角形三边的垂直平分线一定交于一点,错误;D、三角形三条中线的交点在三角形内,正确;故选D【分析】根据三角形的角平分线、中线和高的定义及性质进行判断即可.3、【答案】D【考点】关于x轴、y轴对称的点的坐标【解析】【解答】解:∵点A(x,4)与点B(3,y)关于y轴对称,∴x=﹣3,y=4,所以,x+y=﹣3+4=1.故选D.【分析】根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”求出x、y的值,然后相加计算即可得解.4、【答案】A【考点】多边形内角与外角【解析】【解答】解:∵正多边形的每个内角都等于135°,∴多边形的外角为180°﹣135°=45°,∴多边形的边数为360°÷45°=8,故选A.【分析】首先根据多边形的内角与相邻的外角互补可得外角为180°﹣135°=45°,再利用外角和360°除以外角的度数可得边数.5、【答案】A【考点】角平分线的性质【解析】【解答】解:从图上可以看出点M在∠AOB的平分线上,其它三点不在∠AOB的平分线上.所以点M到∠AOB两边的距离相等.故选A.【分析】根据角平分线的性质“角的平分线上的点到角的两边的距离相等”,注意观察点M、N、P、Q中的哪一点在∠AOB的平分线上.6、【答案】C【考点】全等三角形的判定【解析】【解答】解:A、添加CB=CD,根据SSS,能判定△ABC≌△ADC,故A选项不符合题意;B、添加∠BAC=∠DAC,根据SAS,能判定△ABC≌△ADC,故B选项不符合题意;C、添加∠BCA=∠DCA时,不能判定△ABC≌△ADC,故C选项符合题意;D、添加∠B=∠D=90°,根据HL,能判定△ABC≌△ADC,故D选项不符合题意;故选:C.【分析】本题要判定△ABC≌△ADC,已知AB=AD,AC是公共边,具备了两组边对应相等,故添加CB=CD、∠BAC=∠DAC、∠B=∠D=90°后可分别根据SSS、SAS、HL能判定△ABC≌△ADC,而添加∠BCA=∠DCA后则不能.7、【答案】C【考点】角平分线的性质【解析】【解答】解:∵AD是∠BAC的平分线,DE⊥AB于点E,DF⊥AC于点F,∴DE=DF,∴ ×AB×DE+ AC×DF=S=28,即×20DE+ ×8DE=28,解得DE=2.△ABC故选C.【分析】根据角平分线的性质求出DE=DF,根据三角形的面积公式列式计算即可.8、【答案】D【考点】全等三角形的判定与性质【解析】【解答】解:如图,作BF⊥AD与点F,,∵BF⊥AD,∴∠AFB=BFD=90°,∵AD∥BC,∴∠FBC=∠AFB=90°,∵∠C=90°,∴∠C=∠AFB=∠BFD=∠FBC=90°.∴四边形BCDF是矩形.∵BC=CD,∴四边形BCDF是正方形,∴BC=BF=FD.∵EB⊥AB,∴∠ABE=90°,∴∠ABE=∠FBC,∴∠ABE﹣∠FBE=∠FBC﹣∠FBE,∴∠CBE=∠FBA.在△BAF和△BEC中,,∴△BAF≌△BEC,∴AF=EC.∵CD=BC=8,DE=6,∴DF=8,EC=2,∴AF=2,∴AD=8+2=10.故选:D.【分析】首先作BF⊥AD与点F,推得BF∥CD,判断出四边形BCDF是矩形;然后根据BC=CD=8,可得四边形BCDF是正方形,所以BF=BC;最后根据全等三角形的判定方法,证明△BCE≌△BAF,即可推得AF=CE,进而求出AD的长为多少即可.二、<b >细心填空</b>9、【答案】4【考点】全等三角形的性质【解析】【解答】解:∵△ABC≌△ADE,∴AE=AC,∵AB=7,AC=3,∴BE=AB﹣AE=AB﹣AC=7﹣3=4.故答案为:4.【分析】根据△ABC≌△ADE,得到AE=AC,由AB=7,AC=3,根据BE=AB﹣AE即可解答.10、【答案】15cm或18cm.【考点】三角形三边关系,等腰三角形的性质【解析】【解答】解:①当腰是4cm,底边是7cm时,能构成三角形,则其周长=4+4+7=15cm;②当底边是4cm,腰长是7cm时,能构成三角形,则其周长=4+7+7=18cm.故答案为:15cm或18cm.【分析】等腰三角形两边的长为4m和7m,具体哪条是底边,哪条是腰没有明确说明,因此要分两种情况讨论.11、【答案】14【考点】线段垂直平分线的性质,等腰三角形的性质【解析】【解答】解:∵DE是AB的垂直平分线,∴BD=AD,∴CD=AC﹣AD=AC﹣BD,∴△BDC的周长=BC+BD+AC﹣BD=BC+AC,∵BC=6,AC=AB=(22﹣6)÷2=8,∴△BDC的周长=CB+AC=6+8=14.故答案为:14.【分析】先根据线段垂直平分线的性质求出AD=BD,再通过等量代换求出CD=AC ﹣BD即可求解.12、【答案】120°.【考点】矩形的性质,翻折变换(折叠问题)【解析】【解答】解:∵四边形ABCD是矩形,∴AD∥BC,∴∠AEF=∠EFO=60°,EF=60°,由翻转变换的性质可知,∠AEF=∠A1=120°,∴∠AEA1故答案为:120°.【分析】根据平行线的性质得到∠AEF=∠EFO=60°,根据翻转变换的性质解答即可.13、【答案】50°【考点】角平分线的定义,三角形内角和定理【解析】【解答】解:∵∠BOC=115°,∴∠OBC+∠OCB=65°,∵∠ABC与∠ACB的平分线相交于O点,∴∠ABC=2∠OBC,∠ACB=2∠OCB,∴∠ABC+∠ACB=2(∠OBC+∠OCB)=130°,∴∠BAC=50°.故答案为:50°【分析】根据三角形内角和定理易得∠OBC+∠OCB=65°,利用角平分线定义可得∠ABC+∠ACB=2(∠OBC+∠OCB)=130°,进而利用三角形内角和定理可得∠A度数.14、【答案】(6,﹣1)【考点】平行线的性质,坐标与图形变化-对称【解析】【解答】解:∵直线l经过点(0,2),且与x轴平行,∴直线l解析式为y=2,∴点(6,5)关于直线l的对称点为(6,﹣1),故答案为(6,﹣1).【分析】先确定出直线l解析式,进而根据对称性即可确定出结论.15、【答案】5:8【考点】平行线分线段成比例【解析】【解答】解:由角平分线的性质可知,= = ,∴CD:BD=5:8,故答案为:5:8.【分析】根据角平分线的性质定理列出比例式,计算即可.16、【答案】(﹣1,2)或(2,3)【考点】坐标与图形性质,等腰直角三角形【解析】【解答】解:如图,作EH⊥y轴于H,CF⊥y轴于F,E′G⊥OA于G.在△AOB和△FBC中,,∴△OAB≌△FBC,∴CF=OB=1,BF=OA=3,当B为直角顶点时,同理可得EH=1,BH=2,∴E(﹣1,2),当A为直角顶点时,同理可得,AG=1,E′G=3,∴E′(2,3),综上所述,点E坐标(﹣1,2)或(2,3).故答案为(﹣1,2)或(2,3)【分析】如图,作EH⊥y轴于H,CF⊥y轴于F,E′G⊥OA于G.由△AOB≌△FBC≌△HBE≌△E′GA,可得CF=EH=AG=1,BH=BF=E′G=OA=3,由此即可解决问题.三、<b >用心解答</b>17、【答案】解:分别作出公路夹角的角平分线和线段AB的中垂线,他们的交点为P,则P点就是修建发射塔的位置.【考点】作图—基本作图【解析】【分析】由条件可知发射塔要再两条高速公路的夹角的角平分线和线段AB的中垂线的交点上,分别作出夹角的角平分线和线段AB的中垂线,找到其交点就是发射塔修建位置.18、【答案】证明:在△BAC和△DAC中,,∴△BAC≌△DAC(SAS),∴∠BAC=∠DAC,∴AC是∠BAD的平分线【考点】全等三角形的判定与性质【解析】【分析】根据全等三角形的判定定理SSS推出△BAC≌△DAC,根据全等三角形的性质可得∠BAC=∠DAC即可.19、【答案】解:∵AD⊥BC,∴∠ADB=90°,∵BE平分∠ABC,∠ABE=23°,∴∠FBD=∠ABE=23°,∴∠BFD=180°﹣∠ADB﹣∠FBD=67°,∴∠AFE=∠BFD=67°【考点】三角形内角和定理【解析】【分析】根据垂直求出∠ADB,根据角平分线定义求出∠FBD,根据三角形内角和定理求出∠BFD即可.20、【答案】解:∵BC沿BD折叠点C落在AB边上的点E处,∴DE=CD,BE=BC,∵AB=8cm,BC=6cm,∴AE=AB﹣BE=AB﹣BC=8﹣6=2cm,∴△ADE的周长=AD+DE+AE,=AD+CD+AE,=AC+AE,=5+2,=7cm.【考点】翻折变换(折叠问题)【解析】【分析】根据翻折变换的性质可得DE=CD,BE=BC,然后求出AE,再根据三角形的周长列式求解即可.21、【答案】证明:连BE,∵ED⊥BC,∴∠EDB=90°,在Rt△ABE和Rt△DBE中,∴△ABE≌△DBE (HL),∴DE=AE.∴DE+CE=AC.【考点】全等三角形的判定与性质【解析】【分析】连接BE,利用HL定理得出△ABE≌△DBE 即可得出答案.【答案】(1)证明:∵∠CAB=∠EAD=90°,∴∠CAE=∠BAD.在△CAE和△BAD中,,∴△CAE≌△BAD(SAS),∴CE=BD(2)证明:延长BD交CE于F,如图所示:∵△CAE≌△BAD,∴∠ACE=∠ABD,∵∠CAB=90°,∴∠ABC+∠ACB=90°,即∠ABD+∠DBC+∠ACB=90°,∴∠DBC+∠ACB+∠ACE=90°,即∠DBC+∠BCF=90°,∴∠BFC=90°,∴CE⊥BD.【考点】全等三角形的判定与性质【解析】【分析】(1)由已知条件证出∠CAE=∠BAD,由SAS证明△CAE≌△BAD,得出对应边相等即可;(2)延长BD交CE于F,由全等三角形的性质得出∠ACE=∠ABD,由角的互余关系得出∠ABC+∠ACB=90°,证出∠DBC+∠BCF=90°,得出∠BFC=90°即可.四、<b >灵活应用</b>【答案】(1)解:如图1,∵点P为∠EAF平分线上一点,PB⊥AE,PC⊥AF,∴PB=PC,∠PBM=∠PCN=90°,∵在Rt△PBM和Rt△PCN中,PBM=∠PCN=90°,,∴Rt△PBM≌Rt△PCN(HL),∴BM=CN(2)AM+AN=2AC(3)解:如图2,∵点P为∠EAF平分线上一点,PB⊥AE,PC⊥AF,∴PB=PC,∠PBM=∠PCN=90°,∵在Rt△PBM和Rt△PCN中,PBM=∠PCN=90°,,∴Rt△PBM≌Rt△PCN(HL),∴BM=CN,∴S△PBM =S△PCN∵AC:PC=2:1,PC=4,∴AC=8,∴由(2)可得,AB=AC=8,PB=PC=4,∴S四边形ANPM =S△APN+S△APB+S△PBM=S△APN +S△APB+S△PCN=S△APC +S△APB= AC•PC+AB•PB = ×8×4+×8×4=32【考点】三角形的面积,全等三角形的判定与性质,角平分线的性质【解析】【解答】解:(2)AM+AN=2AC .∵∠APB=90°﹣∠PAB,∠APC=90°﹣∠PAC,点P 为∠EAF 平分线上一点, ∴∠APC=∠APB,即AP 平分∠CPB,∵PB⊥AB,PC⊥AC,∴AB=AC,又∵BM=CN,∴AM+AN=(AB ﹣MB )+(CN+AC )=AB+AC=2AC ;故答案为:AM+AN=2AC .【分析】(1)根据PB=PC ,∠PBM=∠PCN=90°,利用HL 判定Rt△PBM≌Rt△PCN,即可得出BM=CN ;(2)先已知条件得出AP 平分∠CPB,再根据PB⊥AB,PC⊥AC,得到AB=AC ,最后根据BM=CN ,得出AM+AN=(AB ﹣MB )+(CN+AC )=AB+AC=2AC ;(3)由AC :PC=2:1,PC=4,即可求得AC 的长,又由S 四边形ANPM =S △APN +S △APB +S △PBM =S △APN +S △APB +S △PCN =S △APC +S △APB , 即可求得四边形ANPM 的面积.24、【答案】(1)解:∵ +(b 2﹣16)2=0,∴a﹣b=0,b 2﹣16=0,解得:b=4,a=4或b=﹣4,a=﹣4,∵A点在x轴正半轴,B点在y轴正半轴上,∴b=4,a=4,∴A(4,0),B(0,4),∴OA=OB=4,∴∠OAB=45°(2)解:①如图1,作EF⊥y轴于F,∵B(0,4),H(0,1),∴BH=OB﹣OH=4﹣1=3,∵OA=OB=4,∴△OAB为等腰直角三角形,∴∠OBA=∠OAB=45°,∴△BFE为等腰直角三角形,∴BF=EF=2,∴OF=OB﹣BF=4﹣1=3,∴E(2,3),∴E(2,3)为GH的中点,=3,∵S△BHE∴ BH×EF=3,即×3×EF=3,∴EF=2,故点E到BH的距离为2.②设G(m,n),则∵BE为△BHG的中线,∴ ,,解得m=4,n=5,∴G点坐标为(4,5)(3)解:如图2,过点B作BK⊥OC,交MN于点K,则∠KBO=∠DOA,∵MN⊥AD,∴∠DON+∠NOA=90°,∴∠3+∠NOA=90°,∵∠NOA+∠1=90°,∴∠3=∠1,在△KOB和△OAD中,,∴△KOB≌△OAD(ASA),∴KB=OD,∠2=∠7,∵BC=OD,∴KB=BC,∵OB=OA,∠BOA=90°,∴∠OBA=45°,∴∠9=∠8=45°,在△MKB和△MCB中,,∴△MKB≌△MCB(SAS),∴∠6=∠5,∵∠7+∠6=180°,∴∠2+∠5=180°,即∠ADO+∠BCM=180°.【考点】三角形的面积,全等三角形的判定与性质,等腰直角三角形【解析】【分析】(1)根据非负数的性质,得出关于a、b的方程组,求得a、b即可得到A、B两点的坐标,最后利用等腰三角形的性质得出∠OAB的度数;(2)作EF⊥y轴于F,构造等腰直角三角形BEF,进而求出E点坐标,利用△BHE的面积即可得到点E到BH的距离;设G(m,n),根据BE为△BHG的中线,求得点G坐标即可;(3)过点B作BK⊥OC,交MN于点K,然后证明△OBK≌△OAD、△MKB≌△MCB,从而可证明∠ADO+∠BCM=180°.武汉市重点中学八年级上学期期中考试数学试卷(三)一、细心选一选1、下列图形中,不是轴对称图形的是()A、B、C、D、2、△ABC中BC边上的高作法正确的是()A、B、C、D、3、已知三角形两边长分别为3和8,则该三角形第三边的长可能是()A、5B、10C、11D、124、下列判断中错误的是()A、有两角和其中一个角的对边对应相等的两个三角形全等B、有一边相等的两个等边三角形全等C、有两边和一角对应相等的两个三角形全等D、有两边和其中一边上的中线对应相等的两个三角形全等5、三角形中,若一个角等于其他两个角的差,则这个三角形是()A、钝角三角形B、直角三角形C、锐角三角形。
八年级(上)期中数学试卷一、精心选一选(每题3分,共15分)1.(﹣2)3的值为()A.﹣6 B.6 C.﹣8 D.82.单项式﹣4πr2的系数是()A.4 B.﹣4 C.4πD.﹣4π3.下列运算正确的是()A.a4•a5=a20B.x8÷x2=x4C.(a3)2=a9D.(3a2)2=9a44.下列运算中结果正确的是()A.3a+2b=5ab B.﹣4xy+2xy=﹣2xyC.3y2﹣2y2=1 D.3x2+2x=5x35.一根蜡烛长20cm,点燃后每小时燃烧5cm,燃烧时剩下的长度为y(cm)与燃烧时间x(小时)的函数关系用图象表示为下图中的()A.B.C.D.二、仔细填一填(每小题2分,共20分)6.两个单项式a5b2m与﹣a n b4是同类项,则m=,n=.7.2a+3(b﹣c)=,a3•a4÷a5=.8.﹣(2x2y3)2=;4x2﹣(﹣2xy)=.9.因式分解:a2﹣3a=.10.计算﹣6x(x﹣3y)=;(x﹣1)(x+1)﹣x2=.11.函数的自变量x的取值范围是.12.弹簧原长3cm,每加重1kg弹簧伸长0.5cm,写出弹簧长度L(m)与载重m (kg)的函数关系式为.当载重2kg时,弹簧长度为cm.13.如果正比例函数的图象经过点(1,2),那么这个正比例函数的解析式为.14.如图,直线y=5x+10与x轴、y轴交于点A,B,则△AOB的面积为.15.观察下列各式1×3=3=22﹣1,3×5=15=42﹣1,5×7=35=62﹣1,11×13=143=122﹣1…把你猜想到的规律用只含一个字母的等式表示出来.三、耐心算一算.16.计算下列各题(1)2(x﹣3x2+1)﹣3(2x2﹣2)(2)(﹣a2)3+(﹣a3)2﹣a2•a4(3)(x+3)2﹣(x+2)(x﹣1)(4)(﹣8x3y2+12x2y﹣4x2)÷(﹣2x)2(5)用简便方法计算:2008×2006﹣20072.17.分解因式(1)25m2﹣n2(2)ax2﹣2axy+ay2(3)x3﹣9x.18.先化简(2x﹣1)2﹣(3x+1)(3x﹣1)+5(x﹣1),再选取一个你喜欢的数代入求值.四、函数图象的认识.(1小题6分,2小题8分,共14分)19.“龟兔赛跑”是同学们熟悉的寓言故事,图中表示路程S(米)与时间t(分)之间的关系,那么可以知道:(1)赛跑中,免子共睡了分钟(2)乌龟在这次赛跑中的平均速度为米/分.(3)比先达到终点,你有何感想.20.如图所示的图象反映的过程是:小强星期天从家跑步去体育场,在那里锻炼了一会儿后又走到文具店去买笔,然后步行回家,其中x表示时间,y表示小强离家的距离,根据图象回答下列问题.(1)体育场离小强家有多远?小强从家到体育场用了多长时间?(2)体育场距文具店多远?(3)小强在文具店逗留了多长时间?(4)小强从文具店回家的平均速度是多少?五、(共10分)21.当m为何值时函数y=(m+2)是正比例函数.22.已知直线y=(3m﹣1)x+m﹣1,当m为何值时(1)与y轴相交于(0,3)(2)与x轴相交于(2,0)(3)图象经过一、三、四象限?六、解答题(共1小题,满分6分)23.一汽车的速度是每小时60千米,一次加满油可加40升,每小时耗油5升,t小时后行程S千米.(1)写出一次加满油后所行路程S与时间t的函数关系式.(2)求出自变量的取值范围.(3)画出这个函数的图象.七、(1小题4分,2小题7分,共11分)24.已知直线y=kx﹣6与直线y=﹣2x都经过点(m,﹣4),则点P(﹣2,4)是否在直线y=kx﹣6上?25.一次函数的图象经过点A(﹣6,4)B(3,0)(1)求这个函数的解析式.(2)画出这个函数的图象.(3)若该直线经过点(9,m),求m的值.(4)求△AOB的面积.八、阅读下面材料再填空.26.x2+(p+q)x+pq型式子的因式分解∵x2+(p+q)x+pq=x2+px+qx+pq=(x2+px)+(qx+pq)(加法结合律)=x(x+p)+q(x+p)=(x+p)(x+q)∴我们得到x2+(p+q)x+pq=(x+p)(x+q)①利用①式可以将某些二次项系数为1的二次三项式分解因式.例把x2+3x+2分解因式分析:x2+3x+2中的二次项系数为1,常数项2=1×2,一次项系数3=1+2,这是一个x2+(p+q)x+pq型式子.∴解:x2+3x+2=(x+1)(x+2)请仿照上面的方法将下列多项式分解因式:①x2+7x+10=;②x2﹣2y﹣8=.八年级(上)期中数学试卷参考答案与试题解析一、精心选一选(每题3分,共15分)1.(﹣2)3的值为()A.﹣6 B.6 C.﹣8 D.8【考点】有理数的乘方.【分析】根据有理数乘方的法则计算:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数;0的任何正整数次幂都是0.【解答】解:(﹣2)3=﹣8,故选C.2.单项式﹣4πr2的系数是()A.4 B.﹣4 C.4πD.﹣4π【考点】单项式.【分析】根据单项式系数的定义来选择,单项式中数字因数叫做单项式的系数.【解答】解:由单项式系数的定义,单项式﹣4πr2的系数是﹣4π.故选D.3.下列运算正确的是()A.a4•a5=a20B.x8÷x2=x4C.(a3)2=a9D.(3a2)2=9a4【考点】同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.【分析】直接利用同底数幂的乘除法运算法则以及结合积的乘方运算法则计算得出答案.【解答】解:A、a4•a5=a9,故此选项计算错误,不合题意;B、x8÷x2=x6,故此选项计算错误,不合题意;C、(a3)2=a6,故此选项计算错误,不合题意;D、(3a2)2=9a4,正确,符合题意.故选:D.4.下列运算中结果正确的是()A.3a+2b=5ab B.﹣4xy+2xy=﹣2xyC.3y2﹣2y2=1 D.3x2+2x=5x3【考点】合并同类项.【分析】直接利用合并同类项法则分别判断得出答案.【解答】解:A、3a+2b,无法合并,故此选项错误;B、﹣4xy+2xy=﹣2xy,正确;C 、3y 2﹣2y 2=y 2,故此选项错误;D 、3x 2+2x ,无法合并,故此选项错误;故选:B .5.一根蜡烛长20cm ,点燃后每小时燃烧5cm ,燃烧时剩下的长度为y (cm )与燃烧时间x (小时)的函数关系用图象表示为下图中的( )A .B .C .D .【考点】一次函数的应用;一次函数的图象.【分析】根据实际情况即可解答.【解答】解:蜡烛剩下的长度随时间增长而缩短,根据实际意义不可能是D ,更不可能是A 、C .故选B .二、仔细填一填(每小题2分,共20分)6.两个单项式a 5b 2m 与﹣a n b 4是同类项,则m= 2 ,n= 5 .【考点】同类项.【分析】根据同类项的定义直接可得到m、n的值.【解答】解:∵单项式a5b2m与﹣a n b4是同类项,∴2m=4,n=5.即m=2,n=5.故答案为:2;5.7.2a+3(b﹣c)=2a+3b﹣3c,a3•a4÷a5=a7.【考点】同底数幂的除法;同底数幂的乘法.【分析】直接利用同底数幂的乘除法运算法则以及结合去括号法则计算得出答案.【解答】解:2a+3(b﹣c)=2a+3b﹣3c,a3•a4÷a5=a12÷a5=a7.故答案为:2a+3b﹣3c,a7.8.﹣(2x2y3)2=﹣4x4y6;4x2﹣(﹣2xy)=4x2+2xy.【考点】幂的乘方与积的乘方.【分析】直接利用积的乘方运算法则求出答案.【解答】解:﹣(2x2y3)2=﹣4x4y6;4x2﹣(﹣2xy)=4x2+2xy.故答案为:﹣4x4y6;4x2+2xy.9.因式分解:a2﹣3a=a(a﹣3).【考点】因式分解﹣提公因式法.【分析】直接把公因式a提出来即可.【解答】解:a2﹣3a=a(a﹣3).故答案为:a(a﹣3).10.计算﹣6x(x﹣3y)=﹣6x2+18xy;(x﹣1)(x+1)﹣x2=﹣1.【考点】平方差公式;单项式乘多项式.【分析】根据单项式乘以多项式法则求出即可;根据平方差公式展开,再合并同类项即可.【解答】解:﹣6x(x﹣3y)=﹣6x2+18xy,(x﹣1)(x+1)﹣x2=x2﹣1﹣x2=﹣1,故答案为:﹣6x2+18xy,﹣1.11.函数的自变量x的取值范围是x≥2.【考点】函数自变量的取值范围.【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:根据题意得,x﹣2≥0,解得x≥2.故答案为:x≥2.12.弹簧原长3cm,每加重1kg弹簧伸长0.5cm,写出弹簧长度L(m)与载重m (kg)的函数关系式为L=3+0.5m.当载重2kg时,弹簧长度为4cm.【考点】函数关系式.【分析】根据题意列出函数关系式,然后将m=2代入函数关系式即可求出弹簧长度.【解答】解:由题意可知:L=3+0.5m当m=2时,L=4,故答案为:L=3+0.5m;413.如果正比例函数的图象经过点(1,2),那么这个正比例函数的解析式为y=2x.【考点】待定系数法求正比例函数解析式.【分析】运用待定系数法求解析式.【解答】解:设此直线的解析式是y=kx,把(1,2)代入得:k=2,即直线的解析式是:y=2x.14.如图,直线y=5x+10与x轴、y轴交于点A,B,则△AOB的面积为10.【考点】一次函数图象上点的坐标特征.【分析】根据直线y=x+3的解析式可求出A、B两点的坐标,从而求得OA、OB 的长,然后根据三角形面积公式即可求得△AOB的面积.【解答】解:∵直线y=5x+10交x轴于点A,交y轴于点B,∴令y=0,则x=﹣2;令x=0,则y=10;∴A(﹣2,0),B(0,10),∴OA=2,OB=10,∴△AOB的面积=×2×10=10.故答案为10.15.观察下列各式1×3=3=22﹣1,3×5=15=42﹣1,5×7=35=62﹣1,11×13=143=122﹣1…把你猜想到的规律用只含一个字母的等式表示出来(n﹣1)(n+1)=n2﹣1(n≥2,且是正整数).【考点】规律型:数字的变化类.【分析】根据给出的格式可得出:两个相邻的奇数相乘等于这两个奇数中间的偶数的平方减去1,根据此列出等式表示即可.【解答】解:∵1×3=3=22﹣1,3×5=15=42﹣1,5×7=35=62﹣1,11×13=143=122﹣1…,∴规律为:(n﹣1)(n+1)=n2﹣1(n≥2,且是正整数).故答案为:(n﹣1)(n+1)=n2﹣1(n≥2,且是正整数).三、耐心算一算.16.计算下列各题(1)2(x﹣3x2+1)﹣3(2x2﹣2)(2)(﹣a2)3+(﹣a3)2﹣a2•a4(3)(x+3)2﹣(x+2)(x﹣1)(4)(﹣8x3y2+12x2y﹣4x2)÷(﹣2x)2(5)用简便方法计算:2008×2006﹣20072.【考点】整式的混合运算.【分析】(1)原式去括号合并即可得到结果;(2)原式利用幂的乘方与积的乘方运算法则计算,合并即可得到结果;(3)原式利用完全平方公式,以及多项式乘以多项式法则计算,去括号合并即可得到结果;(4)原式利用积的乘方运算法则变形,再利用多项式除以单项式法则计算即可得到结果;(5)原式变形后,利用平方差公式计算即可得到结果.【解答】解:(1)原式=2x﹣6x2+2﹣6x2+6=﹣12x2+2x+8;(2)原式=﹣a6+a6﹣a6=﹣a6;(3)原式=x2+6x+9﹣x2﹣x+2=5x+11;(4)原式=(﹣8x3y2+12x2y﹣4x2)÷4x2=﹣2xy2+3y﹣1;(5)原式=×﹣20072=20072﹣1﹣20072=﹣1.17.分解因式(1)25m2﹣n2(2)ax2﹣2axy+ay2(3)x3﹣9x.【考点】提公因式法与公式法的综合运用.【分析】(1)原式利用平方差公式分解即可;(2)原式提取公因式,再利用完全平方公式分解即可;(3)原式提取公因式,再利用平方差公式分解即可.【解答】解:(1)原式=(5m+n)(5m﹣n);(2)原式=a(x2﹣2xy+y2)=a(x﹣y)2;(3)原式=x(x2﹣9)=x(x+3)(x﹣3).18.先化简(2x﹣1)2﹣(3x+1)(3x﹣1)+5(x﹣1),再选取一个你喜欢的数代入求值.【考点】整式的混合运算—化简求值.【分析】原式利用完全平方公式,平方差公式计算,去括号合并得到最简结果,把x=0代入计算即可求出值.【解答】解:原式=4x2﹣4x+1﹣9x2+1+5x﹣5=﹣5x2+x﹣3,当x=0时,原式=﹣3.四、函数图象的认识.(1小题6分,2小题8分,共14分)19.“龟兔赛跑”是同学们熟悉的寓言故事,图中表示路程S(米)与时间t(分)之间的关系,那么可以知道:(1)赛跑中,免子共睡了40分钟(2)乌龟在这次赛跑中的平均速度为10米/分.(3)乌龟比免子先达到终点,你有何感想做事不能骄傲.【考点】函数的图象.【分析】(1)时间在增多,路程没有变化时,说明兔子在睡觉,时间为50﹣10;(2)平均速度=总路程÷总时间;(3)根据图象即可得到结论.【解答】解:(1)50﹣10=40分钟;故答案为:40;(2)500÷50=10米/分钟.故答案为:10.(3)乌龟比免子先达到终点,你有何感想:做事不能骄傲.故答案为:乌龟,免子,做事不能骄傲.20.如图所示的图象反映的过程是:小强星期天从家跑步去体育场,在那里锻炼了一会儿后又走到文具店去买笔,然后步行回家,其中x表示时间,y表示小强离家的距离,根据图象回答下列问题.(1)体育场离小强家有多远?小强从家到体育场用了多长时间?(2)体育场距文具店多远?(3)小强在文具店逗留了多长时间?(4)小强从文具店回家的平均速度是多少?【考点】函数的图象.【分析】(1)根据观察函数图象的纵坐标,可得距离,观察函数图象的横坐标,可得时间;(2)根据观察函数图象的横坐标,可得体育场与文具店的距离;(3)观察函数图象的横坐标,可得在文具店停留的时间;【解答】解:(1)由纵坐标看出体育场离陈欢家2.5千米,由横坐标看出小刚在体育场锻炼了15分钟;(2)由纵坐标看出体育场离文具店3.5﹣2.5=1(千米);(3)由横坐标看出小刚在文具店停留55﹣35=20(分);(4)小强从文具店回家的平均速度是3.5÷=(千米/分).五、(共10分)21.当m为何值时函数y=(m+2)是正比例函数.【考点】正比例函数的定义.【分析】直接利用正比例函数的定义分析得出即可.【解答】解:根据题意,得:,由①,得:m=2或m=﹣2,由②,得:m≠﹣2,∴m=2,即当m=2时函数y=(m+2)是正比例函数.22.已知直线y=(3m﹣1)x+m﹣1,当m为何值时(1)与y轴相交于(0,3)(2)与x轴相交于(2,0)(3)图象经过一、三、四象限?【考点】一次函数图象与系数的关系.【分析】(1)把(0,3)代入直线解析式,求出m的值即可;(2)(2,0)代入直线解析式,求出m的值即可;(3)根据函数的图象的位置列出关于m的不等式,求出m的取值范围即可.【解答】解:(1)∵直线与y轴相交于点(0,3),∴m﹣1=3,解得m=4;(2)∵直线x轴相交于点(2,0),∴2(3m﹣1)+m﹣1=0,解得m=;(3)∵直线y=(3m﹣1)x+m﹣1图象经过一、三、四象限,∴,解得:<m<1.六、解答题(共1小题,满分6分)23.一汽车的速度是每小时60千米,一次加满油可加40升,每小时耗油5升,t小时后行程S千米.(1)写出一次加满油后所行路程S与时间t的函数关系式.(2)求出自变量的取值范围.(3)画出这个函数的图象.【考点】一次函数的应用.【分析】(1)根据题意可以得到一次加满油后所行路程S与时间t的函数关系式;(2)根据一次加满油可加40升,每小时耗油5升,可以得到t的取值范围;(3)根据(1)中的函数解析式和(2)中自变量的取值范围,可以画出相应的函数图象.【解答】解:(1)由题意可得,路程S与时间t的函数关系式为:S=60t;(2)∵一次加满油可加40升,每小时耗油5升,∴5t≤40,得t≤8,∴自变量的取值范围是:0≤t≤8;(3)当t=0时,S=0;当t=1时,S=60,故这个函数的图象如右图所示.七、(1小题4分,2小题7分,共11分)24.已知直线y=kx﹣6与直线y=﹣2x都经过点(m,﹣4),则点P(﹣2,4)是否在直线y=kx﹣6上?【考点】两条直线相交或平行问题.【分析】直接利用图象上点的坐标性质得出m的值,进而得出k的值,进而判断点P(﹣2,4)是否在直线y=kx﹣6上.【解答】解:∵直线y=kx﹣6与直线y=﹣2x都经过点(m,﹣4),∴﹣4=﹣2m,解得:m=2,故﹣4=2k﹣6,解得:k=1,故y=x﹣6,当x=﹣2时,y=﹣2﹣6=﹣8,故点P(﹣2,4)不在直线y=kx﹣6上.25.一次函数的图象经过点A(﹣6,4)B(3,0)(1)求这个函数的解析式.(2)画出这个函数的图象.(3)若该直线经过点(9,m),求m的值.(4)求△AOB的面积.【考点】待定系数法求一次函数解析式;一次函数的图象;一次函数图象上点的坐标特征.【分析】(1)利用待定系数法把点A(﹣6,4)B(3,0)代入y=kx+b,可得关于k、b的方程组,再解出方程组可得k、b的值,进而得到函数解析式;(2)根据题意作出图象即可;(3)把(9,m)代入y=2x﹣2,即可求得m的值;(4)根据三角形的面积公式即可得到结论.【解答】解:(1)设一次函数为:y=kx+b,∵一次函数的图象经过点A(﹣6,4)B(3,0),∴,解得:∴这个一次函数的表达式为y=﹣x+;(2)图象如图所示,(3)把(9,m)代入y=﹣x+,得m=﹣;=×3×4=6.(4)S△AOB八、阅读下面材料再填空.26.x2+(p+q)x+pq型式子的因式分解∵x2+(p+q)x+pq=x2+px+qx+pq=(x2+px)+(qx+pq)(加法结合律)=x(x+p)+q(x+p)=(x+p)(x+q)∴我们得到x2+(p+q)x+pq=(x+p)(x+q)①利用①式可以将某些二次项系数为1的二次三项式分解因式.例把x2+3x+2分解因式分析:x2+3x+2中的二次项系数为1,常数项2=1×2,一次项系数3=1+2,这是一个x2+(p+q)x+pq型式子.∴解:x2+3x+2=(x+1)(x+2)请仿照上面的方法将下列多项式分解因式:①x2+7x+10=(x+2)(x+5);②x2﹣2y﹣8=(y﹣4)(y+2).【考点】因式分解﹣十字相乘法等.【分析】根据x2+(p+q)x+pq=(x+p)(x+q)容易得出答案.【解答】解:①x2+7x+10=(x+2)(x+5);故答案为:(x+2)(x+5);②x2﹣2y﹣8=(y﹣4)(y+2);故答案为:(y﹣4)(y+2).2017年5月13日。
八年级上学期数学期中考试调研试题题号1-1213-1617-2021-2324-25总分分数3612272322120得分一、选择题(请将正确答案填在下边相应的表格中,每题3分,共36分):123456789101112一、选择题(共12小题,每题3分,共36分)1.以下银行标记中是轴对称图形的个数有()A.2个B.3个C.4个D.5个2.以下说法中正确的选项是()A.36的平方根是6B.16的平方根是±2EC.8的立方根是-2D.4的算术平方根是-23.a是一个无理数,且知足3<a<4,则a可能是()DB CAA.2B.21C.πD.38F 4.如图,△ACE≌△DBF,若AD=8,BC=2,则AB的长度等于()A.6B.4C.3D.25.已知点P1(a-1,5)和P2(2,b-1)对于x轴对称,则(a+b)2009的值为()A.0B.-1C.1D.(-3)20096、△ABC的两边的长分别为23,53,则第三边的长度不行能为()A.3 3B.43C.53D.637.以下四个条件,能够确立△ABC与△A1B1C1全等的是()A.BC=B1C1,AC=A1C1,∠A=∠A1B.AB=A1B1,∠C=∠C1=900.AC=A1C1,∠A=∠A1,∠B=∠B1;D.∠A=∠A1,∠B=∠B1,A∠C=∠C18.如图:△ABC中,D为BC上一点,△ACD的周长为12cm,E DE是线段AB的垂直均分线,AE=5cm,则△ABC的周长是()A.17cm B.22cm C.29cm D.32cmC D B9.如图,直径为1个单位长度的圆从原点沿数轴向右转动一周,圆上一点由原点抵达点A,以下说法正确的选项是()A.点A所表示的是π.B.数轴上只有一个无理数π.C.数轴上只有无理数没有有理数.D.数轴上的有理数比无理数要多一些.O123A410.以下图,△ABC中,D为BC上一点,且AB=AC=BD.A 则图中∠1与∠2的关系是()A.∠1=2∠2B.∠1+∠2=180°1C.∠1+3∠2=180°D.3∠1-∠2=180°B11.四边形ABCD中,AC和BD交于点E,若AC均分∠DAB,且AB=AE,AC=AD,有以下四个命题:①AC⊥BD;②BC=DE;③∠DBC=1∠DAB;④AB=BE=AE。
武汉市重点中学八年级上学期期中考试数学试卷(一)一、选择题1、一个多边形的内角和是外角和的2倍,则这个多边形是()A、四边形B、五边形C、六边形D、八边形2、张明的父母打算购买一种形状和大小都相同的正多边形瓷砖来铺地板,为了保证铺地板时既没缝隙,又不重叠,则所购瓷砖形状不能是()A、正三角形B、正方形C、正六边形D、正八边形3、如图,将Rt△ABC(其中∠B=34°,∠C=90°)绕A点按顺时针方向旋转到△AB1C1的位置,使得点C,A,B1在同一条直线上,那么旋转角最小等于()A、56°B、68°C、124°D、180°4、若三角形两边的长分别为7cm和2cm,第三边为奇数,则第三边的长为()A、3B、5C、7D、95、能使两个直角三角形全等的条件是()A、斜边相等B、两直角边对应相等C、两锐角对应相等D、一锐角对应相等6、点P(2,﹣3)关于x轴的对称点是()A、(﹣2,3)B、(2,3)C、(﹣2,3)D、(2,﹣3)7、已知:△ABC中,AB=AC=x,BC=6,则腰长x的取值范围是()A、0<x<3B、x>3C、3<x<6D、x>68、如图,已知BE,CF分别为△ABC的两条高,BE和CF相交于点H,若∠BAC=50°,则∠BHC为()A、160°B、150°C、140°D、130°9、如图,把一块直角三角板的直角顶点放在直尺的一边上,如果∠1=35°,那么∠2是()°.A、55B、35C、65D、2510、如图,已知△ABC,求作一点P,使P到∠A的两边的距离相等,且PA=PB,下列确定P点的方法正确的是()A、P是∠A与∠B两角平分线的交点B、P为∠A的角平分线与AB的垂直平分线的交点C、P为AD、AB两边上的高的交点E、P为AF、AB两边的垂直平分线的交点11、小亮在镜中看到身后墙上的时钟如下,你认为实际时间最接近8:00的是()A、B、C、D、12、如图,△ABC内有一点D,且DA=DB=DC,若∠DAB=20°,∠DAC=30°,则∠BDC的大小是()A、100°B、80°C、70°D、50°13、在等腰△ABC中,AB=AC=9,BC=6,DE是AC的垂直平分线,交AB、AC于点D、E,则△BDC的周长是()A、6B、9C、12D、1514、一根直尺EF压在三角板30°的角∠BAC上,与两边AC,AB交于M、N.那么∠CME+∠BNF是()A、150°B、180°C、135°D、不能确定15、如图,AD是△ABC中∠BAC的平分线,DE⊥AB于点E,DF⊥AC交AC于点F.S=7,△ABCDE=2,AB=4,则AC长是()A、4B、3C、6D、5二、解答题16、已知:如图,AB∥ED,点F、点C在AD上,AB=DE,AF=DC.求证:BC=EF.17、如图,已知DE∥BC,CD是∠ACB的平分线,∠B=70°,∠ACB=50°,求∠EDC 和∠BDC的度数.18、如图所示,AD,AE是三角形ABC的高和角平分线,∠B=36°,∠C=76°,求∠DAE的度数.19、如图,有一长方形纸片ABCD,AB=10,AD=6,将纸片折叠,使AD边落在AB 边上,折痕为AE,再将△AED以DE为折痕向右折叠,AE与BC交于点F,求△CEF的面积.20、如图,在△ABD和△ACD中,已知AB=AC,∠B=∠C,求证:AD是∠BAC的平分线.21、如图,在△ABC中,D为BC的中点,DE⊥BC交∠BAC的平分线AE于E,EF⊥AB 于F,EG⊥AC交AC延长线于G.求证:BF=CG.22、如图,已知锐角△ABC中,AB、AC边的中垂线交于点O(1)若∠A=α(0°<α<90°),求∠BOC;(2)试判断∠ABO+∠ACB是否为定值;若是,求出定值,若不是,请说明理由.23、某公司有2位股东,20名工人、从2006年至2008年,公司每年股东的总利润和每年工人的工资总额如图所示.(1)填写下表:长,那么到哪一年,股东的平均利润是工人的平均工资的8倍?24、在△ABC中,AC=BC,∠ACB=90°,点D为AC的中点.(1)如图1,E为线段DC上任意一点,将线段DE绕点D逆时针旋转90°得到线段DF,连接CF,过点F作FH⊥FC,交直线AB于点H.判断FH与FC的数量关系并加以证明;(2)如图2,若E为线段DC的延长线上任意一点,(1)中的其他条件不变,你在(1)中得出的结论是否发生改变,直接写出你的结论,不必证明.答案解析部分一、<b >选择题</b>1、【答案】C【考点】多边形内角与外角【解析】【解答】解:设所求正n边形边数为n,由题意得(n﹣2)•180°=360°×2解得n=6.则这个多边形是六边形.故选:C.【分析】此题可以利用多边形的外角和和内角和定理求解.2、【考点】平面镶嵌(密铺)【解析】【解答】解:A、正三角形的每个内角是60°,6个能密铺;B、正方形的每个内角是90°,4个能密铺;C、正六边形的每个内角是120°,能整除360°,3个能密铺;D、正八边形的每个内角为180°﹣360°÷8=135°,不能整除360°,不能密铺.故选D.【分析】平面图形镶嵌的条件:判断一种图形是否能够镶嵌,只要看一看拼在同一顶点处的几个角能否构成周角.若能构成360°,则说明能够进行平面镶嵌;反之则不能.3、【答案】C【考点】旋转的性质【解析】【解答】解:∵∠B=34°,∠C=90°∴∠BAC=56°=180°﹣56°=124°∴∠BAB1即旋转角最小等于124°.故选C.【分析】找到图中的对应点和对应角,根据旋转的性质作答.4、【答案】C【考点】三角形三边关系【解析】【解答】解:∵7+2=9,7﹣2=5,∴5<第三边<9,∵第三边为奇数,∴第三边长为7.故选C.【分析】根据三角形任意两边之和大于第三边,任意两边之差小于第三边求出第三边的范围,再根据第三边为奇数选择.5、【考点】直角三角形全等的判定【解析】【解答】解:A选项,无法证明两条直角边对应相等,因此A错误.C、D选项,在全等三角形的判定过程中,必须有边的参与,因此C、D选项错误.B选项的根据是全等三角形判定中的SAS判定.故选:B.【分析】要判断能使两个直角三角形全等的条件首先要看现在有的条件:一对直角对应相等,还需要两个条件,而AAA是不能判定三角形全等的,所以正确的答案只有选项B了.6、【答案】B【考点】关于x轴、y轴对称的点的坐标【解析】【解答】解:点P(2,﹣3)关于x轴的对称点坐标为:(2,3).故选:B.【分析】根据平面直角坐标系中对称点的规律解答.7、【答案】B【考点】三角形三边关系,等腰三角形的性质【解析】【解答】解:在△ABC中,AB=AC=x,BC=6.根据三角形三边关系得:AB+AC>BC,即x+x>6,解得x>3.故选:B.【分析】此题可根据三角形三边关系两边之和大于第三边得出.8、【答案】D【考点】三角形的外角性质【解析】【解答】解:∵BE为△ABC的高,∠BAC=50°,∴∠ABE=90°﹣50°=40°,∵CF为△ABC的高,∴∠BFC=90°,∴∠BHC=∠ABE+∠BFC=40°+90°=130°.故选D.【分析】先根据直角三角形两锐角互余求出∠ABE,再根据三角形外角性质即可求出∠BHC的度数.9、【答案】A【考点】平行线的性质【解析】【解答】解:如图,∵∠1=35°,∴∠3=90°﹣∠1=55°,∵直尺两边平行,∴∠2=∠3=55°(两直线平行,同位角相等).故选:A.【分析】先根据直角定义求出∠1的余角,再利用两直线平行,同位角相等即可求出∠2的度数.10、【答案】B【考点】角平分线的性质,线段垂直平分线的性质【解析】【解答】解:∵点P到∠A的两边的距离相等,∴点P在∠A的角平分线上;又∵PA=PB,∴点P在线段AB的垂直平分线上.即P为∠A的角平分线与AB的垂直平分线的交点.故选B.【分析】根据角平分线及线段垂直平分线的判定定理作答.11、【答案】D【考点】生活中的轴对称现象【解析】【解答】解:根据平面镜成像原理可知,镜中的像与原图象之间实际上只是进行了左右对换,由轴对称知识可知,只要将其进行左可翻折,即可得到原图象,实际时间为8点的时针关于过12时、6时的直线的对称点是4点,那么8点的时钟在镜子中看来应该是4点的样子,则应该在C和D选项中选择,D更接近8点.故选D.【分析】此题考查镜面对称,根据镜面对称的性质,在平面镜中的钟面上的时针、分针的位置和实物应关于过12时、6时的直线成轴对称.12、【答案】A【考点】三角形内角和定理,三角形的外角性质【解析】【解答】解:延长BD交AC于E.∵DA=DB=DC,∴∠ABE=∠DAB=20°,∠ECD=∠DAC=30°.又∵∠BAE=∠BAD+∠DAC=50°,∠BDC=∠DEC+∠ECD,∠DEC=∠ABE+∠BAE,∴∠BDC=∠ABE+∠BAE+∠ECD=20°+50°+30°=100°.故选A.【分析】如果延长BD交AC于E,由三角形的一个外角等于与它不相邻的两个内角的和,得∠BDC=∠DEC+∠ECD,∠DEC=∠ABE+∠BAE,所以∠BDC=∠ABE+∠BAE+∠ECD,又DA=DB=DC,根据等腰三角形等边对等角的性质得出∠ABE=∠DAB=20°,∠ECD=∠DAC=30°,进而得出结果.13、【答案】D【考点】线段垂直平分线的性质,等腰三角形的性质【解析】【解答】解:∵DE是AC的垂直平分线,∴AD=CD,∴△BDC的周长是:BD+CD+BC=BD+AD+BC=AB+BC,∵AB=AC=9,BC=6,∴△BDC的周长是:AB+BC=9+6=15.故选D.【分析】由DE是AC的垂直平分线,即可证得AD=CD,即可得△BDC的周长是AB 与BC的和,又由AB=AC=9,BC=6,即可求得答案.14、【答案】A【考点】角的计算【解析】【解答】解:根据图象,∠CME+∠BNF=∠AMN+∠ANM,∵∠A=30°,∴∠CME+∠BNF=180°﹣∠A=150°.故选A.【分析】根据∠CME与∠BNF是△AMN另外两个角,利用三角形的内角和定理即可求解.15、【答案】B【考点】三角形的面积,角平分线的性质【解析】【解答】解:∵AD是△ABC中∠BAC的平分线,DE⊥AB于点E,DF⊥AC 交AC于点F,∴DF=DE=2.又∵S△ABC =S△ABD+S△ACD, AB=4,∴7= ×4×2+ ×AC×2,∴AC=3.故选B.【分析】首先由角平分线的性质可知DF=DE=2,然后由S△ABC =S△ABD+S△ACD及三角形的面积公式得出结果.二、<b >解答题</b>16、【答案】证明:∵AB∥ED,∴∠A=∠D,又∵AF=DC,∴AC=DF.在△ABC与△DEF中,∴△ABC≌△DEF.∴BC=EF.【考点】全等三角形的判定与性质【解析】【分析】由已知AB∥ED,AF=DC可以得出∠A=∠D,AC=DF,又因为AB=DE,则我们可以运用SAS来判定△ABC≌△DEF,根据全等三角形的对应边相等即可得出BC=EF.17、【答案】解:∵CD是∠ACB的平分线,∠ACB=50°,∴∠BCD= ∠ACB=25°,∵DE∥BC,∴∠EDC=∠DCB=25°,∠BDE+∠B=180°,∵∠B=70°,∴∠BDE=110°,∴∠BDC=∠BDE﹣∠EDC=110°﹣25°=85°.∴∠EDC=25°,∠BDC=85°【考点】平行线的性质,三角形内角和定理【解析】【分析】由CD是∠ACB的平分线,∠ACB=50°,根据角平分线的性质,即可求得∠DCB的度数,又由DE∥BC,根据两直线平行,内错角相等,即可求得∠EDC的度数,根据两直线平行,同旁内角互补,即可求得∠BDE的度数,即可求得∠BDC的度数.18、【答案】解:∵∠B=36°,∠C=76°,∴∠BAC=180°﹣∠B﹣∠C=68°,∵AE是角平分线,∴∠EAC= ∠BAC=34°.∵AD是高,∠C=76°,∴∠DAC=90°﹣∠C=14°,∴∠DAE=∠EAC﹣∠DAC=34°﹣14°=20°【考点】三角形的角平分线、中线和高,三角形内角和定理【解析】【分析】由三角形内角和定理可求得∠BAC的度数,在Rt△ADC中,可求得∠DAC的度数,AE是角平分线,有∠EAC= ∠BAC,故∠DAE=∠EAC﹣∠DAC.19、【答案】解:如下图所示:由对称的性质可知:A′D′=A′D=AD=6,BD=10﹣6=4,∴AB=6﹣4=2.易证Rt△ADE∽Rt△ABF,∴∴BF= = =2∴S= AB•BF= ×2×2=2,△CEF即:△CEF的面积为2.【考点】翻折变换(折叠问题)【解析】【分析】由翻折变换(轴对称)的性质可知:AD=6,BD=10﹣6=4,AB=6﹣4=2,再证明Rt△ADE∽Rt△ABF,从而得出BF的长,由此可计算出△CEF的面积.20、【答案】证明:连接BC,∵AB=AC,∴∠ABC=∠ACB.∵∠ABD=∠ACD,∴∠DBC=∠DCB.∴BD=CD.在△ADB和△ADC中,,∴△ADB≌△ADC(SSS),∴∠BAD=∠CAD,即AD是∠BAC的平分线.【考点】角平分线的定义,全等三角形的判定与性质【解析】【分析】连接BC,由AB=AC得到∠ABC=∠ACB,已知∠ABD=∠ACD,从而得出∠DBC=∠DCB,即BD=CD,又因为AB=AC,AD=AD,利用SSS判定△ABD≌△ACD,全等三角形的对应角相等即∠BAD=∠CAD,所以AD是∠BAC的平分线.21、【答案】解:如图,连接BE、EC,∵ED⊥BC,D为BC中点,∴BE=EC,∵EF⊥AB EG⊥AG,且AE平分∠FAG,∴FE=EG,在Rt△BFE和Rt△CGE中,,∴Rt△BFE≌Rt△CGE(HL),∴BF=CG.【考点】全等三角形的判定与性质,角平分线的性质,线段垂直平分线的性质【解析】【分析】连接EB、EC,利用已知条件证明Rt△BEF≌Rt△CEG,即可得到BF=CG.22、【答案】(1)解:AB、AC边的中垂线交于点O,∴AO=BO=CO,∴∠OAB=∠OBA,∠OCA=∠OAC,∴∠AOB+∠AOC=(180°﹣∠OAB﹣∠OBA)+(180°﹣∠OAC﹣∠OCA),∴∠AOB+∠AOC=(180°﹣2∠OAB)+(180°﹣2∠OAC)=360°﹣2(∠OAB+∠OAC)=360°﹣2∠A=360°﹣2α,∴∠BOC=360°﹣(∠AOB+∠AOC)=2α(2)解:∠ABO+∠ACB为定值,∵BO=CO,∴∠OBC=∠OCB,∵∠OAB=∠OBA,∠OCA=∠OAC,∴∠OBC= (180°﹣2∠A)=90°﹣α,∵∠ABO+∠ACB+∠OBC+∠A=180°,∴∠ABO+∠ACB=180°﹣α﹣(90°﹣α)=90°【考点】线段垂直平分线的性质【解析】【分析】(1)根据线段垂直平分线的性质得到AO=BO=CO,根据等腰三角形的性质得到∠OAB=∠OBA,∠OCA=∠OAC,根据周角定义即可得到结论;(2)根据等腰三角形的性质得到∠OBC=∠OCB,于是得到∠OBC=90°﹣α,根据三角形的内角和即可得到结论.23、【答案】(1)解:工人的平均工资:2007年6250元,2008年7500元;股东的平均利润:2007年37500元,2008年50000元(2)解:设经过x年每位股东年平均利润是每位工人年平均工资的8倍.由图可知:每位工人年平均工资增长1250元,每位股东年平均利润增长12500元,所以:(5000+1250x)×8=25000+12500x,解得:x=6.2006+6=2012.答:到2012年每位股东年平均利润是每位工人年平均工资的8倍【考点】一元一次方程的应用【解析】【分析】(1)工人的平均工资=工人工资总额÷20,股东的平均利润=股东总利润÷2,结合图形分别计算,再填表即可;(2)由图可知:每位工人年平均工资增长1250元,每位股东年平均利润增长12500元,设经过x年每位股东年平均利润是每位工人年平均工资的8倍,列方程求解.24、【答案】(1)解:FH与FC的数量关系是:FH=FC.证明如下:延长DF交AB于点G,由题意,知∠EDF=∠ACB=90°,DE=DF,∴DG∥CB,∵点D为AC的中点,∴点G为AB的中点,且,∴DG为△ABC的中位线,∴ .∵AC=BC,∴DC=DG,∴DC﹣DE=DG﹣DF,即EC=FG.∵∠EDF=90°,FH⊥FC,∴∠1+∠CFD=90°,∠2+∠CFD=90°,∴∠1=∠2.∵△DEF与△ADG都是等腰直角三角形,∴∠DEF=∠DGA=45°,∴∠CEF=∠FGH=135°,∴△CEF≌△FGH,∴CF=FH(2)解:FH与FC仍然相等.理由:由题意可得出:DF=DE,∴∠DFE=∠DEF=45°,∵AC=BC,∴∠A=∠CBA=45°,∵DF∥BC,∴∠CBA=∠FGB=45°,∴∠FGH=∠CEF=45°,∵点D为AC的中点,DF∥BC,∴DG= BC,DC= AC,∴DG=DC,∴EC=GF,∵∠DFC=∠FCB,∴∠GFH=∠FCE,在△FCE和△HFG中,∴△FCE≌△HFG(ASA),∴HF=FC【考点】全等三角形的判定与性质,三角形中位线定理【解析】【分析】(1)延长DF交AB于点G,根据三角形中位线的判定得出点G 为AB的中点,根据中位线的性质及已知条件AC=BC,得出DC=DG,从而EC=FG,易证∠1=∠2=90°﹣∠DFC,∠CEF=∠FGH=135°,由AAS证出△CEF≌△FGH.∴CF=FH.(2)通过证明△CEF≌△FGH(ASA)得出.武汉市重点中学八年级上学期期中考试数学试卷(二)一、精心选择1、在下列各电视台的台标图案中,是轴对称图形的是()A、B、C、D、2、下列说法正确的是()A、三角形三条高的交点都在三角形内B、三角形的角平分线是射线C、三角形三边的垂直平分线不一定交于一点D、三角形三条中线的交点在三角形内3、已知点A(x,4)与点B(3,y)关于y轴对称,那么x+y的值是()A、﹣1B、﹣7C、7D、14、正多边形的每个内角都等于135°,则该多边形是()A、正八边形B、正九边形C、正十边形D、正十一边形5、在正方形网格中,∠AOB的位置如图所示,到∠AOB两边距离相等的点应是()A、M点B、N点C、P点D、Q点6、如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是()A、CB=CDB、∠BAC=∠DACC、∠BCA=∠DCAD、∠B=∠D=90°7、如图,在△ABC中,AD为∠BAC的平分线,DE⊥AB于E,DF⊥AC于F,△ABC 的面积是28cm2, AB=20cm,AC=8cm,则DE的长是()A、4cmB、3cmC、2cmD、1cm8、如图,在四边形ABCD中,AD∥BC,∠C=90°,BC=CD=8,过点B作EB⊥AB,交CD于点E.若DE=6,则AD的长为()A、6B、8C、9D、10二、细心填空9、如图,已知△ABC≌△ADE,若AB=7,AC=3,则BE的值为________.10、一个等腰三角形的边长分别是4cm和7cm,则它的周长是________11、如图,在△ABC中,AB=AC,AB的垂直平分线交AC于D,交AB于E,若△ABC 的周长为22,BC=6,则△BCD的周长为________.12、如图,把一张长方形纸片ABCD沿EF折叠后,点A、B分别落在A1、B2的位置上,A1E与BC交于点O,若∠EFO=60°,则∠AEA1=________.13、在△ABC中,∠B、∠C的平分线相交于点O,∠BOC=115°,则∠A的度数是________.14、已知直线l经过点(0,2),且与x轴平行,那么点(6,5)关于直线l 的对称点为________15、如图,在△ABC中,AD是它的角平分线,AB:AC=8:5,则CD:BD=________.16、如图,在直角平面坐标系中,AB=BC,∠ABC=90°,A(3,0),B(0,﹣1),以AB为直角边在AB边的上方作等腰直角△ABE,则点E的坐标是________.三、用心解答17、电信部门要修建一个电视信号发射塔.如图所示,按照要求,发射塔到两个城镇A、B的距离必须相等,到两条高速公路m和n的距离也必须相等.发射塔应修建在什么位置?在图上标出它的位置.18、已知AB=AD,BC=DC.求证:AC平分∠BAD.19、已知:在△ABC中,AD⊥BC,BE平分∠ABC交AD于F,∠ABE=23°.求∠AFE的度数.20、如图,三角形纸片中,AB=8cm,BC=6cm,AC=5cm.沿过点B的直线折叠这个三角形,使点C落在AB边上的点E处,折痕为BD,求△ADE的周长.21、如图,已知∠A=90゜,AB=BD,ED⊥BC于D,求证:DE+CE=AC.22、如图,在△ABC和△ADE中,AC=AB,AE=AD,∠CAB=∠EAD=90°(1)求证:CE=BD;(2)求证:CE⊥BD.四、灵活应用23、已知点P为∠EAF平分线上一点,PB⊥AE于B,PC⊥AF于C,点M,N分别是射线AE,AF上的点,且PM=PN.(1)如图1,当点M在线段AB上,点N在线段AC的延长线上时,求证:BM=CN;(2)在(1)的条件下,直接写出线段AM,AN与AC之间的数量关系________;(3)如图2,当点M在线段AB的延长线上,点N在线段AC上时,若AC:PC=2:1,且PC=4,求四边形ANPM的面积.24、如图,点B(0,b),点A(a,0)分别在y轴、x轴正半轴上,且满足+(b2﹣16)2=0.(1)求A、B两点的坐标,∠OAB的度数;(2)如图1,已知H(0,1),在第一象限内存在点G,HG交AB于E,使BE为△BHG=3,的中线,且S△BHE①求点E到BH的距离;②求点G的坐标;(3)如图2,C,D是y轴上两点,且BC=OD,连接AD,过点O作MN⊥AD于点N,交直线AB于点M,连接CM,求∠ADO+∠BCM的值.答案解析部分一、<b >精心选择</b>1、【答案】C【考点】轴对称图形【解析】【解答】解:只有C沿某条直线折叠后直线两旁的部分能够完全重合,是轴对称图形,故选C.【分析】关于某条直线对称的图形叫轴对称图形.2、【答案】D【考点】三角形的角平分线、中线和高【解析】【解答】解:A、锐角三角形的三条高都在三角形内部;直角三角形有两条高与直角边重合,另一条高在三角形内部;钝角三角形有两条高在三角形外部,一条高在三角形内部.说法错误;B、三角形的角平分线是线段,错误;C、三角形三边的垂直平分线一定交于一点,错误;D、三角形三条中线的交点在三角形内,正确;故选D【分析】根据三角形的角平分线、中线和高的定义及性质进行判断即可.3、【答案】D【考点】关于x轴、y轴对称的点的坐标【解析】【解答】解:∵点A(x,4)与点B(3,y)关于y轴对称,∴x=﹣3,y=4,所以,x+y=﹣3+4=1.故选D.【分析】根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”求出x、y的值,然后相加计算即可得解.4、【答案】A【考点】多边形内角与外角【解析】【解答】解:∵正多边形的每个内角都等于135°,∴多边形的外角为180°﹣135°=45°,∴多边形的边数为360°÷45°=8,故选A.【分析】首先根据多边形的内角与相邻的外角互补可得外角为180°﹣135°=45°,再利用外角和360°除以外角的度数可得边数.5、【答案】A【考点】角平分线的性质【解析】【解答】解:从图上可以看出点M在∠AOB的平分线上,其它三点不在∠AOB的平分线上.所以点M到∠AOB两边的距离相等.故选A.【分析】根据角平分线的性质“角的平分线上的点到角的两边的距离相等”,注意观察点M、N、P、Q中的哪一点在∠AOB的平分线上.6、【答案】C【考点】全等三角形的判定【解析】【解答】解:A、添加CB=CD,根据SSS,能判定△ABC≌△ADC,故A选项不符合题意;B、添加∠BAC=∠DAC,根据SAS,能判定△ABC≌△ADC,故B选项不符合题意;C、添加∠BCA=∠DCA时,不能判定△ABC≌△ADC,故C选项符合题意;D、添加∠B=∠D=90°,根据HL,能判定△ABC≌△ADC,故D选项不符合题意;故选:C.【分析】本题要判定△ABC≌△ADC,已知AB=AD,AC是公共边,具备了两组边对应相等,故添加CB=CD、∠BAC=∠DAC、∠B=∠D=90°后可分别根据SSS、SAS、HL能判定△ABC≌△ADC,而添加∠BCA=∠DCA后则不能.7、【答案】C【考点】角平分线的性质【解析】【解答】解:∵AD是∠BAC的平分线,DE⊥AB于点E,DF⊥AC于点F,∴DE=DF,∴ ×AB×DE+ AC×DF=S=28,即×20DE+ ×8DE=28,解得DE=2.△ABC故选C.【分析】根据角平分线的性质求出DE=DF,根据三角形的面积公式列式计算即可.8、【答案】D【考点】全等三角形的判定与性质【解析】【解答】解:如图,作BF⊥AD与点F,,∵BF⊥AD,∴∠AFB=BFD=90°,∵AD∥BC,∴∠FBC=∠AFB=90°,∵∠C=90°,∴∠C=∠AFB=∠BFD=∠FBC=90°.∴四边形BCDF是矩形.∵BC=CD,∴四边形BCDF是正方形,∴BC=BF=FD.∵EB⊥AB,∴∠ABE=90°,∴∠ABE=∠FBC,∴∠ABE﹣∠FBE=∠FBC﹣∠FBE,∴∠CBE=∠FBA.在△BAF和△BEC中,,∴△BAF≌△BEC,∴AF=EC.∵CD=BC=8,DE=6,∴DF=8,EC=2,∴AF=2,∴AD=8+2=10.故选:D.【分析】首先作BF⊥AD与点F,推得BF∥CD,判断出四边形BCDF是矩形;然后根据BC=CD=8,可得四边形BCDF是正方形,所以BF=BC;最后根据全等三角形的判定方法,证明△BCE≌△BAF,即可推得AF=CE,进而求出AD的长为多少即可.二、<b >细心填空</b>9、【答案】4【考点】全等三角形的性质【解析】【解答】解:∵△ABC≌△ADE,∴AE=AC,∵AB=7,AC=3,∴BE=AB﹣AE=AB﹣AC=7﹣3=4.故答案为:4.【分析】根据△ABC≌△ADE,得到AE=AC,由AB=7,AC=3,根据BE=AB﹣AE即可解答.10、【答案】15cm或18cm.【考点】三角形三边关系,等腰三角形的性质【解析】【解答】解:①当腰是4cm,底边是7cm时,能构成三角形,则其周长=4+4+7=15cm;②当底边是4cm,腰长是7cm时,能构成三角形,则其周长=4+7+7=18cm.故答案为:15cm或18cm.【分析】等腰三角形两边的长为4m和7m,具体哪条是底边,哪条是腰没有明确说明,因此要分两种情况讨论.11、【答案】14【考点】线段垂直平分线的性质,等腰三角形的性质【解析】【解答】解:∵DE是AB的垂直平分线,∴BD=AD,∴CD=AC﹣AD=AC﹣BD,∴△BDC的周长=BC+BD+AC﹣BD=BC+AC,∵BC=6,AC=AB=(22﹣6)÷2=8,∴△BDC的周长=CB+AC=6+8=14.故答案为:14.【分析】先根据线段垂直平分线的性质求出AD=BD,再通过等量代换求出CD=AC ﹣BD即可求解.12、【答案】120°.【考点】矩形的性质,翻折变换(折叠问题)【解析】【解答】解:∵四边形ABCD是矩形,∴AD∥BC,∴∠AEF=∠EFO=60°,EF=60°,由翻转变换的性质可知,∠AEF=∠A1=120°,∴∠AEA1故答案为:120°.【分析】根据平行线的性质得到∠AEF=∠EFO=60°,根据翻转变换的性质解答即可.13、【答案】50°【考点】角平分线的定义,三角形内角和定理【解析】【解答】解:∵∠BOC=115°,∴∠OBC+∠OCB=65°,∵∠ABC与∠ACB的平分线相交于O点,∴∠ABC=2∠OBC,∠ACB=2∠OCB,∴∠ABC+∠ACB=2(∠OBC+∠OCB)=130°,∴∠BAC=50°.故答案为:50°【分析】根据三角形内角和定理易得∠OBC+∠OCB=65°,利用角平分线定义可得∠ABC+∠ACB=2(∠OBC+∠OCB)=130°,进而利用三角形内角和定理可得∠A度数.14、【答案】(6,﹣1)【考点】平行线的性质,坐标与图形变化-对称【解析】【解答】解:∵直线l经过点(0,2),且与x轴平行,∴直线l解析式为y=2,∴点(6,5)关于直线l的对称点为(6,﹣1),故答案为(6,﹣1).【分析】先确定出直线l解析式,进而根据对称性即可确定出结论.15、【答案】5:8【考点】平行线分线段成比例【解析】【解答】解:由角平分线的性质可知,= = ,∴CD:BD=5:8,故答案为:5:8.【分析】根据角平分线的性质定理列出比例式,计算即可.16、【答案】(﹣1,2)或(2,3)【考点】坐标与图形性质,等腰直角三角形【解析】【解答】解:如图,作EH⊥y轴于H,CF⊥y轴于F,E′G⊥OA于G.在△AOB和△FBC中,,∴△OAB≌△FBC,∴CF=OB=1,BF=OA=3,当B为直角顶点时,同理可得EH=1,BH=2,∴E(﹣1,2),当A为直角顶点时,同理可得,AG=1,E′G=3,∴E′(2,3),综上所述,点E坐标(﹣1,2)或(2,3).故答案为(﹣1,2)或(2,3)【分析】如图,作EH⊥y轴于H,CF⊥y轴于F,E′G⊥OA于G.由△AOB≌△FBC≌△HBE≌△E′GA,可得CF=EH=AG=1,BH=BF=E′G=OA=3,由此即可解决问题.三、<b >用心解答</b>17、【答案】解:分别作出公路夹角的角平分线和线段AB的中垂线,他们的交点为P,则P点就是修建发射塔的位置.【考点】作图—基本作图【解析】【分析】由条件可知发射塔要再两条高速公路的夹角的角平分线和线段AB的中垂线的交点上,分别作出夹角的角平分线和线段AB的中垂线,找到其交点就是发射塔修建位置.18、【答案】证明:在△BAC和△DAC中,,∴△BAC≌△DAC(SAS),∴∠BAC=∠DAC,∴AC是∠BAD的平分线【考点】全等三角形的判定与性质【解析】【分析】根据全等三角形的判定定理SSS推出△BAC≌△DAC,根据全等三角形的性质可得∠BAC=∠DAC即可.19、【答案】解:∵AD⊥BC,∴∠ADB=90°,∵BE平分∠ABC,∠ABE=23°,∴∠FBD=∠ABE=23°,∴∠BFD=180°﹣∠ADB﹣∠FBD=67°,∴∠AFE=∠BFD=67°【考点】三角形内角和定理【解析】【分析】根据垂直求出∠ADB,根据角平分线定义求出∠FBD,根据三角形内角和定理求出∠BFD即可.20、【答案】解:∵BC沿BD折叠点C落在AB边上的点E处,∴DE=CD,BE=BC,∵AB=8cm,BC=6cm,∴AE=AB﹣BE=AB﹣BC=8﹣6=2cm,∴△ADE的周长=AD+DE+AE,=AD+CD+AE,=AC+AE,=5+2,=7cm.【考点】翻折变换(折叠问题)【解析】【分析】根据翻折变换的性质可得DE=CD,BE=BC,然后求出AE,再根据三角形的周长列式求解即可.21、【答案】证明:连BE,∵ED⊥BC,∴∠EDB=90°,在Rt△ABE和Rt△DBE中,∴△ABE≌△DBE (HL),∴DE=AE.∴DE+CE=AC.【考点】全等三角形的判定与性质【解析】【分析】连接BE,利用HL定理得出△ABE≌△DBE 即可得出答案.【答案】(1)证明:∵∠CAB=∠EAD=90°,∴∠CAE=∠BAD.在△CAE和△BAD中,,∴△CAE≌△BAD(SAS),∴CE=BD(2)证明:延长BD交CE于F,如图所示:∵△CAE≌△BAD,∴∠ACE=∠ABD,∵∠CAB=90°,∴∠ABC+∠ACB=90°,即∠ABD+∠DBC+∠ACB=90°,∴∠DBC+∠ACB+∠ACE=90°,即∠DBC+∠BCF=90°,∴∠BFC=90°,∴CE⊥BD.【考点】全等三角形的判定与性质【解析】【分析】(1)由已知条件证出∠CAE=∠BAD,由SAS证明△CAE≌△BAD,得出对应边相等即可;(2)延长BD交CE于F,由全等三角形的性质得出∠ACE=∠ABD,由角的互余关系得出∠ABC+∠ACB=90°,证出∠DBC+∠BCF=90°,得出∠BFC=90°即可.四、<b >灵活应用</b>【答案】(1)解:如图1,∵点P为∠EAF平分线上一点,PB⊥AE,PC⊥AF,∴PB=PC,∠PBM=∠PCN=90°,∵在Rt△PBM和Rt△PCN中,PBM=∠PCN=90°,,∴Rt△PBM≌Rt△PCN(HL),∴BM=CN(2)AM+AN=2AC(3)解:如图2,∵点P为∠EAF平分线上一点,PB⊥AE,PC⊥AF,∴PB=PC,∠PBM=∠PCN=90°,∵在Rt△PBM和Rt△PCN中,PBM=∠PCN=90°,,∴Rt△PBM≌Rt△PCN(HL),∴BM=CN,∴S△PBM =S△PCN∵AC:PC=2:1,PC=4,∴AC=8,∴由(2)可得,AB=AC=8,PB=PC=4,∴S四边形ANPM =S△APN+S△APB+S△PBM=S△APN +S△APB+S△PCN=S△APC +S△APB= AC•PC+AB•PB = ×8×4+×8×4=32【考点】三角形的面积,全等三角形的判定与性质,角平分线的性质【解析】【解答】解:(2)AM+AN=2AC .∵∠APB=90°﹣∠PAB,∠APC=90°﹣∠PAC,点P 为∠EAF 平分线上一点, ∴∠APC=∠APB,即AP 平分∠CPB,∵PB⊥AB,PC⊥AC,∴AB=AC,又∵BM=CN,∴AM+AN=(AB ﹣MB )+(CN+AC )=AB+AC=2AC ;故答案为:AM+AN=2AC .【分析】(1)根据PB=PC ,∠PBM=∠PCN=90°,利用HL 判定Rt△PBM≌Rt△PCN,即可得出BM=CN ;(2)先已知条件得出AP 平分∠CPB,再根据PB⊥AB,PC⊥AC,得到AB=AC ,最后根据BM=CN ,得出AM+AN=(AB ﹣MB )+(CN+AC )=AB+AC=2AC ;(3)由AC :PC=2:1,PC=4,即可求得AC 的长,又由S 四边形ANPM =S △APN +S △APB +S △PBM =S △APN +S △APB +S △PCN =S △APC +S △APB , 即可求得四边形ANPM 的面积.24、【答案】(1)解:∵ +(b 2﹣16)2=0,∴a﹣b=0,b 2﹣16=0,解得:b=4,a=4或b=﹣4,a=﹣4,∵A点在x轴正半轴,B点在y轴正半轴上,∴b=4,a=4,∴A(4,0),B(0,4),∴OA=OB=4,∴∠OAB=45°(2)解:①如图1,作EF⊥y轴于F,∵B(0,4),H(0,1),∴BH=OB﹣OH=4﹣1=3,∵OA=OB=4,∴△OAB为等腰直角三角形,∴∠OBA=∠OAB=45°,∴△BFE为等腰直角三角形,∴BF=EF=2,∴OF=OB﹣BF=4﹣1=3,∴E(2,3),∴E(2,3)为GH的中点,=3,∵S△BHE∴ BH×EF=3,即×3×EF=3,∴EF=2,故点E到BH的距离为2.②设G(m,n),则∵BE为△BHG的中线,∴ ,,解得m=4,n=5,∴G点坐标为(4,5)(3)解:如图2,过点B作BK⊥OC,交MN于点K,则∠KBO=∠DOA,∵MN⊥AD,∴∠DON+∠NOA=90°,∴∠3+∠NOA=90°,∵∠NOA+∠1=90°,∴∠3=∠1,在△KOB和△OAD中,,∴△KOB≌△OAD(ASA),∴KB=OD,∠2=∠7,∵BC=OD,∴KB=BC,∵OB=OA,∠BOA=90°,∴∠OBA=45°,∴∠9=∠8=45°,在△MKB和△MCB中,,∴△MKB≌△MCB(SAS),∴∠6=∠5,∵∠7+∠6=180°,∴∠2+∠5=180°,即∠ADO+∠BCM=180°.【考点】三角形的面积,全等三角形的判定与性质,等腰直角三角形【解析】【分析】(1)根据非负数的性质,得出关于a、b的方程组,求得a、b即可得到A、B两点的坐标,最后利用等腰三角形的性质得出∠OAB的度数;(2)作EF⊥y轴于F,构造等腰直角三角形BEF,进而求出E点坐标,利用△BHE的面积即可得到点E到BH的距离;设G(m,n),根据BE为△BHG的中线,求得点G坐标即可;(3)过点B作BK⊥OC,交MN于点K,然后证明△OBK≌△OAD、△MKB≌△MCB,从而可证明∠ADO+∠BCM=180°.武汉市重点中学八年级上学期期中考试数学试卷(三)一、细心选一选1、下列图形中,不是轴对称图形的是()A、B、C、D、2、△ABC中BC边上的高作法正确的是()A、B、C、D、3、已知三角形两边长分别为3和8,则该三角形第三边的长可能是()A、5B、10C、11D、124、下列判断中错误的是()A、有两角和其中一个角的对边对应相等的两个三角形全等B、有一边相等的两个等边三角形全等C、有两边和一角对应相等的两个三角形全等D、有两边和其中一边上的中线对应相等的两个三角形全等5、三角形中,若一个角等于其他两个角的差,则这个三角形是()A、钝角三角形B、直角三角形C、锐角三角形。
2017~2018武汉市硚口区八年级上册期中数学试卷八年级数学第一学期期中试卷分析一、选择题(每小题3分,共30分)下列各题中均有4个答案,其中有且只有一个正确,请在答题卡上将正确答案的字母代号涂黑1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A、 B、 C、 D、答案:A分析:A轴对称,B中心对称,CD不对称难度:★2.下列图形中具有稳定性的是()A、三角形B、四边形C、五边形D、六边形答案:A分析:只有三角形具有稳定性难度:★3.下列长度的三条线段能组成三角形的是()A、1,2,3B、4,5,10C、8,15,20D、5,8,15答案:C分析:两边和大于第三边,两边差的绝对值小于第三边难度:★4.如图,把一副含30°角和45°角的直角三角板拼在一起,那么图中∠ADE的度数为()A、100°B、120°C、135°D、150°答案:C分析:45度的补角 难度:★★5.已知等腰三角形的两边长分别是5和11,则是这个等腰三角形的周长为( ) A 、21 B 、16 C 、27 D 、21或27 答案:C分析:两边和大于第三边,两边差的绝对值小于第三边,所以11只能做腰边不能做底边。
难度:★★6.如图,红红书上的三角形被墨迹污染了一部分,她根据所学的知识很快就画了一个与书上完全一样的三角形,那么红红画图的依据是( ) A 、SSS B 、SAS C 、ASA D 、AAS 答案:C 分析:角边角 难度:★★7.如图,在△ABC 中,AB =AC ,AB 的垂直平分线交边AB 于D ,交边AC 于E 点, 若△ABC 与△EBC 的周长分别是40,24,则AB 为( ) A 、8 B 、12 C 、16 D 、20 答案:C分析:中垂线定理,中垂线上的点到两边距离相等 难度:★★8.如图,D 是△ABC 的边BC 上一点,AB =AD =DC ,∠BAD =40°,则∠C 的度数第4题图DCB第6题图第7题图EDB第8题图DCBA为( )A 、35° B、25° C、40° D 、50° 答案:A分析:等腰三角形两底角相等 难度:★★9.AD 是△ABC 的边BC 上的中线,若AD =4,AC =5,则AB 的取值范围是( ) A 、3<AB <9 B 、1<AB <9 C 、3<AB <13 D 、1<AB <13 答案:C分析:两边和大于第三边,两边差的绝对值小于第三边 难度:★★10.如图,OE 是等边△AOB 的中线,OB =4,C 是直线OE 上一动点,以AC 为边在直线AC 下方作等边△ACD ,连接ED ,下列说法正确的是( ) A 、ED 的最小值是2 B 、ED 的最小值是1 C 、ED 有最大值D 、ED 没有最大值也没有最小值 答案:B分析:等边三角形手拉手,及几何最值问题 △ACO 和△ADB 全等,从而得小值为1 难度:★★★二、填空题(每小题3分,共18分)11.点P (-3,2)关于x 轴对称点M 的坐标为__________. 答案:(-3,-2)分析:对称轴坐标不变,另一坐标变相反数 难度:★12.等腰三角形的底角度数为80°,则是它的顶角的度数为__________. 答案:20°分析:等腰三角形两底角相等第10题图EOB C13.十边形的对角线一共有__________条 答案:35分析:多边形对线公式 n(n-3)/2 难度:★14.CD 是△ABC 的高,∠ACD =65°,∠BCD =25°,则∠ACB 的度数为__________. 答案:40°或90° 分析:三角形分类讨论 难度:★★15.如图,AD 是△ABC 的高,∠BAD =40°,∠CAD =65°,若AB =m ,BD =n ,则BC 的长为__________.(用含m ,n 的式子表示)答案:2n+m分析:截长补短 难度:★★16.如图,平面直角坐标系中,A (0,3),B (4,0),BC ∥y 轴,且BC <OA ,第一象限的点P (a ,2a -3),使△ACP 是以AC 为斜边的等腰直角三角形,则点P 的坐标为__________. 答案:(2,1)(10/3,11/3)分析:几何代数结合,此题等腰三角形,直角方向可上,可下,注意图形变化 难度:★★★三、解答题(共8小题,共2分)17.(本题8分)一个多边形的内角和比四边形的外角和多540°,求这个多边形的边数.第15题图B Dx y第16题图BAOC分析:多边形内角和公式 难度:★18.(本题8分)如图,点B 、E 、C 、F 在同一条直线上,AB =DE ,AC =DF ,BE =CF , 求证:AB ∥DE 答案:SSS 全等分析:全等三角形的性质 难度:★19.(本题8分)如图,在△ABC 中,AB =AC ,D 为BC 的中点,DE ⊥AB ,DF ⊥AC ,垂足分别为E 、F ,求证:DE =DF 答案:角平线到两边的距离相等 分析:等腰三角形三线合一 难度:★★20.(本题8分)如图,在平面直角坐标系中,△ABC 的三个顶点坐标分别为A (0,5)、B (-3,2)、C (-1,1)(1)画出△ABC 关于y 轴对称的△AB 1C 1,并写出B 1的坐标.(2)将△ABC 向右平移8个单位,画出平移后的△A 1B 2C 2,写出B 2的坐标. (3)在(1)、(2)的基础上,指出△AB 1C 1与△A 1B 2C 2有怎样的位置关系? (4)x 轴上一点P ,使PB +PC 的值最小,标出P 点的位置.(保留画图痕迹)DB FEC F E BA答案:略 分析:略 难度:★★21.(本题8分)如图,在Rt △ABC 中,∠ABC =90°,AB =BC ,D 是AC 上一点,AE ⊥BD 于E ,CF ⊥BD 于F . (1)求证:CF =BE ;(2)若BD =2AE ,求证:∠EAD =∠ABE 答案:(1)AAS (2)SAS 分析:分析全等条件 难度:★★22.(本题10分)D 为等边△ABC 的边AC 上一点,E 为直线AB 上一点,E 为直线AB 上一点,CD =BE . (1)如图1,求证:AD =DE ; (2)如图2,DE 交CB 于点P . ①若DE ⊥AC ,PC =4,求BP 的长;②求证:PD =PEF E ACD 图1EABD图2PEBD答案:1、△AED 是等边三角形 2、(1)BP=2 (2)三角形两边取等值,连线平分分析:分析全等条件 难度:★★23.(本题10分)在等腰△ABC 中,AB =BC ,∠BAC =30°,D 、E 、F 分别为线段AB 、BC 、AC 上的点,∠ABF =∠BED ,DE 交BF 于点G . (1)如图1,求∠BGD 的度数;(2)如图2,已知BD =CE ,点H 在BF 的延长线上,BH =DE ,连接AH . ①求证:AH ∥BC ;②若43 DE BF ,直接写出AB AH的值为__________.答案:如图 分析:如图 难度:★★★图2GFEB AD图1G FEA BD24.(本题12分)如图1,在平面直角坐标系中,A(-3,0)、B(0,7)、C(7,0),∠ABC+∠ADC=180°,BC⊥CD.(1)求证:∠ABO=∠CAD;(2)求四边形ABCD的面积;(3)如图2,E为∠BCO的邻补角的平分线上的一点,且∠BEO=45°,OE交BC 于点F,求BF的长.答案:如图xy图1DBCA Oxy图2FBCOE分析:如图难度:★★★2017~2018武汉市硚口区八年级上册期中数学试卷和答案八年级数学第一学期期中试卷分析2017---2018学年度第一学期期中考试八年级数学答案一、选择题(每小题3分,共30分)1.A2.A3.C4.C5.C6. C7. C8.A9. C10.B二、填空题(每题3分,共18分)11.(-3,-2) 12.200 13.35 14. 400或90015.m+2n 16.(310,311) 三、解答题( 共8道小题,共72分)17.解:设多边形的边数为n, 可得(n-2)·180º=360º+540º…………………………5分∴n=7 ∴这个多边形的边数为7.…………………………………………………8分18.证明:∵BE=CF ∴CE+BE=CF+CE ∴BC=EF ……………………………………………2分在△ACB 和△DFE 中 AB DE AC DF BC EF =⎧⎪=⎨⎪=⎩∴△ABC ≌DEF (SSS ) (6)分∴∠B =∠DEF ∴AB ∥DE …… ………………………………………………………8分19.证明:∵AB =AC ,∴∠B =∠C ……………………………………………………………2分又∵DE ⊥AB ,DF ⊥AC ∴∠BED =∠CFD=90º……………………………………………3分∵点D 为BC 中点∴DB =DC ……………………………………………………………………4分∴ 在△DBE 和△DCF 中⎪⎩⎪⎨⎧=DC DB ∠BED=∠CFD ∠B=∠C ∴△DBE ≌DCF(AAS )……………………7分∴DE =DF.…………………………………………………………………………………8分 方法二:也可先连接AD ,证明△DBA ≌DCA (SSS )得AD 平分∠BAC 也可.20.(1) 画图……………………………1分)2,3(1B ………………………………2分(2)画图………………………3分B 2(5,2), ……………………………4分(3)关于直线x=4轴对称 ………………………………………………………………6分(3)画图 …………………………………………………………………………………8分21.证明::(1) ∵∠ABC =90°,CF ⊥BD ,AE ⊥BD ,∴∠ABE+∠EBC =90º=∠EBC+∠BCF, ∴∠ABE =∠BCF,………………………………2分又∵∠AEB =∠BFC=90º,AB=CB,∴ΔABE≌ΔBCF,∴CF =BE ……………………………4分(2)由(1)ΔABE≌ΔBCF 得BF=AE,∠ABE =∠BCF ……………………………5分又∵BD=BF+FD=2AE, ∴BF=DF ∴又CF ⊥BD 于F ∴CB=CD,………………6分 ∴CF 平分∠ACB,又∵AE ∥CF ∴.∠EAD =∠ACF,…………………………………………7分∵∠ABE =∠BCF=∠ACF ∴∠EAD =∠ABE ………………………………………………8分22.证明:(1)∵△ABC 是等边三角形 ∴AB=AC, ∠A=60º, ………1分 又∵CD=BE ∴AB -BE=AC -CD ∴AD=AE , …………2分又∵∠A=60º ∴ΔADE 是等边三角形,∴AD=DE …………………3分(2)①∵DE ⊥AC,∴∠E=30º,又∵∠ABC=60º,∴∠E =∠BPE=30º=∠CPD ∴CD=21PC=2, ……………4分 又∵CD=BE ∴BE=2=BP …………………5分②过点D 作DQ ∥AB 交BC 于点Q,可证ΔDCQ 是等边三角形,………7分 ∴CD=DQ=BE ,可证ΔDQP ≌ΔEBP(AAS), ……………………9分∴PD=PE.………………………………………………………………………10分23. 解:(1) ∵AB=BC,∠BAC=30º∴∠ABC=120º ………………………1分∵∠BGD =∠GBE+∠BED, 又∵∠ABF =∠BED∴∠BGD =∠GBE+∠ABF=∠ABC=120º …………………………………3分①方法一:在BA 上截取BI =BE ,连接IH,可证ΔIBH≌ΔBED(SAS), ……………………5分∴BD=IH,∠BIH =∠EBD=120º,∴∠AIH =60º,∴又BD=CE,AB=BC,∴AD =BE,又∵BI =BE,∴BI =BE=AD,∴BI=AD ∴AI =DB 又∵BD=IH ∴AI =IH,……………………7分∴等边ΔAIH,∴∠IAH =60º,∴∠IAH+∠ABE=180º∴AH ∥BC ……………8分方法二:延长EB 到点M 使EM=BA,证等边ΔBDM 也可.② __31_ ……………………………………………10分24. 解:(1)在四边形ABCD 中,∵∠ABC +∠ADC=180°,∴∠BAD +∠BCD=180°, ……………………1分∵BC ⊥CD ∴∠BCD =90º∴∠BAD =90°∴∠BAC +∠CAD=90°,…………2分又∵∠BAC +∠ABO=90° ∴∠ABO =∠CAD.. ……………………3分(2) 过点A 作AF ⊥BC 于点F ,作AE ⊥CD 的延长线于点E,作DG ⊥x 轴于点G ,∵B (0,7),C (7,0)∴OB=OC ∴,∠BCO=45°……………………………………4分又∵BC ⊥CD ∴∠BCO=∠DCO=45°又∵AF ⊥BC ,AE ⊥CD ∴AF=AE,∠FAE=90°, ∴∠BAF =∠DAE,∴ΔABF ≌ΔADE(AAS) …………………………………6分∴AB=AD,又∵∠AGD=∠BOA=90°∴ΔABO ≌ΔDAG(AAS) ……………………7分∴DG=AO,BO=AG又∵A(-3,0)B(0,7)∴D(4,-3),S四ABCD =21AC. (BO+DG )=50 (8)分(3)过点E作EH⊥BC于点H,作EG⊥x轴于点G,∵E点在∠BCO的邻补角的平分线上,∴EH=EG,又∵∠BCO=∠BEO=45º∴∠EBC=∠EOC∴ΔEBH≌ΔEOG(AAS) ……………………………………………10分∴EB=EO又∵∠BEO=45º,∴∠EBO=∠EOB=67.5º又∠OBC=45º∴∠BOE=∠BFO=67.5º∴BF=B0=7. ………………………………………………12分。
2018-2019学年湖北省武汉市硚口区八年级(上)期中数学试卷姓名:得分:日期:一、选择题(本大题共 10 小题,共 30 分)1、(3分) 低碳环保理念深入人心,共享单车已成为出行新方式.下列共享单车图标,是轴对称图形的是()A. B. C. D.2、(3分) 下列长度的三条线段能组成三角形的是()A.3,4,8B.5,6,11C.6,6,6D.9,9,193、(3分) 若某多边形从一个顶点一共可引出4条对角线,则这个多边形是()A.五边形B.六边形C.七边形D.八边形4、(3分) 如图,△ABC≌△DEF,则∠E的度数为()A.80°B.40°C.62°D.38°5、(3分) 平面直角坐标系中点(-2,1)关于y轴对称的点的坐标为()A.(-2,-1)B.(2,1)C.(-1,2)D.(1,-2)6、(3分) 如图,已知∠CAB=∠DAB,则添加下列一个条件不能使△ABC≌△ABD的是()A.AC=ADB.BC=BDC.∠C=∠DD.∠ABC=∠ABD7、(3分) 如图,在△ABC中,DE垂直平分BC交AB于点E,若BD=5,△ABC的周长为31,则△ACE的周长为()A.18B.21C.26D.288、(3分) 如图,AD是△ABC的中线,E是AD上一点,BE交AC于F,若EF=AF,BE=7.5,CF=6,则EF的长度为()A.2.5B.2C.1.5D.19、(3分) 如图,BP是∠ABC的平分线,AP⊥BP于P,连接PC,若△ABC的面积为1cm2,则△PBC的面积为()A.0.4cm2B.0.5cm2C.0.6cm2D.不能确定10、(3分) 如图,AD为等边△ABC的高,E、F分别为线段AD、AC上的动点,且AE=CF,当BF+CE取得最小值时,∠AFB=()A.112.5°B.105°C.90°D.82.5°二、填空题(本大题共 6 小题,共 18 分)11、(3分) 如图,为了使一扇旧木门不变形,木工师傅在木门的背后加钉了一根木条,这样做的道理是______.12、(3分) 若一个多边形的每个外角都为36°,则这个多边形的内角和是______°.13、(3分) 用一条长18cm的细绳围成一个等腰三角形,若有一边长是8cm,则所围成等腰三角形的底边长为______cm.14、(3分) 已知一张三角形纸片ABC(如图甲),其中AB=AC.将纸片沿过点B的直线折叠,使点C落到AB边上的E点处,折痕为BD(如图乙).再将纸片沿过点E的直线折叠,点A恰好与点D重合,折痕为EF(如图丙).原三角形纸片ABC中,∠ABC的大小为______°.15、(3分) 如图,△ABC中,∠ACB=90°,CD是高,若∠A=30°,BD=1,则AD=______.16、(3分) 如图,在Rt△ABC中,∠C=90°,以△ABC的一边为边画等腰三角形,使得它的第三个顶点在△ABC的其他边上,则可以画出的不同的等腰三角形的个数最多为______.三、解答题(本大题共 8 小题,共 72 分)17、(8分) 如图,∠B=40°,∠A+10°=∠1,∠ACD=65°.求证:AB∥CD.18、(8分) 如图,点E、F在BC上,BE=CF,AB=DC,∠B=∠C,AF与DE交于点G,求证:GE=GF.19、(8分) 如图.△ABC中,CA=CB.D是AB的中点.∠CED=∠CFD=90°,CE=CF,求证:∠ADF=∠BDE.20、(8分) 如图,在平面直角坐标系中,△ABC的顶点坐标分别为A(2,3),B(1,1),C (2,1).(1)画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标为______;(2)将△ABC向左平移4个单位长度得到△A2B2C2,直接写出点C2的坐标为______;(3)直接写出点B关于直线n(直线n上各点的纵坐标都为-1)对称点B′的坐标为______;(4)在y轴上找一点P,使PA+PB的值最小,标出P点的位置.(保留画图痕迹)21、(8分) 如图,在Rt△ABC中,∠ABC=90°,延长AB至E,使AE=AC,过E作EF⊥AC于F,EF交BC于G.(1)求证:BE=CF;(2)若∠E=40°,求∠AGB的度数.22、(10分) 如图,在等边△ABC中,D是AB上一点,E是BC延长线上一点,AD=CE,DE交AC于点F.(1)求证:DF=EF;.(2)过点D作DH⊥AC于点H,求HFAC23、(10分) 如图,已知AC=BC,点D是BC上一点,∠ADE=∠C.(1)如图1,若∠C=90°,∠DBE=135°,求证:①∠EDB=∠CAD,②DA=DE;(2)如图2,若∠C=40°,DA=DE,求∠DBE的度数;(3)如图3,请直接写出∠DBE与∠C之间满足什么数量关系时,总有DA=DE成立.24、(12分) 在平面直角坐标中,等腰Rt△ABC中,AB=AC,∠CAB=90°,A(0,a),B(b,0).(1)如图1,若√2a−b+(a-2)2=0,求△ABO的面积;(2)如图2,AC与x轴交于D点,BC与y轴交于E点,连接DE,AD=CD,求证:∠ADB=∠CDE;(3)如图3,在(1)的条件下,若以P(0,-6)为直角顶点,PC为腰作等腰Rt△PQC,连接BQ,求证:AP∥BQ.2018-2019学年湖北省武汉市硚口区八年级(上)期中数学试卷【第 1 题】【答案】A【解析】解:A、是轴对称图形.故选项正确;B、不是轴对称图形.故选项错误;C、不是轴对称图形.故选项错误;D、不是轴对称图形.故选项错误.故选:A.根据轴对称图形的概念求解.此题主要考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,两边图象折叠后可重合.【第 2 题】【答案】C【解析】解:由3,4,8,可得3+4<8,故不能组成三角形;由5,6,11,可得6+5=11,故不能组成三角形;由6,6,6,可得6+6>6,故能组成三角形;由9,9,19,可得9+9<19,故不能组成三角形;故选:C.三角形两边之和大于第三边,在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.本题主要考查了三角形三边关系,判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.【第 3 题】【答案】C【解析】解:∵多边形从一个顶点出发可引出4条对角线,∴n-3=4,解得n=7.即这个多边形是七边形,故选:C.根据从n边形的一个顶点可以作对角线的条数为(n-3),求出边数即可得解.本题考查了多边形的对角线的公式,牢记公式是解题的关键.【第 4 题】【答案】D【解析】解:∵△ABC≌△DEF,∠A=80°,∠C=62°,∴∠F=∠C=62°,∠D=∠A=80°,∴∠E=180°-∠D-∠F=180°-80°-62°=38°,故选:D.根据全等三角形的性质得出∠F=∠C=62°,∠D=∠A=80°,根据三角形的内角和定理求出∠E的度数即可.本题考查了对全等三角形的性质,三角形的内角和定理的应用,注意:全等三角形的对应边相等,对应角相等.【第 5 题】【答案】B【解析】解:点(-2,1)关于y轴的对称点的坐标是(2,1),故选:B.根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变;即点(x,y)关于y轴的对称点的坐标是(-x,y).此题主要考查了关于x轴、y轴对称的点的坐标规律,比较容易,关键是熟记规律:(1)关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.(2)关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变.【第 6 题】【答案】B【解析】解:A 、∵在△ABC 和△ABD 中{AC =AD ∠CAB =∠DAB AB =AB∴△ABC≌△ABD (SAS ),正确,故本选项错误;B 、根据BC=BD ,AB=AB 和∠CAB=∠DAB 不能推出两三角形全等,错误,故本选项正确;C 、∵在△ABC 和△ABD 中 {∠C =∠D ∠CAB =∠DAB AB =AB∴△ABC≌△ABD (AAS ),正确,故本选项错误;D 、∵在△ABC 和△ABD 中 {∠CAB =∠DAB AB =AB ∠DBA =∠CBA∴△ABC≌△ABD (ASA ),正确,故本选项错误;故选:B .全等三角形的判定定理有SAS ,ASA ,AAS ,SSS ,已知有∠DAB=∠CAB 和隐含条件AB=AB ,看看再添加的条件和以上两个条件是否符合全等三角形的判定定理即可.本题考查了全等三角形的判定定理,注意:全等三角形的判定定理有SAS ,ASA ,AAS ,SSS .【 第 7 题 】【 答 案 】B【 解析 】解:∵DE 是线段BC 的垂直平分线,∴BE=CE ,BC=2BD=10,即BE+AE=CE+AE=AB ,∵△ABC 的周长为31,∴∴△ACE 的周长=AB+AC=31-10=21.故选:B .先根据DE 是线段BC 的垂直平分线得出BE=CE ,即BE+AE=CE+AE=AB ,再由△ACE 的周长=AB+AC 即可求出答案.本题考查的是线段垂直平分线的性质,即线段的垂直平分线上的点到线段的两个端点的距离相等.【 第 8 题 】【 答 案 】C【 解析 】解:如图,延长AD,使DG=AD,连接BG,∵AD是△ABC的中线∴BD=CD,且DG=AD,∠ADC=∠BDG∴△ADC≌△GDB(SAS)∴AC=DG=CF+AF=6+AF,∠DAC=∠G∵EF=AF,∴∠DAC=∠AEF∴∠G=∠AEF=∠BEG∴BE=BG=7.5∴6+AF=BG=7.5∴AF=1.5=EF故选:C.延长AD,使DG=AD,连接BG,由“SAS”可证△ADC≌△GDB,可得AC=DG=CF+AF=6+AF,∠DAC=∠G,由等腰三角形的性质可得BE=BG=7.5,即可求EF的长.本题考查了全等三角形的判定和性质,等腰三角形的性质,添加恰当辅助线构造全等三角形是本题的关键.【第 9 题】【答案】B【解析】解:如图,延长AP交BC于E,∵BP平分∠ABC,∴∠ABP=∠EBP,∵AP⊥BP,∴∠APB=∠EPB=90°,∴△ABP≌△EBP (ASA ),∴AP=PE ,∴S △ABP =S △EBP ,S △ACP =S △ECP , ∴S △PBC =12S △ABC =12×1=0.5(cm 2),故选:B .延长AP 交BC 于E ,根据已知条件证得△ABP≌△EBP ,根据全等三角形的性质得到AP=PE ,得出S △ABP =S △EBP ,S △ACP =S △ECP ,推出S △PBC =12S △ABC ,代入求出即可.本题考查了全等三角形的性质和判定,三角形的面积的应用,注意:等底等高的三角形的面积相等.【 第 10 题 】【 答 案 】B【 解析 】解:如图,作CH⊥BC ,且CH=BC ,连接BH 交AD 于M ,连接FH ,∵△ABC 是等边三角形,AD⊥BC ,∴AC =BC ,∠DAC=30°,∴AC=CH ,∵∠BCH=90°,∠ACB=60°,∴∠ACH=90°-60°=30°,∴∠DAC=∠ACH=30°,∵AE=CF ,∴△AEC≌△CFH ,∴CE=FH ,BF+CE=BF+FH ,∴当F 为AC 与BH 的交点时,如图2,BF+CE 的值最小,此时∠FBC=45°,∠FCB=60°,∴∠AFB=105°,故选:B.如图,作辅助线,构建全等三角形,证明△AEC≌△CFH,得CE=FH,将CE转化为FH,与BF在同一个三角形中,根据两点之间线段最短,确定点F的位置,即F为AC与BH的交点时,BF+CE的值最小,求出此时∠AFB=105°.此题考查全等三角形的性质和判定、等边三角形的性质、最短路径问题,关键是作出辅助线,当BF+CE取得最小值时确定点F的位置,有难度.【第 11 题】【答案】利用三角形的稳定性【解析】解:这样做的道理是利用三角形的稳定性.三角形具有稳定性,其它多边形不具有稳定性,把多边形分割成三角形则多边形的形状就不会改变.本题考查三角形稳定性的实际应用,三角形的稳定性在实际生活中有着广泛的应用,如钢架桥、房屋架梁等,因此要使一些图形具有稳定的结构,往往通过连接辅助线转化为三角形而获得.【第 12 题】【答案】1440【解析】解:∵此正多边形每一个外角都为36°,360°÷36°=10,∴此正多边形的边数为10.则这个多边形的内角和为(10-2)×180°=1440°.故答案为:1440.本题首先根据多边形外角和定理,即任意多边形外角和为360°,可求出此正多边形的边数为10.然后再根据三角形的内角和定理求出它的内角和.本题主要考查了多边形内角和及外角和定理,任何多边形的外角和是360°.【第 13 题】【答案】2或8解:①当8cm为底边时,设腰长为xcm,则2x+8=18,解得:x=5,5,5,8能构成三角形,此时底边为8cm;②当8cm为腰长时,设底边长为ycm,则y+8×2=18,解得:y=2,8,8,2能构成三角形,此时底边为2cm故答案为2或8.由用一条长为18cm的细绳围成一个等腰三角形,其中有一边为8cm,可以分别从①若8cm为底边长,②若8cm为腰长时,去分析,然后根据三角形的三边关系判定是否能组成三角形,继而可求得答案.此题考查了等腰三角形的性质与三角形的三边关系.此题比较简单,解题的关键是注意分类讨论思想的应用.【第 14 题】【答案】72【解析】解:设∠A=x,根据翻折不变性可知∠A=∠EDA=x,∠C=∠BED=∠A+∠EDA=2x,∵AB=AC,∴∠ABC=∠C=2x,∵∠A+∠ABC+∠C=180°,∴5x=180°,∴x=36°,∴∠ABC=72°故答案为72设∠A=x,根据翻折不变性可知∠A=∠EDA=x,∠C=∠BED=∠A+∠EDA=2x,利用三角形内角和定理构建方程即可解决问题.本题考查翻折变换、等腰三角形的性质等知识,解题的关键是学会用方程的思想思考问题,属于中考常考题型.【第 15 题】【答案】3解:∵△ABC中,∠ACB=90°,∠A=30°,∴∠B=60°,∵CD是高,∴∠CDB=90°,∴∠BCD=30°,∵BD=1,∴BC=2BD=2,∵在△ACB中,∠ACB=90°,∠A=30°,∴AB=2BC=4,∴AD=AB-BD=4-1=3,故答案为:3.求出∠BCD=30°,根据含30°角的直角三角形的性质求出BC=2,求出AB=4,即可得出答案.本题考查了三角形的内角和定理,含30度角的直角三角形的性质的应用,解此题的关键是得出BC=2BD和AB=2BC,难度适中.【第 16 题】【答案】7个【解析】解:如图:可以画出7个等腰三角形;故答案为7.①以B为圆心,BC长为半径画弧,交AB于点D,△BCD就是等腰三角形;②以A为圆心,AC长为半径画弧,交AB于点E,△ACE就是等腰三角形;③以C为圆心,BC长为半径画弧,交AC于点F,△BCF就是等腰三角形;④以C为圆心,BC长为半径画弧,交AB于点K,△BCK就是等腰三角形;⑤作AB的垂直平分线交AC于G,则△AGB是等腰三角形;⑥作BC的垂直平分线交AB于I,则△BCI和△ACI是等腰三角形.本题考查了等腰三角形的判定的应用,主要考查学生的理解能力和动手操作能力.【第 17 题】证明:∵∠B+∠1+∠A=180°,∠B=40°,∠A+10°=∠1,∴40°+∠A+10°+∠A=180°,∴∠A=65°,∵∠ACD=65°,∴∠ACD=∠A,∴AB∥CD.【解析】根据三角形内角和定理求出∠A,进而求出∠ACD=∠A,根据平行线的判定得出即可.本题考查了平行线的判定,三角形的内角和定理的应用,能灵活运用定理进行推理是解此题的关键.【第 18 题】【答案】证明:∵BE=CF,∴BE+EF=CF+EF,∴BF=CE,在△ABF和△DCE中{AB=DC ∠B=∠C BF=CE∴△ABF≌△DCE(SAS),∴∠GEF=∠GFE,∴EG=FG.【解析】求出BF=CE,根据SAS推出△ABF≌△DCE,得对应角相等,由等腰三角形的判定可得结论.本题考查了全等三角形的判定与性质,等腰三角形的判定,熟练掌握三角形全等的判定方法是解题的关键.【第 19 题】【答案】证明:如图,连接CD,在Rt△ECD和Rt△FCD中,{CF=CECD=CD,∴Rt△ECD≌Rt△FCD,∴∠CDF=∠CDE,∵CA=CB,D是AB的中点,∴CD⊥AB,∴∠CDA=∠CDB=90°,∴∠ADF=∠BDE.【解析】连接CD,证得△ECD≌△FCD,得出∠CDF=∠CDE,利用等腰三角形的“三线合一”得出∠CDA=∠CDB=90°,进一步求得结论即可.此题考查三角形全等的判定与性质,等腰三角形的性质,掌握三角形的判定方法是解决问题的关键.【第 20 题】【答案】(2,-3)(-2,1)(1,-3)【解析】解:(1)如图所示,△A1B1C1即为所求,点A1的坐标为(2,-3),故答案为:(2,-3).(2)如图所示,△A2B2C2即为所求,点C2的坐标为(-2,1),故答案为:(-2,1).(3)由题意知直线n的解析式为y=-1,则点B关于直线n的对称点B′的坐标为(1,-3),故答案为:(1,-3).(4)如图所示,点P即为所求.(1)根据轴对称的定义作出点A,B,C关于x轴的对称点,再顺次连接即可得;(2)根据平移变换的定义作出点A,B,C向左平移4个单位得到的对应点,再顺次连接可得;(3)先得出直线n的解析式,再作出点B关于直线n:y=-1的对称点,据此可得;(4)连接A2B与y轴交点就是P点.此题主要作图-轴对称变换与平移变换,关键是正确确定组成图形的关键点的对称点位置及轴对称变换的性质.【第 21 题】【答案】证明:(1)∵∠ABC=90°,EF⊥AC,∴∠ABC=∠AFE=90°在△AEF与△ACB中{∠EAF=∠CAB∠ABC=∠AFE=90∘AE=AC,∴△AEF≌△ACB(AAS)∴AF=AB,∴BE=CF;(2)∵△ABC≌△AFE,∴AB=AF,在Rt△AGF和Rt△AGB中,{AG=AGAF=AB∴Rt△AFG≌Rt△ABG(HL)在Rt△BEG中,∠BGE=90°-∠E=50°,∴∠BGF=130°,∵Rt△AGF≌Rt△AGB,∴∠AGB=∠AGF=12∠BGF=65°.【解析】(1)首先证明△ABC≌△AFE,推出AB=AF,即可解决问题.(2)在Rt△BEG中,∠BGE=90°-∠E=50°,推出∠BGF=130°,由Rt△AGF≌Rt△AGB,推出∠AGB=∠AGF=12∠BGF即可解决问题.本题考查全等三角形的判定和性质、直角三角形的性质等知识,解题的关键是熟练掌握全等三角形的判定和性质,属于中考常考题型.【 第 22 题 】【 答 案 】证明:(1)过点D 作DG∥BC 交AC 于点G ,∴∠ADG=∠B ,∠AGD=∠ACB ,∠FDG=∠E ,∵△ABC 是等边三角形,∴AB=AC ,∠B=∠ACB=∠A=60°,∴∠A=∠ADG=∠AGD=60°,∴△ADG 是等边三角形,∴DG=AD ,∵AD=CE ,∴DG=CE ,在△DFG 与△EFC 中{∠DFG =∠EFC ∠FDG =∠E DG =CE∴△DFG≌△EFC (AAS ),∴DF=EF ;(2)∵△ADG 是等边三角形,AD=DG DH⊥AC ,∴AH=HG=12AG ,又∵△DFG≌△EFC ,∴GF=FC=12GC∴HF=HG+GF=12AG+12GC=12AC ,∴HF AC =12【 解析 】(1)过点D 作DG∥BC 交AC 于点G ,根据全等三角形的判定和性质解答即可;(2)根据等边三角形的性质和全等三角形的性质解答即可.此题考查全等三角形的判定和性质、等腰三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会利用参数解决问题,属于中考压轴题【 第 23 题 】【答案】(1)证明:①∵∠ADE=∠C,∴∠CAD=180°-∠C-∠ADC,∠EDB=180°-∠ADE-∠ADC,∴∠CAD=∠EDB;②在AC上截取CF=CD,连接FD,(或在AC上截取AF=BD,连接FD)∵∠C=90°,∴∠CFD=∠CDF=45°,∴∠AFD=135°=∠DBE,∵AC=BC,∴AC-CF=BC-CD,即:AF=BD,由①知:∠CAD=∠BDE,∴△AFD≌△DBE(ASA),∴DA=DE;(2)方法一:如图2,在AC上截取AG=DB,连接GD(在AC上截取CG=CD,连接GD),∵AC=BC,∴AC-AG=BC-BD即:CG=CD,∴∠CGD=∠CDG=180∘−∠C2=70°,∵DA=DE,∠CAD=∠EDB(已证),AG=DB,∴△AGD≌△DBE(SAS),∴∠AGD=∠DBE=110°;方法二:如图3,延长DB到点H使DH=AC,连接EH,∵∠CAD=∠BDE,AD=DE,∴△ACD≌△DHE(SAS),∴∠C=∠H=40°,CD=EH,∵AC=BC=DH,∴CD=BH=E H,∴∠HBE=∠HEB=70°,∴∠DBE=110°; (3)当∠DBE=90°+12∠C 时,总有DA=DE 成立;理由是:如图3,在AC 上截取CF=CD ,连接DF ,则∠CDF=∠CFD ,设∠CDF=x ,△CDF 中,∠C+∠CDF+∠CFD=180°,∴∠C+x+x=180°,x=180∘−∠C2=90°-12∠C , 同理得△AFD≌△DBE (SAS ),∴∠AFD=∠DBE=∠C+∠CDF=∠C+x=∠C+90°-12∠C ,∴∠DBE=90°+12∠C .【 解析 】(1)①根据三角形的内角和及平角的定义可得结论;②如图1,作辅助线,构建等腰直角三角形,利用ASA 证明△AFD≌△DBE (ASA ),可得结论;(2)方法一:如图2,同理作辅助线,证明△AGD≌△DBE (SAS ),得∠AGD=∠DBE=110°; 方法二:如图2,延长DB 到点H 使DH=AC ,连接EH ,证明△ACD≌△DHE (SAS ),得∠C=∠H=40°,CD=EH ,再根据已知证明CD=BH=EH ,可得结论;(3)同理作辅助线,证明△AFD≌△DBE (SAS ),根据三角形的外角和三角形内角和定理可得结论.本题是三角形的综合题,考查了全等三角形的判定,考查了全等三角形对应边、对应角相等的性质,本题中作辅助线证明AFD≌△DBE 是解题的关键.【 第 24 题 】【 答 案 】解:(1)∵√2a −b +(a-2)2=0,∴2a -b=0,a-2=0,解得,a=2,b=4,∴A (0,2),B (4,0),∴OA=2,OB=4,∴△ABO 的面积=12×2×4=4;(2)作AF 平分∠BAC 交BD 于F 点,∵AB=AC ,∠CAB=90°,∴∠C=∠ABC=∠DAF=∠BAF=45°,∵∠CAE+∠BAO=∠ABF+∠BAO=90°,∴∠CAE=∠ABF ,在△ACE 和△BAF 中,{∠CAE =∠ABF AC =AB ∠ACE =∠BAF ,∴△ACE≌△BAF (ASA ),∴CE=AF ,在△CED 和△AFD 中,{CD =AD ∠C =∠DAF CE =AF ,∴△CED≌△AFD (SAS )∴∠CDE=∠ADB ;(3)过C 点作CM⊥y 轴于M 点,过D 点作DN⊥y 轴于N 点,则∠AMC=∠BOA=90°,∵∠CAM+∠BAO=∠ABO+∠BAO =90°,∴∠CAM=∠ABO ,在△ACM 和△BAO 中,{∠CAM =∠ABO ∠CMA =∠AOB AC =AB ,∴△ACM≌△BAO (AAS ),∴CM=AO=2,AM=BO=4,∵A(0,2),P(0,-6),∴AP=8,∴PM=AP-AM=4,在△PCM和△QPN中,{∠CPM=∠PQN ∠PMC=∠QNPPC=PQ,△PCM≌△QPN(AAS),∴NQ=PM=4,∴四边形ONQB为平行四边形,∴AP∥BQ.【解析】(1)根据绝对值和偶次方的非负性求出a,b,根据三角形的面积公式计算;(2)作AF平分∠BAC交BD于F点,分别证明△ACE≌△BAF,△CED≌△AFD,根据全等三角形的性质证明;(3)过C点作CM⊥y轴于M点,过D点作DN⊥y轴于N点,证明△ACM≌△BAO,根据全等三角形的性质得到CM=AO=2,AM=BO=4,证明四边形ONQB为平行四边形,得到答案.本题考查的是全等三角形的判定和性质,非负数的性质,掌握全等三角形的判定定理和性质定理是解题的关键.。
2017-2018学年八年级(上)期中数学试卷一.选择题(本大题共10小题,每小题3分,共30分)1.在平面直角坐标系中,点(﹣1,2)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.下列语句中,不是命题的是()A.直角都等于90°B.对顶角相等C.互补的两个角不相等D.作线段AB3.一个三角形的三个外角之比为3:4:5,则这个三角形内角之比是()A.5:4:3 B.4:3:2 C.3:2:1 D.5:3:14.在如图所示的象棋盘上,若“帅”和“相”所在的坐标分别是(1,﹣2)和(3,﹣2)上,则“炮”的坐标是()A.(﹣1,1)B.(﹣1,2)C.(﹣2,1)D.(﹣2,2)5.已知一次函数y=kx+b﹣x的图象与x轴的正半轴相交,且函数值y随自变量x的增大而增大,则k,b的取值情况为()A.k>1,b<0 B.k>1,b>0 C.k>0,b>0 D.k>0,b<06.在下列条件中,①∠A+∠B=∠C;②∠A:∠B:∠C=1:2:3;③∠A=∠B=∠C;④∠A=∠B=2∠C;⑤∠A=2∠B=3∠C,能确定△ABC为直角三角形的条件有()A.2个B.3个C.4个D.5个7.直线l1:y=k1x+b与直线l2:y=k2x+c在同一平面直角坐标系中的图象如图所示,则关于x的不等式k1x+b<k2x+c的解集为()A.x>1 B.x<1 C.x>﹣2 D.x<﹣28.在长方形ABCD中,AB=2,BC=1,动点P从点B出发,沿路线B→C→D做匀速运动,那么△ABP的面积S与点P运动的路程x之间的函数图象大致为()A. B.C.D.9.如图,∠MAN=100°,点B、C是射线AM、AN上的动点,∠ACB的平分线和∠MBC 的平分线所在直线相交于点D,则∠BDC的大小()A.40°B.50°C.80°D.随点B、C的移动而变化10.如图,△ABC顶点坐标分别为A(1,0)、B(4,0)、C(1,4),将△ABC沿x轴向右平移,当点C落在直线y=2x﹣6上时,线段BC扫过的面积为()A.4 B.8 C. D.16二.填空题(本大题共8小题,每小题3分,共24分)11.点M(3,﹣1)到x轴距离是,到y轴距离是.12.如图,把一副常用的三角板如图所示拼在一起,那么图中∠ABF=.13.已知直线y=kx+b经过点(﹣2,2),并且与直线y=2x+1平行,那么b=.14.已知:点A(x1,y1),B(x2,y2)是一次函数y=﹣2x+5图象上的两点,当x1>x2时,y1y2.(填“>”、“=”或“<”)15.如图,已知一次函数y=kx+3和y=﹣x+b的图象交于点P(2,4),则关于x的方程kx+3=﹣x+b的解是.16.如图,已知在△ABC中,∠B与∠C的平分线交于点P.当∠A=70°时,则∠BPC的度数为.17.甲、乙两人在直线道路上同起点、同终点、同方向,分别以不同的速度匀速跑步1500米,先到终点的人原地休息,已知甲先出发30秒后,乙才出发,在跑步的整个过程中,甲、乙两人的距离y(米)与甲出发的时间x(秒)之间的关系如图所示,则乙到终点时,甲距终点的距离是米.。
ABCDA B D C M N2017-2018学年度上期期中教学质量检测 八年级数学试题(本试卷120分 考试时间100分钟)一、选择题(每小题3分,满分24分)下列各小题均有四个答案,其中只有一个是正确的1.下列平面图形中,不是轴对称图形的是 ( )2.以下列各组线段为边,能组成三角形的是( )A. 2 cm ,3 cm ,5 cmB. 3 cm ,3 cm ,6 cmC. 5 cm ,8 cm ,2 cmD. 4 cm ,5 cm ,6 cm 3.已知等腰三角形的两边长分别为3和6,则它的周长等于( ) A. 12 B. 12或15 C. 15 D. 15或184.如图,已知MB=ND,∠MBA=∠NDC ,下列条件中不能判定△ABM ≌△CDN 的是( )A.∠M=∠NB.AM=CNC.AB=CDD.AM ∥CN 5.一个多边形的内角和等于1080°,这个多边形的边数是( ) A .9 B .8 C .7 D .6 6.下列说法中,错误的是 ( )A.一个三角形的三个内角中,至少有一个角不大于600B.有一个外角是锐角的三角形是钝角三角形C.锐角三角形中,两个角的和小于直角D.直角三角形中有一个外角等于和它相邻的内角7. AD 是△ABC 的角平分线,过点D 作DE ⊥AB 于E ,DF ⊥AC 于F•,则下列结论不一定正确的是( )A .DE=DFB .BD=CDC .AE=AFD .∠ADE=∠ADF8.如图,把长方形纸片ABCD 纸沿对角线折叠,设重叠部分为△EBD ,那么, 有下列说法: ①△EBD 是等腰三角形,EB=ED ②折叠后∠ABE 和∠CBD 一定座号:________A B CD相等 ③折叠后得到的图形是轴对称图形 ④△EBA 和△EDC 一定是全等三角形 其中正确的有( )A.1个B.2个C.3个D.4个二、填空题(共7小题,每小题3分,满分21分)9.在△ABC 中,∠A ∶∠B ∶∠C =2∶3∶4,则∠A =________,∠C =________ 10.正十边形的每一个内角的度数等于______,每一个外角的度数等于_______. 11. 在△ABC 中,∠C=90°,BC=16cm ,∠BAC 的平分线交BC 于D ,且BD ︰DC=5︰3,则D 到AB 的距离为_____________.12. 如图,∠A=36°,∠DBC=36°,∠C=72°,则图中等腰三角形有_____ 个。
2017~2018武汉市硚口区八年级上册期中数学试卷及试卷分析一、选择题(每小题3分,共30分)下列各题中均有4个答案,其中有且只有一个正确,请在答题卡上将正确答案的字母代号涂黑1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A、B、C、D、答案:A分析:A轴对称,B中心对称,CD不对称难度:★2.下列图形中具有稳定性的是()A、三角形B、四边形C、五边形D、六边形答案:A分析:只有三角形具有稳定性难度:★3.下列长度的三条线段能组成三角形的是()A、1,2,3B、4,5,10C、8,15,20D、5,8,15答案:C分析:两边和大于第三边,两边差的绝对值小于第三边难度:★4.如图,把一副含30°角和45°角的直角三角板拼在一起,那么图中∠ADE的度数为()A、100°B、120°C、135°D、150°答案:C分析:45度的补角难度:★★5.已知等腰三角形的两边长分别是5和11,则是这个等腰三角形的周长为()A、21B、16C、27D、21或27答案:C难度:★★6.如图,红红书上的三角形被墨迹污染了一部分,她根据所学的知识很快就画了一个与书上完全一样的三角形,那么红红画图的依据是( )A 、SSSB 、SASC 、ASAD 、AAS 答案:C 分析:角边角 难度:★★7.如图,在△ABC 中,AB =AC ,AB 的垂直平分线交边AB 于D ,交边AC 于E 点, 若△ABC 与△EBC 的周长分别是40,24,则AB 为( )A 、8B 、12C 、16D 、20 答案:C分析:中垂线定理,中垂线上的点到两边距离相等 难度:★★8.如图,D 是△ABC 的边BC 上一点,AB =AD =DC ,∠BAD =40°,则∠C 的度数为( ) A 、35° B 、25° C 、40° D 、50° 答案:A分析:等腰三角形两底角相等 难度:★★9.AD 是△ABC 的边BC 上的中线,若AD =4,AC =5,则AB 的取值范围是( ) A 、3<AB <9 B 、1<AB <9 C 、3<AB <13 D 、1<AB <13 答案:C分析:两边和大于第三边,两边差的绝对值小于第三边 难度:★★10.如图,OE 是等边△AOB 的中线,OB =4,C 是直线OE 上一动点,以AC 为边在直线AC 下方作等边△ACD ,连接ED ,下列说法正确的是( ) A 、ED 的最小值是2 B 、ED 的最小值是1 C 、ED 有最大值第4题图第6题图第7题图B第8题图D CBA答案:B分析:等边三角形手拉手,及几何最值问题 △ACO 和△ADB 全等,从而得小值为1 难度:★★★二、填空题(每小题3分,共18分)11.点P (-3,2)关于x 轴对称点M 的坐标为__________. 答案:(-3,-2)分析:对称轴坐标不变,另一坐标变相反数 难度:★12.等腰三角形的底角度数为80°,则是它的顶角的度数为__________. 答案:20°分析:等腰三角形两底角相等 难度:★13.十边形的对角线一共有__________条 答案:35分析:多边形对线公式 n(n-3)/2 难度:★14.CD 是△ABC 的高,∠ACD =65°,∠BCD =25°,则∠ACB 的度数为__________. 答案:40°或90° 分析:三角形分类讨论 难度:★★15.如图,AD 是△ABC 的高,∠BAD =40°,∠CAD =65°,若AB =m ,BD =n ,则BC 的长为__________.(用含m ,n 的式子表示) 答案:2n+m 分析:截长补短 难度:★★16.如图,平面直角坐标系中,A (0,3),B (4,0),BC ∥y 轴,且BC <OA ,第一象限的点P (a ,2a -3),使△ACP 是以AC 为斜边的等腰直角三角形,则点P 的坐标为__________. 答案:(2,1)(10/3,11/3)第15题图CBA难度:★★★三、解答题(共8小题,共2分)17.(本题8分)一个多边形的内角和比四边形的外角和多540°,求这个多边形的边数. 答案:7分析:多边形内角和公式 难度:★18.(本题8分)如图,点B 、E 、C 、F 在同一条直线上,AB =DE ,AC =DF ,BE =CF , 求证:AB ∥DE 答案:SSS 全等分析:全等三角形的性质 难度:★19.(本题8分)如图,在△ABC 中,AB =AC ,D 为BC 的中点,DE ⊥AB ,DF ⊥AC ,垂足分别为E 、F ,求证:DE =DF答案:角平线到两边的距离相等 分析:等腰三角形三线合一 难度:★★20.(本题8分)如图,在平面直角坐标系中,△ABC 的三个顶点坐标分别为A (0,5)、B (-3,2)、C (-1,1)(1)画出△ABC 关于y 轴对称的△AB 1C 1,并写出B 1的坐标.(2)将△ABC 向右平移8个单位,画出平移后的△A 1B 2C 2,写出B 2的坐标. (3)在(1)、(2)的基础上,指出△AB 1C 1与△A 1B 2C 2有怎样的位置关系? (4)x 轴上一点P ,使PB +PC 的值最小,标出P 点的位置.(保留画图痕迹)A分析:略 难度:★★21.(本题8分)如图,在Rt △ABC 中,∠ABC =90°,AB =BC ,D 是AC 上一点,AE ⊥BD 于E ,CF ⊥BD 于F .(1)求证:CF =BE ;(2)若BD =2AE ,求证:∠EAD =∠ABE 答案:(1)AAS (2)SAS 分析:分析全等条件 难度:★★22.(本题10分)D 为等边△ABC 的边AC 上一点,E 为直线AB 上一点,E 为直线AB 上一点,CD =BE . (1)如图1,求证:AD =DE ; (2)如图2,DE 交CB 于点P . ①若DE ⊥AC ,PC =4,求BP 的长;②求证:PD =PE答案:1、△AED 是等边三角形 2、(1)BP=2 (2)三角形两边取等值,连线平分 分析:分析全等条件 难度:★★23.(本题10分)在等腰△ABC 中,AB =BC ,∠BAC =30°,D 、E 、F 分别为线段AB 、BC 、AC 上的点,∠ABF =∠BED ,DE 交BF 于点G .(1)如图1,求∠BGD 的度数;A图1A图2EA①求证:AH ∥BC ;②若43 DE BF ,直接写出AB AH的值为__________.答案:如图 分析:如图 难度:★★★B A图1A B24.(本题12分)如图1,在平面直角坐标系中,A (-3,0)、B (0,7)、C (7,0), ∠ABC +∠ADC =180°,BC ⊥CD . (1)求证:∠ABO =∠CAD ; (2)求四边形ABCD 的面积;(3)如图2,E 为∠BCO 的邻补角的平分线上的一点,且∠BEO =45°,OE 交BC 于点F ,求BF 的长.答案:如图 分析:如图 难度:★★★x2017~2018武汉市硚口区八年级上册期中数学试卷和答案八年级数学第一学期期中试卷分析2017---2018学年度第一学期期中考试八年级数学答案一、选择题(每小题3分,共30分)1.A2.A3.C4.C5.C6. C7. C8.A9. C 10.B二、填空题(每题3分,共18分)11.(-3,-2) 12.200 13.35 14. 400或90015.m+2n 16.(310,311) 三、解答题( 共8道小题,共72分)17.解:设多边形的边数为n , 可得(n -2)·180º=360º+540º…………………………5分∴n =7 ∴这个多边形的边数为7.…………………………………………………8分 18.证明:∵BE =CF ∴CE +BE =CF +CE ∴BC =EF ……………………………………………2分在△ACB 和△DFE 中 AB DE AC DF BC EF =⎧⎪=⎨⎪=⎩∴△ABC ≌DEF (SSS )……………………6分∴∠B =∠DEF ∴AB ∥DE …… ………………………………………………………8分 19.证明:∵AB =AC ,∴∠B =∠C ……………………………………………………………2分 又∵DE ⊥AB ,DF ⊥AC ∴∠BED =∠CFD =90º……………………………………………3分 ∵点D 为BC 中点∴DB =DC ……………………………………………………………………4分∴ 在△DBE 和△DCF 中⎪⎩⎪⎨⎧=DC DB ∠BED=∠CFD ∠B=∠C ∴△DBE ≌DCF (AAS )……………………7分∴DE =DF .…………………………………………………………………………………8分 方法二:也可先连接AD ,证明△DBA ≌DCA (SSS )得AD 平分∠BAC 也可.20.(1) 画图……………………………1分 )2,3(1B ………………………………2分(2)画图………………………3分 B 2(5,2), ……………………………4分 (3)关于直线x=4轴对称 ………………………………………………………………6分 (3)画图 …………………………………………………………………………………8分21.证明::(1) ∵∠ABC =90°,CF ⊥BD ,AE ⊥BD , ∴∠ABE +∠EBC =90º=∠EBC +∠BCF , ∴∠ABE =∠BCF ,………………………………2分 又∵∠AEB =∠BFC =90º,AB =CB ,∴ΔABE ≌ΔBCF ,∴CF =BE ……………………………4分 (2)由(1)ΔABE ≌ΔBCF 得BF=AE,∠ABE =∠BCF ……………………………5分 又∵BD=BF+FD =2AE , ∴BF=DF ∴又CF ⊥BD 于F ∴CB=CD,………………6分∴CF 平分∠ACB,又∵AE ∥CF ∴.∠EAD =∠ACF,…………………………………………7分 ∵∠ABE =∠BCF =∠ACF ∴∠EAD =∠ABE ………………………………………………8分22.证明:(1)∵△ABC 是等边三角形 ∴AB =AC, ∠A =60º, ………1分 又∵CD =BE ∴AB -BE =AC -CD ∴AD =AE , …………2分 又∵∠A =60º ∴ΔADE 是等边三角形,∴AD =DE …………………3分 (2)①∵DE ⊥AC,∴∠E =30º,又∵∠ABC =60º,∴∠E =∠BPE =30º=∠CPD ∴CD =21PC =2, ……………4分 又∵CD =BE ∴BE =2=BP …………………5分 ②过点D 作DQ ∥AB 交BC 于点Q ,可证ΔDCQ 是等边三角形,………7分 ∴CD =DQ =BE ,可证ΔDQP ≌ΔEBP (AAS ), ……………………9分∴PD =PE .………………………………………………………………………10分23. 解:(1) ∵AB =BC ,∠BAC =30º∴∠ABC =120º ………………………1分∵∠BGD =∠GBE+∠BED, 又∵∠ABF =∠BED∴∠BGD =∠GBE+∠ABF=∠ABC=120º …………………………………3分①方法一:在BA 上截取BI =BE ,连接IH ,可证ΔIBH ≌ΔBED (SAS ), ……………………5分∴BD =IH ,∠BIH =∠EBD =120º,∴∠AIH =60º, ∴又BD =CE ,AB =BC ,∴AD =BE ,又∵BI =BE,∴BI =BE=AD ,∴BI=AD ∴AI =DB 又∵BD =IH ∴AI =IH,……………………7分 ∴等边ΔAIH,∴∠IAH =60º,∴∠IAH +∠ABE =180º∴AH ∥BC ……………8分方法二:延长EB 到点M 使EM =BA ,证等边ΔBDM 也可.② __31_ ……………………………………………10分24. 解:(1)在四边形ABCD 中,∵∠ABC +∠ADC =180°,∴∠BAD +∠BCD =180°, ……………………1分 ∵BC ⊥CD ∴∠BCD =90º∴∠BAD =90°∴∠BAC +∠CAD =90°,…………2分 又∵∠BAC +∠ABO =90° ∴∠ABO =∠CAD.. ……………………3分 (2) 过点A 作AF ⊥BC 于点F ,作AE ⊥CD 的延长线于点E ,作DG ⊥x 轴于点G ,∵B (0,7),C (7,0)∴OB=OC ∴,∠BCO =45°……………………………………4分 又∵BC ⊥CD ∴∠BCO =∠DCO=45°又∵AF ⊥BC ,AE ⊥CD ∴AF =AE ,∠FAE =90°, ∴∠BAF =∠DAE,∴ΔABF ≌ΔADE (AAS ) …………………………………6分 ∴AB =AD ,又∵∠AGD =∠BO A =90°∴ΔABO ≌ΔDAG (AAS ) ……………………7分 ∴DG =AO ,BO =AG 又∵A (-3,0)B (0,7)∴D (4,-3),S 四ABCD =21AC · (BO +DG )=50 …………………8分 (3) 过点E 作EH ⊥BC 于点H ,作EG ⊥x 轴于点G ,∵E 点在∠BCO 的邻补角的平分线上,∴EH =EG ,又∵∠BCO =∠BEO =45º∴∠EBC =∠EOC ∴ΔEBH ≌ΔEOG (AAS ) ……………………………………………10分 ∴EB =EO 又∵∠BEO =45º,∴∠EBO =∠EOB=67.5º 又∠OBC =45º∴∠BOE =∠BFO=67.5º ∴BF =B0=7. ………………………………………………12分。